EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Tackling Complexity in Smart Manufacturing with Advanced
Manufacturing Process Management

Citation for published version (APA):

Traganos, K. (2022). Tackling Complexity in Smart Manufacturing with Advanced Manufacturing Process
Management. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Industrial Engineering and Innovation
Sciences]. Eindhoven University of Technology.

Document status and date:
Published: 09/11/2022

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/1f16be45-98c4-4ed1-8123-3c9f67d0bd26

Tackling Complexity
in Smart Manufacturing
with Advanced
Manufacturing Process Management

Konstantinos Traganos

-

SIKS Dissertation Series No. 2022-31

The research presented in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

It was part of the HORSE project and received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement no. 680734. It was also part of
the OEDIPUS project, funded by EIT Digital. Moreover, it was partially supported by the
SHOPA4CF Project funded by the European Union’s Horizon 2020 research and innovation
program under grant agreement no. 873087.

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-5583-3

Printed by: Proefschriftmaken | | www.proefschriftmaken.nl
Cover design by: Stefanie van den Herik

Copyright © 2022 by Konstantinos Traganos. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means
electronic or mechanical, including photocopying, recording, or by any information storage
and retrieval system, without permission in writing from the author.

https://www.proefschriftmaken.nl/

Tackling Complexity
in Smart Manufacturing
with Advanced
Manufacturing Process Management

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,
op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties, in het
openbaar te verdedigen op woensdag 09 november 2022 om 13:30 uur

door

Konstantinos Traganos

geboren te Lamia, Griekenland

Dit proefschrift is goedgekeurd door de promotor en copromotor, en de samenstelling van
de promotiecommissie is als volgt:

voorzitter: prof.dr.ir. G.J. van Houtum

promotor: prof.dr.ir. P.W.P.J. Grefen

co-promotor: dr.ir. .T.P. Vanderfeesten

leden: prof.dr. M. Reichert (University of Ulm)

prof.dr. M.G.J. van den Brand
prof.dr. D. Karastoyanova (Rijksuniversiteit Groningen)
prof.dr. J. van Hillegersberg (Universiteit Twente)

dr. O. Tiiretken

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Summary

The evolution of the manufacturing paradigm has always been characterized by both market
trends and technology advancements. In the ongoing 4" industrial revolution, customers
demand more individual products, of high-quality and, if possible, with same-day delivery.
The versatility of products and the configuration options upon ordering give rise to mass-
customization and personalization. In the context of a global business environment, in which
the competition is extremely high and the changes can be disruptive, this market shift puts
pressure on manufacturers who seek for flexibility to satisfy the demands. They have to adapt
and reconfigure their systems in order to offer the product variety within short lead times and
be responsive to changes. Typically, product variety introduces production variety that often
comes with a high degree of complexity. The recent technology developments offer more
flexibility in production operations. Versatile robots can perform various operations.
Collaborative robots (cobots) increase efficiency by allowing robots and human operators to
work together. Augmented Reality (AR) systems support operators in their daily tasks, which
are getting more complex. Automated guided vehicles (AGV) transport material and products
around a factory, without human intervention. Smart sensors gather any kind of values from
devices that help in predictive maintenance or decision making. And all these developments
are leveraged by the connectivity that the Internet-of-Things (IoT) and cloud computing
provide. However, robotic solutions are often employed in disparate work cells, following a
vertical orientation in their robot control processes. This usually leads to isolated, fragmented
developments that do not solve the need for production adaptability and flexibility at the level
of the entire process. We see, thus, that current production environments are getting complex
and the transition from a traditional factory into one that hosts the new smart technologies is
challenging.

The research presented in this thesis extends previous research on the application of theories,
techniques and tools from the well-developed business process management (BPM)
paradigm in smart manufacturing, aiming at tackling operations complexity. BPM can offer
flexible ways to design and configure operations, methods to respond to the unexpected
changes and events, dynamic resource allocation mechanisms and drive integration of
systems for better transparency and process efficiency. As the paradigm has been mostly
applied in business sectors, where information processing is dominant, adaptations and
extensions are required for application in the manufacturing domain, in which physical
aspects are involved. By performing design science research, knowledge, in the form of
artefacts, is generated in order to help practitioners for utilizing BPM in complex smart
production environments. This thesis focuses on the following four main artefacts: 1)
modeling patterns and mechanisms on representing complex production processes, 2) a
categorization of exceptions and corresponding handling strategies, 3) the specification of a
manufacturing process management system (MPMS) to support the modeling and execution
of end-to-end manufacturing processes, and 4) an architecture model of an advanced MPMS,
as a blueprint to realize an information system that enables horizontal process integration and

\%

direct process control for vertical integration. The advanced MPMS architecture incorporates
the conceptual designs of the first three artefacts. This research complements existing work
on application of BPM in smart manufacturing, which mainly focuses on dynamic resource
allocation. The contributions presented in this thesis are the main ingredients of an advanced
process management approach to overcome production complexity and enable smoother
introduction of smart technologies.

Realizations of the designed artefacts are demonstrated at various production enterprises
across Europe, within three European research and development projects, proving application
feasibility and gaining practical insights into the implementation and ease of use of the
solutions.

vi

Preface

The past few years as a Ph.D. candidate, culminated in this dissertation, was an invaluable
journey from many perspectives. I can now see myself how I developed as both a researcher
and a person through the hard work and its outcomes, the motivation to generate applied and
useful knowledge, the collaboration with colleagues but also the times of solitude, the
perseverance and patience to overcome challenges and struggles. Of course, what is presented
in this thesis and its underlying work, would not exist without the contribution and support
from colleagues, friends and family. Thus, I use the opportunity to express my warmest
gratitude to the people involved in my Ph.D. trajectory.

I would like to start with the supervision team and the colleagues who contributed the most
directly to my work. Dear Paul, I feel blessed to have you as my promotor. You methodically
guided me through the process, helped me structuring the concepts of my research, especially
when I was struggling to see the bigger picture, and provided sharp feedback to tackle open
issues. Working with you since my master studies, you are more than my promotor. You
have been mentoring me on how to nicely design information systems architectures, how to
see the “why” behind the “what” and “how” of building solutions, and how to clearly
communicate my work in academic settings. This mentorship has shaped me as a researcher
and engineer. Knowing you all these past years, we also had the chance to have more personal
discussions through our nice lunches, dinners and business trips we shared, which I greatly
enjoyed and learned from. Thanks for everything!

Dear Irene, as my co-promotor and daily supervisor, you provided all the settings with the
acquired large projects to apply our research ideas. You also gave me the freedom and space
to manoeuvre and find my own research interests. Your “helicopter view” approach and
feedback enabled me to see the greater value of my work when I was drowning with small
details. Your experience on how to convey “into the point” information that will be easy for
the reader to understand was valuable for improving my writing skills. Moreover, you always
encouraged and supported me with our open discussions during my stressful periods. Thanks
for our fruitful collaboration!

I want to thank my ex-colleague Jonnro. The significant work he has done in the projects,
resulting in a well-written Ph.D, thesis, together with the interesting discussions, even after
he left the team, were valuable inputs and a useful guide for me to write the current thesis. In
addition, I want to thank Dillan and John for they hard work during their master projects.
Moreover, I want to thank Zuzanna for handling all organizational work in the last project,
giving me time to focus on my thesis.

Next, I want to thank all the colleagues with whom I collaborated within the European
research projects. This collaboration gave me the opportunity to apply my ideas and work
with people with different professional backgrounds and thus, getting valuable experience on
how my work fits in a broader context. I am extra grateful to those who devoted their time to
help me with the interviews and evaluation sessions. A special thanks to Ruud Keulen for his
openness on applying our research ideas in his organization. I am also grateful to Tasos

vii

Georgakopoulos who supported the technical developments in the last project, making the
finalization of my work possible.

Moving to my broader research circle, I would like to thank all the colleagues of the
Information Systems research group who created a nice environment to work, to exchange
ideas and share interesting stories during our social events. In particular, I would like to thank
(in alphabetical order) Amirreza, Bilge, Caro, Ege, Jason, Paulo, Reza, Rick, Sander, Shaya,
Sud and Zeynep for the nice time we spent together all these past years. Moreover, I would
like to thank Emmy for solving any practical needs at the office.

As for the people closest to me, outside my research circle, I want to express my greatest
gratitude to my parents, Christos and Eleni, for their unconditional love, support and
sacrifices. You have devoted most of your life to provide me and my sister with the best
opportunities to thrive. This thesis is devoted to you, as you deserve to be proud of this
achievement. To my sister, Stella, thank you for being there always for me and keeping a true
sibling bond.

Lastly, I would like to express my special gratitude to Liliana for her unwavering support,
motivation and patience the past couple of years. You already know the basic concepts and
the structure of my thesis even without first having read a single line. With you by me, I was
able to stay strong throughout the tough process of writing this thesis. As the lyrics of a
Latvian song say: “Makslas darbi rodas mokas (Artworks are born/being created in
suffering) ”. 1 hope this thesis is also rewarding for you.

As for the reader, I would like to thank you upfront for your time to read hopefully the entire
thesis. I hope you find interesting and valuable either the general concepts behind this
research or even the small details. In the end, I will be content if my work, in some form,
contributes to a smooth embracement of Industry 4.0 technologies in smart manufacturing.

Konstantinos Traganos

Eindhoven, August 2022

viii

Table of Contents

B0 o) (o 2 VgD LRSS xiii
Table OF TaADIES ...ccuueeiiiiiiiie ettt ettt et s XXi
I INErOAUCTION .ttt ettt ettt sb b et s atesateseeesbeeneeenteens 1
1.1 Brief history of manufacturing............cecveeveeienienieiiee e 1
1.2 RESCAICH CONEEXLE ...ttt 3
1.3 Problem identificationc.covierieiieiiiieiieecee e 6
1.4 PrOPOSIEION ..eeuiiieiiieeiie ettt ettt et s e e et e e st e e stbeesaaeesbeessseesaeenseeenns 8
1.5 RESCAICH SCOPE ..ottt ettt ese e e 11
1.5.1 Manufacturing SECLOTcccuerueertieriieireeieereeteseteteeeeeneeeeaessaesseeseenseenaesneeses 12

1.5.2 Functional hieTarChycccccveviieiiiieiiieeiie ettt s 12

1.53 BPM HTECYCLE ...oeiiiieeiiiceeee ettt 14

1.6 RESEArCh ODJECLIVE. .. eevieiieiieie ettt ettt ense e 15
1.7 RESEArCh deSIZN.....eiiieiieiieiecie e 17
1.8 ThESIS OULIIE ..ottt s 23

2 ProbIem ANALYSIS......cccueeeiiiiiieeiiieeiteeiteeite et e etee et esteeebee s teeebeesbeeebeesnbeeenbeesbeeenreens 27
2.1 State of MANUFACTUTINGcvvviiieieiieiieieete et 27
2.1.1 Typologies of production SYStEIMScceecureeurrueriesriereeerieeeeeeeseeneeeseeeeeens 27
2.1.2 Manufacturing SYSLEINSc..eeueertiertierieiieiieeitestee et et ettesteesbeenbeeeeeeesieenee 30
2.1.3 Manufacturing operations management.............ceceerueeuereereeneenieenuesrueneenees 33
2.1.4 Manufacturing information SYSteIMScceecveerueriereerieerieeieesieseeseeseeeeens 36
2.1.5 Smart ManuUfaCtUIING.........cceeveeiieriierieriee ettt e e eae e e 39
2.1.6 Challenges and problems in smart manufacturing.........c.ccceceeveereerenreennenne 46
2.1.7 Approaches to face challenges and problems in smart manufacturing 51

2.2 PractiCal CASESeouevueruieiiiiiieiestetest ettt 53
2.2.1 Involved EU PrOJECtScevieeveeieiieriieiieieeieeteettesite st eseeaeeeeseesseesseenseenneens 53
2.2.2 Thomas Regout International (TRI).......cccccorviiniiniiniiiiiiiiieieeecee 55
2.2.3 Canon Production Printing (CPP)ccccecviiiiiiiriiiiieeiieceeeee e 62
2.2.4 Robert Bosch Espaiia Fabrica Madrid (BOS)ccccoceeieveiininininciiceees 72

2.3 DeSigN TEQUITCIMENLS.eetienieereeieeeieseiesteeteeteesteesaesseesseesseesessseseresseesseenseenseans 76
2.4 Chapter CONCIUSION.....cc.uiiiiieeiie ettt st ae e st eebeesebaeensee s 80

3 Flexible Process MOEIING.......ceeivieriieiiieiieeiieeste et eete et sveestaeesave et e esaeeeeaeeneneenes 81
3.1 Chapter OULIINEGccueeeieiieiieie ettt e e st se e enseensesneeses 82

X

3.2 Related work on process Modelingcccoecveeierieiieniieniee e 83

3.2.1 Process modeling in manufacturing..........c.occevcververieeciieieeienieeee e 83
3.2.2 BPMN in (smart) manufacturingccceceeeveeecieerieenciiesieeereesveesveesveennnes 84
3.2.3 General process modeling approaches..........cceecveeevieeeciieniieeniiee e 85
33 Modeling constructs for task assignment to heterogenous agents...................... 86
3.3.1 Task deliVery PatternSccueeuerieriieieeieetesee ettt e te et stee s enseeaesnneses 88
3.3.2 Task repetition PatteINS......ccceeerreeeriieriiieeiieeieeeieeereeeaeesreesreesseessseeseseensnes 91
3.3.3 Task queue management CONSIITUCTccueruerierieriieriieieeieeiie e 92
34 Modeling constructs for human-robot collaboration (HRC)c.ccccevveernnnn. 94
3.4.1 Related work on BPMN for collaborative process...........ccoeeververieerveesvennennes 94
3.4.2 Modeling collaborative assembly ProCcessesccvuveevierrreercieerireenieenveennnes 94
3.4.3 Deferred task parallelisSm CONSIIUCESceevvueereiieiiiieeiie e 95
3.5 SyNChronization POINLS..........c.eeeerieriieriieieeeesteseeste et see e eeeeseeaeeeaesseeseas 97
3.5.1 Related work on BPMN on synchronization points.............cceceereereeervernnene. 98
3.5.2 Manufacturing CONSIUCES.cc.ueitiertieieiieiie ettt ettt e 99
3.5.3 Concept and functionality of a Recipe SyStem.........cceevvveecreercreeecreerreennenns 101
3.6 Chapter CONCIUSION.ceiuieiieiieiieieeeesitete et see st e ste e e ente e esaessaenseenseas 111
ExXception handlingcccevieiieiiieieciesiesieeie ettt enee e ees 113
4.1 Chapter OULIINEcccveeeiieciieeieecte ettt sre et e et e e saeessbeessaeeneas 115
4.2 Categorization of €XCEPHON LYPES ..ecuvierveeriierieeiiieeieenieesreesereesreesereesveenenes 115
4.2.1 Systematic literature review (SLR) on “Exceptions”..........cceevecvrrverinnnenn 116
4.2.2 Input from practice on EXCEPLIONS.c.eeverrrerreerreerieererrerieerieeseeeresseesseensens 122
4.2.3 Designed categorization of eXception tyPes........cooervuereereeneenienienieneennens 126
4.3 Operational exception handling............cccceoeeriiiiiiiiiinieneeeee e 132
4.3.1 Existing exception handling approaches............cceeeveververienienieeieeieeeenenn 132
432 MOM KPIS ..ottt 136
4.3.3 Designed operational exception handling guidelines.............ccccoecverueniennen. 138
4.4 Chapter CONCIUSION.....c...ieiiieeiieiieeeiie ettt e et e e s eae e 144
Process automation and iNtEZrationecverueeriereierieriereesieereeee e sreesseeseeeeseneees 145
5.1 Chapter OULIINEGceeeeieiieiieiieieeee ettt et et eeaessaessaenseas 145
5.2 Process management support by information systems in manufacturing......... 146
53 Architecture Of MPMS ..o 148
5.3.1 Design process and design Principleseceeeververeereereeseerireseeseeneeeneens 148
53.2 WFMS/BPMS reference architeCtures..........coeveeereeienienienenenenceeeeenen 152

5.3.3 Logical view Of MPMS........cciiiiiiiiieicteeeee et 155

54 MPMS as part 0f @ CPS......ccoi oottt 178
5.4.1 Logical software architecture of @ CPS..........ccceooviiviiiiiieeieceee e 178
5.4.2 Integration to other systems through middleware technologies................... 185
5.4.3 PlatfOrm @SPECEecuveivieriieiieie ettt ettt ees 188

5.5 Chapter CONCIUSION.ceitieiieiieiieieetesitete et eae ettt e et e eeaeenaessaesseensees 192

Advanced MPMSo e s 193

6.1 Chapter OULIINEccveeeiieeiieeiiece ettt be et e e saeesaseessaeenneas 193

6.2 Integrated SOIULION.........ccieriieiieiieie ettt eees 194
6.2.1 Operationalization of modeling CONStIUCESceceeveierierenenereneeeenenn 195
6.2.2 Operationalization of exception handlingcccoeevevvieeiieiiiencie e 199
6.2.3 Development view of MPMS specificationccccceeevieeeciieicieesciee e 206
6.2.4 Architecture model of advanced MPMS.........c..cocoiiiiiiiiinininceceee 214

6.3 REALZALIONouiniiiiiiiiceiicc e 218
6.3.1 Existing BPM t00liNgcccuiiiiiiiiiiiieiieicecee e 218
6.3.2 Advanced MPMS COMPONENLS.......cceervieririeniieiieeeiiesieeereesreesreesseesneens 221
6.3.3 Deployment diagram.............cceeeueeierierierieereeee st seeseeeie e eeeseaesseesseensees 224

6.4 Chapter CONCIUSION.ceitieiieiieiieie e stee et eeesee st et e e et e eeaeenaessaesseenseas 225

Demonstration and evaluationc.ceiieriiriiiiieieeee e 227

7.1 DeMONSIIAION ...ttt ettt 227
ToLL TRI ettt ettt st 227
ToL2 CPP ot 237
T13 B Sttt ettt bt et ae et nes 246

7.2 EVAIUATION ..ottt et 250
7.2.1 VETIfICAtION ..ouveiiiiriiiiceiictctcese ettt 252
7.2.2 USEE ACCEPLANICE ..eeuvvienereeiiieniieeniieenieeniteesiteesiteesbeesateesabeesabeesabeesaseesnbeesaneens 254
7.2.3 FINAINES toneeiiiiiie ettt et et e n 259

7.3 Chapter CONCIUSION.....c...ieiiieeiieiieeeiie ettt e et e e s eae e 260

COMNCIUSION ...ttt sttt ettt be st eb et nee 261

8.1 RESEArCh SUMMATY ...ooviiiiiieciecieee ettt 261

8.2 (071071139 10] 115 o) s J RSO SURU PSR 264
8.2.1 Scientific CONIIDULIONS ...cc.vereiiiiiiieiieieeieeteee e 264
8.2.2 Practical CONtIIDULIONScceviriiririiiieieieeeseeteeceet et 265

8.3 LAMIEATIONS 1.nveutenteiiieteeieeitet ettt sttt ettt s neen 266

xi

8.4 PIOSPECES ..ttt ettt et s 267

8.5 FINal 1€Marks. ...c..ooveveiiiiiiicec s 271
8.5.1 LeSSONS LRAINL ..c..eetiiiiiiiiiiiie et 271
8.5.2 TaKeaWay MESSALEeeevuererreeriieeireerireeireestteetreesseesseeesseessseesseesnssessseesnes 272
L2 10] 0 =1 o)1 2RSSR 275
Appendix A — Terms and ADDIrevIationsccvecurecveriereerierieeieseeseesee et eee e sseeneees 303
Appendix B — Overview of real-world pilot Cases..........cccveeeuieiiiieniieniieenieeeieeeiee e 307
Appendix C — Manufacturing process model fragments represented in BPMN................ 312
C.1 Process model fragments under buffering categoryccocvevvevivecieeiennennen. 312
C.2 Process model fragments under bundling/unbundling category...........c........... 312
Appendix D — Systematic literature review for Ch. 4 — Exception Handling..................... 315
D.1 SEATCH SEEPS .. vieeieeiieeie ettt ettt e et e et e et e st e e e e baeenbeesntaeenaee s 315
D.2 Short list of selected STUAIESc..eeerieiirieriiniirirereeeecceee e 320
Appendix E — Exceptions “Reject goods™ report of TRI.......cccoevvvveiiriinienieieieeieeeen, 323
Appendix F — Semi-structured interviews for Ch. 4 — Exception Handling 324
F.1 Questionnaire for semi-structured INtEIrVIEWS...........cccvuvieeeirireeeiiieeeecieee e 324
F.2 Response from SHOPACEF pilot A (0N PAPEI) ..evverveeerrreeiieriieieeieeie e 325
F3 Transcript of interview with SHOPACF pilot Bcccoeoiiiinininininiicciee 327
F.4 Transcript of interview with SHOPACF pilot C......ccceevviiviieriieeiieeieeeeeee, 332
Appendix G — List of decision trees of operational exception handling guidelines (Ch. 4 —
Exception Handling).......cooooiiiiiiiiieiee et 337
Appendix H — FIWARE Smart Industry reference architecturec..cocoeerenereeienenne. 353
Appendix I — Recipe system data model............oocveeiieiiiienieniiee e 355
Appendix J — References information...........ceeecveeieueeeiiieiiiieniiiesieesiee e e sveesree e 357
Appendix K — Deployed MPM solutions per real-world pilot case........cccccveveveerveenneennee. 358
Appendix L — Advanced MPMS evaluation formccoccveveeriercieicienieieieeeeieeeenn 359
Appendix M — Evaluation results on advanced MPMS utilitycccccoeveninincncninnnenne. 364
ADOUL the AUTNOTootiiiiii e 391
STK'S DiSSEITAtION SEIIES.eeruietientieiieiieetiestient et ettt e st e it et eatesteesbeesbeenbeebeenaesaeesae 393

Xii

Table of Figures

Figure 1: Evolution of production paradigm in different dimensions (inspired by (Wang et

al., 2017) and (Jovane et al.; 2003)).....c.cccierrieciieieeiesieneere et see sttt nees 2
Figure 2: Examples of online product configuration/customization for direct ordering -
trucks (top), telescopic slides (DOTOM).eecueieriieeiieeiie e eee et e e e eiee e 3
Figure 3: Related concepts in the fourth industrial revolution (from (Brouns, 2019)). 5
Figure 4: Problem identification presented in an Ishikawa (fishbone) diagram. 8
Figure 5: Overview of proposed solutions to tackle the identified issues in discrete
TNANUTACTULIIIE .+ttt ettt ettt e st e bttt eat e et esbeenbe et e enaeeneesaeenae 10

Figure 6: BPM concepts as proposition to tackle the process complexity in smart
manufacturing. Concepts in green dashed box has been covered by previous research
(Erasmus, 2019). Concepts outside the green box (and within the blue dashed box) are
covered by the CUrrent reSEAICH.ccvecverieeieciieieeie ettt 11
Figure 7: Functional domains and hierarchy of control in manufacturing (according to (IEC,
2013b)), with the main focus of the current research on activities and interfaces related to

Level 3 in discrete production eNVIrONMENTS.ccveervereuerreriiereieieeieeeeeresseesseeseesesnesens 13
Figure 8: BPM lifecycle (according to (Dumas et al., 2018)) with the phases in scope
highlighted 1n DIUE.coouiiiiii e 14
Figure 9: Positioning current research on the the design science research knowledge
contribution framework (per (Gregor & Hevner, 2013)).coocveiiiiiiiiniiiienieneeeece 16
Figure 10: Research framework (based on (Verschuren & Doorewaard, 2010)) visualizing
the steps to achieve the research ObJECtIVE.eevieriieiiieciieieeeeeeee e 17
Figure 11: Design science research methodology (DSRM) process model (based on (Peffers
et al., 2007)) as applied in the current reSEarch.ccceeeereereerieriieeieriee e 18
Figure 12: Legend for symbols used in the design science research framework of Figure 13.
... 20

Figure 13: Information systems design science research framework (per (Hevner et al.,
2004)), as applied in the current research, following the DSRM process model of Figure 11.

... 22
Figure 14: Schematic representation of the structure of the thesis.cccccevvveecieiiiennnn. 25
Figure 15: Production systems typology based on technical flexibility and technical
complexity (per (Kim & Lee, 1993))....ciiiiiiieeiie ettt ettt s 29
Figure 16: Various types of plant layout: (a) fixed-position layout, (b) process layout, (¢)
cellural layout, and (d) product layout (Groover, 2010).ccccverirecireieeienieieee e 31
Figure 17: Classification of traditional manufacturing systems (Abele et al., 2006)........... 32
Figure 18: Types of work centers and work units according to the role-based equipment
hierarchy of IEC62264-1 standards (IEC, 2013D).ccveeiieieeiieiieieeeeie e 33
Figure 19: Simplified enterprise and control functions model (per IEC 62264-1 standard
(TEC, 2013D)). cueutetenienteeieeieetetete ettt sttt ettt st ettt sbesb et ebe e neen 35
Figure 20: Activity model of productions operations management (per IEC 62264-1
standard, (Chen T, 2005)). c.uieiiiiiiieeiieeieecte ettt sve et eeseaeestaeesaeeessaeessaeesaeensaeenes 36
Figure 21: Typical information systems per functional control level and function areas. ... 37
Figure 22: MES functionalities (de Ugarte et al., 2009).c.ccccceeeeiiiiieecieiiieeiee e 39
Figure 23: Reference Architectural Model Industry (RAMI) 4.0 (Hankel & Rexroth, 2015).
... 41
Figure 24: Human-robot collaboration levels (Bauer et al., 2016).ccccoceverinercnnenenne. 48
Figure 25: Complex dynamics in manufacturing (Tolio et al., 2010).......ccccccererercenennenne. 49

xiii

Figure 26: Increasing complexity of implementation of Industry 4.0 technologies (Frank et

AL, 2019). e 50
Figure 27: TRI's telescopic slides and vertical balance systems.........c..ccccevererenercenennenne. 55
Figure 28: High-level production process at TRI, consisting of three main production

PRASES. .ttt bttt b e ea ettt e et ettt enee 56

Figure 29: Physical hierarchy of TRI, according to IEC62264-1 standard, with the three
blue-highlighted work cells as the focus of the application scenarios within HORSE project.

... 57
Figure 30: TRI current production process, with a tool preparation phase and three main
production phases, modelled as high-level BPMN processes.The bue-highlighted
subprocesses are the main focus of Industry 4.0 interventions.c.ccevceeveeriieveenieneennen. 58
Figure 31: Overview of hardware, software and human support of production at TRI,
positioned across the functional hierachy levels of IEC62264-1 standard. 59
Figure 32: Identified causes of high unplanned downtimes, presented as an Ishikawa
(fiShDONE) AIAZITAM.c.vieeieeieiieiieie ettt ettt ettt ae e s aeesseeseenseenseenaenseensenn 59
Figure 33: Single tool assembly process at TRI (current), with the blue-highlighted
activities as the main focus of Industry 4.0 INterventions.eccvecveeeveeeeneerieeseenesneees 61
Figure 34: Profile stacking and transportation process at TRI (current).........cccccevereennenne. 61
Figure 35: Loading of profiles onto racks for galvanization treatment at P2 phase at TRI
(CUITEIIL). 1eeuitieeiieeeiiee et et ettt e st e e sttt e st eestbeesabeesbeessseesse e saeensseensseensseenssessseensneensseenseennes 62
Figure 36: Unloading of profiles from racks after galvanization treatment at P2 phase at
TRI (CUITENL). 1ttt itieetieetteeteeeteetee et e et e s teeeteesteeesbeesnbaeesseesssaeesseesnseessseesnseassseesnseennseens 62

Figure 37: CPP industrial printers (a) monochrome production printer for light and mid
production VarioPrint 140, (b) high-volume colour inkjet sheetfed press VarioPrint 1300,

(c) continuous feed inkjet press ColorStream 3000Z...........ccceevveevieicierienienieieee e 63
Figure 38: An example of a print shop, with different types of printers, storage places, and

TNOVINZ CATTS. ..vevvetietieteeeestestenteeseenseessesssesseeseenseessesnsesssesseesseanssanseessesssesseensesnsesnsesnsesnes 64
Figure 39: Examples of finishing machines at a print shop (a) binding machine, (b) cutting

MAChING (GUILLOTING). ...coueiiiiiiiieieiet ettt s e 65
Figure 40: Production, material and data flows in the main phases of print media production
((KApPhan, 2001)). .eeccveeeieeeieeeiieeieeetteeie et e steeseeesaeestbeessaeessseessseessseenssesssseesseessseenseennes 65

Figure 41: End-to-end process of a printing order, modelled in layered BPMN processes. 66
Figure 42: Current post-pressing flow, with human operators to coordinate the
transportation of semi-finished products to work-in-progress (WIP) stock and finishing
machines (source: OEDIPUS project’s material).cccveeverierienieneeieeie e 68
Figure 43: Unloading paper from printers, either completely by hand, or assisted with a
forklift (source: OEDIPUS project’s material).ccoecvereerienienienieeiesiee e eee e 69
Figure 44: Design of a cobotic manipulator arm with a special designed gripper to unload
paper from printers (source: OEDIPUS project’s material)...........ccceeveererveercierienienirenns 69
Figure 45: Future scenario for automated post-pressing transportation of semi-finished
products, with fixed robotic arms to preform the unloading onto AGVs (source: OEDIPUS

PrOJECt’S MALETIAL). ..eeutiiiiiiiiiiie et ettt ettt b et 70
Figure 46: Illustration of the scope of the first intervention scenario (source: OEDIPUS
PrOJECt’S MAETIAL). ..eeutiiuiiiiiiiie ettt ettt 71

Figure 47: Future scenario for automated post-pressing transportation of semi-finished
products, with mobile robots (AGVs with mounted robotic arms) (source: OEDIPUS
PIOJECE’S MALETIAL). ...eeiieiiieeiieieeiie ettt ettt sttt et ettt e e et ebe et e ensesnsesesesseesseenseenseans 71

X1v

Figure 48: BOSCH automotive sensors: (a) peripheral pressure sensor (PPS) for side impact
detection, (b) peripheral acceleration sensor (PAS) for impact detection, (c) ultrasonic
sensor (USS) for parking assiStance.cceevevieriiecieeienieieie e see st eae e nees 72
Figure 49: Physical hierarchy of BOS, according to IEC62264-1 standard, with the blue-
highlighted work cells as the focus of the one of the two application scenarios within

SHOPACE PIOJECL. ..ottt ettt sttt ettt ettt e saee bt et et eateebeeebeenbeenneas 73
Figure 50: Digital representation of part of the production area, with two loading stations at
two similar production TINES.ceiecieeeiiieiiieeiee ettt see et e et e sbeeebeesbeeenree s 74
Figure 51: Types of blisters to package the produced sensors for damage-free
ELANSPOTLALION. 1..veiiivieeiiieetieetteeiteeteesteeeteesbeeebeeseseeesseesssaeesseesssaessseesnseeasseesnseensseesseesnsenns 74
Figure 52: BOS current packaging process of PPS sensors, modelled in BPMN................ 75
Figure 53: DSR approach for RQ1 - Flexible process modeling for complex production
PTOCESSES. ..eeueteeutteeite ettt esite ettt e tte ettt estte ettt e sate ettt esabeeabt e e saeeabbeesbeebbeessbeenbte e sbeebeeenaneenees 82
Figure 54: BPMN construct for tasks requiring no advance allocation (simple task) and
tasks requiring allocation (subprocess, depicted with a bold border to highlight it)............ 87
Figure 55: Task allocation mechanism to a team of agents (according to (Erasmus, 2019)).
... 88
Figure 56: Example of Tasklist application for User Tasks (addressed to humans)............. 89
Figure 57: Main phases of a task in BPMN.c.cooiiiiiiiiiieeie et 90

Figure 58: Task patterns for tasks addressed to automated actors (or teams that include at
least one automated actor): (a) User Task, with embedded message handling in Starting and

Ending phases, (b) Service Call in asynchronous mode, (¢) Send and Receive Tasks. 90
Figure 59: Task patterns for iterative work: (a) non-predetermined number of repetitions,
(b) predetermined nUMDbET Of IETALIONS.veervieiieiieieeiieeieieee ettt 92
Figure 60: Task queue management pattern at BPMN process model level........................ 93
Figure 61: Process model for collaborative assembly processes.ccvevververeeereeenvernennes 95
Figure 62: Explanation of deferred execution of parallel tasks.ccccocevenerinenccnienncnne. 95
Figure 63: Modeling construct for supporting deferred execution of parallel task with non-
interrupting boundary conditional @Vent.ccceiiiiiiiieniiiie e 96
Figure 64: Modeling construct for supporting deferred execution of parallel task with non-
INETTUPHING EVENT SUDPIOCESS. ..eouviiuiiiuiiiiieriientiett et etteette st e bt eteetesetesbeeseee et enteeseesneenbeenneas 97
Figure 65: Buffering construct from both process control and process instance perspective.
... 100
Figure 66: Illustration of the recipe concepts trough an example.c.ccccveeveveeevienneenee. 102
Figure 67: Illustrative example for the proposed recipe process notation.e...... 105
Figure 68: Map generation m(P) eXample........coeoveieriiriiiiieieieieieese e 108
Figure 69: Pool’s mapping algorithm.cccoevueriirienieiee e 109
Figure 70: Recipe's fulfilment algorithm.ccoccveiienieiiiii e 110
Figure 71: Characteristics of exceptions that current research treats, in the three-
dimensional space of Luo et al. (2000)........ccceecvieiirieeiiieiiieeiie et ere e ere e 114
Figure 72: DSR approach for RQ2 — Exception handling in dynamic manufacturing
CIIVITOTIMIEIIES. ..euttiutientienteeuteeteettesteesteente et ee e etteebee s bt e bt e bt embesaeesatesaeenbeenseenteenseeseesbeenbeennean 115
Figure 73: Methodology for categorization of exception types (adapted from (Leitner &
RINAETIE-Ma, 2014)). curiiiiieeiie ettt sttt e st e e e e sbe e st e e ssbeessseessbaensseesnsaenssas 116
Figure 74: SLR search and selection procedure OVEIVIEW.ccceeveerveerieeniveenveesveenes 119
Figure 75: Categorization of MOM KPIs (Kang et al., 2016).cccccovereninenenenecnennne 138
Figure 76: Legend for symbols used in decision trees for selecting suitable exception
handling aPPIOACKH.cc.eeiiiiiieie et neen 141

XV

Figure 77: Decision tree for Process-related exception types categories with (Delivery)

Time as the leading MOM KPIS.cooiiiiiiiiiieeiecieseeeee et 142
Figure 78: Decision tree for Process-related exception types categories with (Product)
Quality as the leading MOM KPIS.ccoveciieiiiieniieieeee et 143
Figure 79: DSR approach for RQ3 - Design of a Manufacturing Process Management
System for end-to-end process MAaNAZEMENL.cccueruerierieriieriieiieteeieenteenteeie e 146

Figure 80: MPMS as an orchestration hub for process management across various
information systems on level 2, 3, and 4 of the functional hierarchy. The blue-highlighted
(front) horizontal layer represents the application layer, while the pink-highlighted (back)
layer represents the infrastructure layer (Erasmus, Vanderfeesten, Traganos, & Grefen,

20 T8 ettt ettt ettt ettt he ekt b e eh e e a et et e beehe bt heen e en e et et e ete bt eheeneeneensenans 147
Figure 81: Kruchten (K4+1) framework (Kruchten, 1995) to sequence the development
Process OF MPIMS. ..ottt et et e s e enbeenbeenaeeseeneen 149
Figure 82: Updated 5-aspect Truijens framework (UT5) (from (Grefen, 2016)) for
separating the specification of the architecture of MPMS.ccooiviiiiiiiinieeeees 150
Figure 83: Separation of concerns with respect to life cycle & value stream and hierarchy
levels dimensions of RAMI 4.0 framework...........ccceoueverenininciiiieienenese s 151
Figure 84: Workflow Reference Model (WfRM) (Hollingsworth, 1995)........ccccccveeenee. 152
Figure 85: Mercurius Reference Architecture for WFMS, high level (Grefen & Remmerts
DE VTIES, 1998).... ittt ettt sttt e s sbe e sbe e e st e e ssbeessbeessbaensseesnaaennnas 153
Figure 86: Novel BPMS Reference Architecture (BPMS-RA) (at aggregation level 2)
(Pourmirza et al., 2019). ...ccuiiiiieie ettt et ettt enaee s 154

Figure 87: Example of a physical hierarchy of a manufacturing enterprise (based on
IEC62264-1 standard), depicting the distinction on the global-local control regimes....... 155
Figure 88: Illustrative high-level enterprise process for standardized production (the blue-
highlighted subprocess are the main focus of MPMS) (Grefen & Boultadakis, 2021)...... 157
Figure 89: Illustrative high-level enterprise process for customized production (the blue-
highlighted subprocess are the main focus of MPMS) (Grefen & Boultadakis, 2021)...... 158
Figure 90: Illustrative manufacturing process for standardized production, with refined

tasks and steps (Grefen & Boultadakis, 2021)......cccceeeciieiiiieriiieiiieniiecieeeree e 159
Figure 91: Illustrative manufacturing process for customized production, with refined task
and steps (Grefen & Boultadakis, 2021)......cceeeciieiiiieeiiieiiieeiie et 160
Figure 92: Illustrative manufacturing task with refined steps and substeps (Grefen &
Boultadakis, 2021)...cc..iiiiieeiie ettt st s e e s beeenbeesnaeenneas 161
Figure 93: Example illustrating the refinement of a task into steps.......c..coceevererereeeennene 162
Figure 94: Data modeling approach, with the focus on concept data models in this section
(FrOm (WesSt, 201 1)) uieuiieeiieieeiieeieeieeie ettt ettt et eetae st e enseensesnaesneesseenseenseenseans 163
Figure 95: Activity concept MOdeL.ccvecvieiiiiiriieiieieee et 164
Figure 96: Activity concept model with respect to design-execution design principle. 165
Figure 97: Agent concept MOAEL........cocieiiiiieiieiesiesieie et 166
Figure 98: Resource concept MOdel.........c.oeocvieeiieiiiieniiie et 167
Figure 99: Event concept MOdEl.c.eeeciiiiiiiiiiieiiieeiie ettt 168
Figure 100: Location concept MOdel.cccuieeiiiiiieeiiieiiieciie et 169
Figure 101: High-level overview of integrated concept model............ccccoeviiiiinienienenen. 170
Figure 102: Enhanced relationships between Task and Resource concepts (left out of scope
in the integrated concept model for simplicity reasons) (Erasmus, 2019).c.cccveuneee. 170

Figure 103: Logical software architecture of MPMS, with enhanced logical modules
(highlighted green) and new logical modules (highlighted blue) for process management in
SMArt MANUFACTUIING.eeuvieiiiiiieeiieiieie ettt ettt et tae s e e beesseesesnaesseesseesseanseensenns 178

XVl

Figure 104: HORSE system high-level logical software architecture (at aggregation level 3)
for cyber-physical systems in hybrid smart manufacturing (Grefen & Boultadakis, 2021).

... 179
Figure 105: Mapping of MPMS modules to HORSE Design Global modules.................. 182
Figure 106: Mapping of MPMS modules to HORSE Exec Global modules...................... 183
Figure 107: Components topology in a message bus-based middleware approach (from
(ATNAUAOV, 2018D)). curieriieiieeeiiierie ettt erte et e ee et e et e et e et e sbaeebeesntaeesseesnsaeenseesnsaeenseens 187
Figure 108: Communication options between Context Broker and Context
CONSUMET/PTOAUCET. ...veeivieeiiieeiieeieeeteeeteeeteesteesseessseesseessseessseessseesssesasseesseessseesseensses 188
Figure 109: Positioning of HORSE CPS system (red dotted box) in enterprise technology
landscape (adapted from (Grefen & Boultadakis, 2021)). ...ccceeveeerieeriieeiieeieeie e 189
Figure 110: HORSE CPS technology Stack..........ccccevierieiiicieiierieieeee e 190
Figure 111: High-level logical platform architecture of SHOP4CF system (Zimniewicz,
2020). ettt bbbt bttt et h bbbt a sttt b she bt eit et ene 191
Figure 112: Logical platform architecture of SHOP4CF system, with elaborate view on
SHOP4CF components and middleware (Zimniewicz, 2020).ccoecverververreerreeeernenne 191

Figure 113: DSR approach for RQ4 - Design of an advanced Manufacturing Process
Management System for tackling process complexity. A system realization is developed as

WL ettt ettt ettt h e bt ae st et et e beeheeteeneenteneenean 194
Figure 114: Synchronous service call through a Service Task, as (a) UML sequence
diagram, (b) graphical TepIeSeNtation.cccuerierierierieieeie ettt 196
Figure 115: Asynchronous service call, desired for task delivery, as (a) UML sequence
diagram, (b) graphical TepreSeNtatiON.ccvecveeierieriierreeseeeesteseeseeesseeeeeseesaessaesseensees 197
Figure 116: Pattern for receiving task eVents..........ccevveveriiercieiierieriee e 198
Figure 117: The Recipe Controller implemented as BPMN 2.0 process model. 199

Figure 118: BPMN model construct for task exception handling. The task construct (bottom
process) is a subprocess to be called by tasks modelled in any main process (top process).

... 203
Figure 119: Auxiliary processes for exception handling: (top) process event handling,
(bottom) handler for tasks to be executed at a later stage (e.g., for deferred fixing). 204
Figure 120: UML class diagram as operationalization of Event concept model of Figure 99.
... 205
Figure 121: UTS5 aspects with logical design(s) from Chapter 5 that shall be
operationalized, mapped to corresponding SECtiONS..........cevueruerierierienieieeieeie e 207
Figure 122: UML class diagram as operationalization of the integrated concept model of
FAUIC 101 oottt ettt ettt e s s e satesse e seenseenseesnensaenseensenn 209
Figure 123: Auxiliary BPMN processes to handle MPMS integration to Message bus
IIAAIEWATE. ..ottt sttt et ettt be st ebe e easeeens 210
Figure 124: Example of production processes in which interfacing to message bus is
TEQUITE. 1.ttt ettt ettt et e e st e st e st e e st esseesaeesae st ee s e enseessessaesseenseenseenseensensaenseensenn 211
Figure 125: Example messages for task delivery through message bus, expresses in JSON
format (a) task assignment, (b) task COMPIETION.eevvieiiriiriiiieiiiiecce e 211
Figure 126: Auxiliary BPMN process to handle subscriptions to Context Broker. 212
Figure 127: Example of a Context Broker subscription. Subscribes on changes on the
“status” attribute of the “task™ entity (according to datamodel specification). 213
Figure 128: Example of production process in which task delivery is performed through
CONtEXt BIOKET. ..ottt st sttt 213
Figure 129: Example of a task entity to be posted on Context Broker.ccoeeverueennen. 214
Figure 130: Architecture model of advanced MPMS.cccoooiiriinienieieeceeeeeeen 217

Xvii

Figure 131: Camunda Platform architecture and mapping to advanced MPMS architecture.

Figure 132: Camunda process engine architeCture.cceeeveeverienieniienieeieeieseeseeeens 221
Figure 133: Overview of the developed components of the realized advanced MPMS. ... 223
Figure 134: Camunda Platform deployment scenarios: (a) Shared, Container-Managed
process engine, (b) Embedded process engine, (c) Standalone (remote) process engine

Figure 135: Deployment diagram of advanced MPMS as Docker containers. 225
Figure 136: Tool assembly process at TRI with clear indication of parallel activities for AR
support for assembly instructions (middle swimlane) and mobile robot for tool parts
collection (bottom swimlane), modelled and orchestrated by MPMS. An example of

exception handling is shown as well (highlighted in red)........cccoooveviriiiieicieneeeees 229
Figure 137: Profile stacking process at TRI by a robot arm. The highlighted subprocess
(purple) shows the handling of multiple tasks by MPMS..........ccooieiiiiiiiiiieeeeeees 231

Figure 138: Loading of profiles onto racks process at TRI, performed either by human
operator or robot (allocation mechanism highlighted in green). The purple highlighted task

shows the multiple task handling by MPMS.cccieiiriieiiieeeeee e 232
Figure 139: Technology stack of deployed CPS at TRI.ccccccivviieiviieniiieeieeeieeeeeeee, 233
Figure 140: Deployment diagram of CPS at TRI, with one global domain and three local
domains (European Dynamics, 2018)....cccueiiiiiiiieiiiieeiie ettt sttt 234
Figure 141: Tool assembly production order selection through MPMS Tasklist. 235
Figure 142: Single tool assembly process at TRI with AR support for assembly instructions
and mobile robot for tool parts COlECtION.c..ccuevierieriieieie e 236
Figure 143: Physical layout of P1 profile stacking at TRI (source: HORSE project’s
INALETIAL). ..eeievieetie ettt ettt e et e st e e e tb e e b e e s tbeesabeeetbeesabeeeabeesabeeeabeeeabeenaras 236
Figure 144: Profile stacking into bins: (a) unorganized by human operators (current
situation), (b) structured by robot arm (source: HORSE project’s material). 237
Figure 145: Profile hanging onto racks: (a) by human operator (as current situation), (b) by
robot (source: HORSE project’s material).........cccooieiiiriiniiiiiienceiececee e 237
Figure 146: Decision table to determine the type of printer to handle an orderline, modeled
T DIMINL Lttt et et e e bbbt ettt st sae e b e ae et et eas 239

Figure 147: Book cover production process with highlighted advanced MPMS
functionality: (green) agent allocation (green), (three) synchronization points (blue),

exception handling (T&d).coouiiiirieiiei e e 239
Figure 148: AGV (queue) task management with synchronization points (blue) and
exception handling (FE€A).c.eeverierieieie ettt s e e enee e 241

Figure 149: CPS architecture model, developed for CPP pilot. A Printing Process
Management System (PPMS) orchestrates, in a global level, the activities of heterogeneous
actors, synchronized locally by a Local Orchestrator. Communication between the two

levels is performed through middleware.............coocveriieeiieiinierieeeee e 242
Figure 150: Media unload from printer by a collaborative robot arm.ccccecveevuvennee. 243
Figure 151: AGV with motorized robot arm and deposit tray for media unloading and

transportation, in front 0f @ COVET PIINLET.........cccvieiiiieeiiieiieeeiee et sae e 244
Figure 152: Smartwatch tasklist application for human operators..........ccccceeveveerveesveennee. 244
Figure 153: Production cockpit, physical [ayout VIEW.........ccccvevvvieriieniieeniienieeeiee e 245
Figure 154: Production cOCKPIt, PrOCESS VIEW.ccuvervierieerrerieieiesieniieneeeseenreeenessaesseensens 245
Figure 155: Shop floor diagram and corresponding location data model.c..c..c..... 246

Xviii

Figure 156: BOS trays feeding process with mobile robot, with queue task management
(purple), exception handling (red) and parametrically tasks (orange) to cover both loading

SEALIOTIS. 1.ttt ettt ettt ettt et ettt st b e bt eb e st e st et e st bt s bt eb e bt bt et et ettt be bt bt ene et enee 247
Figure 157: Components diagram as deployed for trays feeding process at BOS. 248
Figure 158: Mobile robot (AGV with mounted robot arm with gripper) feeding empty trays
on loading station at BOS. ..o e 249

Figure 159: MPMS Tasklist for human operator for the trays feeding process at BOS..... 249
Figure 160: MPMS Cockpit for trays feeding process at BOS. Blue token denotes the state

of the process instance. Values of process variables are also available..............c..cue.e... 250
Figure 161: Selected evaluation strategy based on the Framework for Evaluation in Design
Science (FEDS) (Venable et al., 2017)....ccccuiiiiieiiieeiiecieeeiee ettt 251
Figure 162: Responses to questionnaire on the familiarity with the BPM paradigm of
interviewees that evalued advanced MPMS. ... 256
Figure 163: Responses to questionnaire on Perceived Ease of Use (PEoU) of advanced
IMPMIS ..ttt 257
Figure 164: Responses to questionnaire on Perceived Usefulness (PU) of advanced MPMS.
... 257

Figure 165: Responses to questionnaire on Intention to Use (ItU) of advanced MPMS. .. 258
Figure 166: Cross-organizational, networked manufacturing (inspired by (Grefen,

Mehandjiev, et al., 2009)).coouiiiiiieiee e e 270
Figure 167: “Reject goods” report at HORSE TRI pilot case.ccooeereeviriinienieneennen. 323
Figure 168: Legend for symbols used in decision trees for selecting suitable exception
handling aPPIOACKH.cc.eeiviiii et nees 337
Figure 169: Decision tree for Resource-related (Machine/Tool) exception types categories
with (Delivery) Time as the leading MOM KPIS.cccccoeviiiiiiiiieieeeeeeeeeeeee e 338
Figure 170: Decision tree for Resource-related (Machine/Tool) exception types categories
with (Product) Quality as the leading MOM KPIS.cccoeviiiiiiiiiierieieeeieeeeeeee e 339
Figure 171: Decision tree for Resource-related (Machine/Tool) exception types categories
with Efficiency/Productivity as the leading MOM KPIs.c.ccooeviiiiiniiniiiiiiiiieneeene 340
Figure 172: Decision tree for Resource-related (Machine/Tool) exception types categories
with (Production) Costs as the leading MOM KPIS.cccocoiniiiiiiiiiicieeeeeeeee 341
Figure 173: Decision tree for Resource-related (Material/Product) exception types
categories with (Delivery) Time as the leading MOM KPISs.ccccooiiiiiiiiiiniinieceen. 342
Figure 174: Decision tree for Resource-related (Material/Product) exception types
categories with (Product) Time as the leading MOM KPIs.ccccveviinininenininecienne 342
Figure 175: Decision tree for Resource-related (Material/Product) exception types
categories with Efficiency/Production as the leading MOM KPIs.ccoccovenininiciennne 343
Figure 176: Decision tree for Resource-related (Material/Product) exception types
categories with Efficiency/Production as the leading MOM KPIs.c.cccccovererincciennene 343
Figure 177: Decision tree for Resource-related (Personnel) exception types categories with
(Delivery) Time as the leading MOM KPIS.ccccoeiiiiiiiiiiiiiiienieeeece e 344
Figure 178: Decision tree for Resource-related (Personnel) exception types categories with
(Product) Quality as the leading MOM KPIS........ccccooiiiiiiiiniinieicee e 344
Figure 179: Decision tree for Resource-related (Personnel) exception types categories with
Efficiency/Productivity as the leading MOM KPIS.ccccooiiiiiiiniiiniiieieeeeeeen 345
Figure 180: Decision tree for Resource-related (Personnel) exception types categories with
(Production) Costs as the leading MOM KPISs..........cccoevuiriieienieniieieeie e 345
Figure 181: Decision tree for Resource-related (Infrastructure) exception types categories
for all MOM KPIs (Time/Quality/Efficiency/Costs).c.ccceeverieneeniienieeiesieseeseee e 346

XIX

Figure 182: Decision tree for Order-related exception types categories with (Delivery) Time

as the leading MOM KPIS.cccoooiirieiieiieiieieeeste ettt snae e nees 346
Figure 183: Decision tree for Order-related exception types categories with
Efficiency/Productivity as the leading MOM KPISs.ccccoceriririiiiniiiinininencneeceiene 347
Figure 184: Decision tree for Order-related exception types categories with (Production)
Costs as the leading MOM KPIS........coociiiiiiiiiiieiieieee et 347
Figure 185: Decision tree for Process-related exception types categories with
Efficiency/Productivity as the leading MOM KPIS.ccccooiiiiiiiniiniiiiicieeeeeeen 348
Figure 186: Decision tree for Process-related exception types categories with (Production)
Costs as the leading MOM KPIS........ccociiiiiiiiiiieieieee et 349
Figure 187: Decision tree for Event-related exception types categories with (Delivery) Time
as the leading MOM KPIS.cccoooiiiiiriieiieiicieeesteeee ettt ssae e nees 350
Figure 188: Decision tree for Event-related exception types categories with (Product)
Quality as the leading MOM KPIS.cccieoiiiiiiieiierieieeie et 350
Figure 189: Decision tree for Event-related exception types categories with
Efficiency/Productivity as the leading MOM KPISs.ccccocovininiiiiniiinininencneeceiene 351
Figure 190: Decision tree for Event-related exception types categories with (Production)
Costs as the leading MOM KPIS........cooiiiiiiiiiiiieeeeee e 351
Figure 191: Decision tree for Data-related exception types categories for all MOM KPIs
(Time/Quality/Efficiency/COSES). .eevueeruieierieriieriieniteit ettt ettt st st 352
Figure 192: FIWARE Smart Industry reference architecture.c.coeeeveviercieencveenneennee. 354
Figure 193: Recipe system data model (Spijkers, 2019)......ccccvvvierciiiniieniiieeieeeieeeeeeene 356

XX

Table of Tables

Table 1: Scientific publications related to this dissertation (listed per chronological order —

NEWEST FITST). 1eiiiiiiitieiti ettt ettt ettt et e et e s sa et e et e enseensesnsesnsesseanseenseenseans 19
Table 2: Contribution types for design science research (Gregor & Hevner, 2013)............ 23
Table 3: Key pillars of the concept of "smart factory" (from research perspective)
(Osterrieder et al., 2020). ...cuiiiiieeieeeiieeieeeiee e et este et esteestaeesaeestbeesaeeessaeessaeesaeensaeenns 43
Table 4: Technical features of smart factory compared with the traditional factory (Wang et
AL 20760 ettt ettt b e he et e n et et et e be bt bt eneeneeneenean 44
Table 5: High-level requirements for the design of an advanced MPMS as derived from
Jiterature and PrACLICE.ievcvieriieeieeeiieete et eete et e e sre et e e eeeestaeesaaeetaeesaeeensaeesaesnsaeensnennns 78
Table 6: Specification of a recipe through an example...........cccocceveierierieniecieeieeieeeeenn 103
Table 7: Example of a recipe representing buffering.............occoeeeevvierienienieciieieeeceeenn 103
Table 8: Example of a recipe representing bundling.ccceeeveveienienieniecieeieeieeeeenn 104
Table 9: Example of a recipe representing unbundling.cccoeeeervenieniecieecienieneenenn 104
Table 10: Incremental refinement steps of the SLR search term(s).cccvecvveveeveneenen. 117
Table 11: Categorization of exception types through analysis of SLR..........c.ccceevveneennen. 120

Table 12: Categorization of (occurred) exception types at TRI pilot. Categories in light-blue
match the ones from SLR (Table 11). Categories in light-green appeared in practice but not
T TIERIATUTC. ...ttt et ettt e b e b e e et e seesaeesbeenaeenbeenteens 123
Table 13: Categorization of exception types appearing at SHOP4CF pilots. Categories in
light-blue match the ones from SLR (Table 11). Categories in light-green appeared in

practice but NOt N LIEEIATUTE.cveeiieieiie ettt st e esnaesseeneas 125
Table 14: Designed categorization of eXCeption tyPes.eecveevvereerierieriieeieieeveeereseenens 131
Table 15: Exception handling strategies/patterns as appear in literature.c.cceccecvenee 133
Table 16: Exception handling actions taken at TRI pilot........c.cccceceeeieiiinininieninincciene 135
Table 17: Identified exception handling approaches after literature and practice
CONSOLIAALION. ...ttt ettt ettt et et be st ebe e eaneeens 139
Table 18: Matrix of designed decision trees (coded) per exception type category and MOM
KPS CALBEOTY ettt ettt ettt e b et ettt st et e bt e bt et esteebeeebeenbeennean 141
Table 19: Mapping of designed concept models to concepts from IEC62264-1 standard. 171
Table 20: MPMS requirements coverage by BPMS reference architectures...................... 172
Table 21: Mapping of MPMS modules to HORSE system modules...........cccccocevieneenen. 183
Table 22: Mapping of MPMS interfaces to HORSE system interfaces.cccccceceeveennen. 185
Table 23: BPMN support of exception handling strategies/patterns (per Table 17).......... 200
Table 24: Description of advanced MPMS elements............cccoeeverienienieneeieeieseeeeeen 215
Table 25: Defined recipe for bundling covers onto the AGV (synchronization point 2 of
Figure 147 and FIiGUIe 148).ccviiiiiieiiet ettt sttt neen 240
Table 26: Defined recipe for unbundling covers from the AGV (synchronization point 2 of
Figure 147 and FIiGUIe 148).ccviiiiiieiiet ettt sttt neen 240

Table 27: Verification of advanced MPMS requirements (presented in Section 2.3)........ 252
Table 28: Evaluation criteria and corresponding statements to measure "utility" aspects of
advanced MPMS (on a 5-point agreement scale, ranging from strongly agree to strongly

Lo 2T o4 (TS OO USPRR 255
Table 29: Profiles of practitioners of evaluation interviews.cccceeeeveerereeriieenreesineenne 255
Table 30: Definitions of terms that are core in this thesis.........cccceceeveveninininninieienn. 303
Table 31: Abbreviations appearing in this thesis.ccccoceririrriiiiininnneceiene 304
Table 32: HORSE project pilots and open call eXperiments...........ccccccerererererereeuennens 307

Xx1

Table 33:
Table 34:
Table 35:
Table 36:

Table 37:
Table 38:
Table 39:
Table 40:
Table 41:

EIT OEDIPUS Project Pilot.......ccveceeciercierieriieieeieeiesieesieeie e seeeie e e 310

SHOPACF Project Pilots ...c..eeveeierieieeieeie e stesieete et eeae e e e esesee e ses 310
Process model fragments under buffering manufacturing construct.................. 312
Process model fragments under bundling/unbundling manufacturing construct(s).
.. 313
SLR search steps and results for retrieving relevant studies..........ccccceevvrernnenne 315
"Short list" of selected studies for "exception handling"cccceeveveevvrennnns 320
Reference links to source code of the implemented solutions.c.cecuueeee. 357
Reference links to demonstrated media.coceeeuiriiniiniinenniie e, 357
Deployed MPM solution per pilot MatriX.cceeeviercveeriienieenieenieesvee e 358

xXxii

CHAPTER 1

Introduction

This first chapter introduces the research presented in this thesis. We start in Section 1.1 with
background information on the history of manufacturing that shows its evolution, and further
discuss, in Section 1.2, the general context in which the research is conducted. In Section 1.3,
we elaborate on the identified problem and in Section 1.4 we present our proposition to
address it. Having delineated, in Section 1.5, the research scope within which the problem is
tackled, we state in Section 1.6 the research objectives. The approach and the methods that
we use to reach those objectives are discussed in Section 1.7. Finally, Section 1.8 outlines
the structure of this thesis.

1.1 Brief history of manufacturing

Industrial manufacturing is evolving through time, characterized by powerful changes termed
as “revolutions”, which have even shaped the world history (Stearns, 2020). Each of them is
described by dominant production paradigms, emerged from society and market needs,
technology and process enablers.

The First Industrial Revolution started at the end of the 18™ century, with the introduction of
machines driven by water or steam power to manufacture products. The era is characterized
by craft production (or customer production (Wang et al., 2017)), as the users first set the
requirements for the products, which were then designed and made by the craft producer.
Products were made at a limited number and at high costs. The textile industry was one of
the first domains to embrace mechanized manufacturing methods.

The Second Industrial Revolution occurred in the early 20" century, marked by the invention
of the moving assembly line by Henry Ford in 1913. Division of labor and standardization
enabled the mass production of identical products!, in high quantities, at low costs but in
limited variety.

The Third Industrial Revolution was introduced in 1970s-1980s as a response to market needs
for more diversified products. With the adoption of digital and automation technology into
manufacturing, producers were able to design and create a large variety of products, leading
to the mass customization production paradigm (or flexible production (Jovane et al., 2003)).
Industrial robots, computer integrated systems and enterprise information systems featured
higher productivity at relatively low costs.

The Fourth Industrial Revolution is an ongoing phase, started at the beginning of 21 century,
with the extended use of integrated digital technology. More and more devices are connected
to the internet, creating a networked environment and coupling physical systems to digital
ones, leading to cyber-physical systems. The driving force is the customer demand for even
larger product variety and more personalized products. The globalization, by creating a

I'H. Ford had remarkably stated “Any customer can have a car painted any color that he wants so
long as it is black.” (Ford, 2019).

single, worldwide market, offers the opportunity to satisfy this demand and gives rise to the
mass personalization production paradigm.

Figure 1 visualizes the evolution of the production paradigm, viewed from different
dimensions.

Market

Modular, | 1t jon 2n jon 31 4t of one
reconfigurable 1o cr
mcp [l mpp)
| 5
i £
| 3
=
/ S
Product £
variety, T
architecture =
_/ g
%
3
o
fra A SO
i Lt f=ly Low o Market
\Water & Steam Assembly Line| Automation | CyberPhysical (© Bubble size indicates of many
power Computer Systems Unit Cost

Unified ~ H >
architecture low-cost 1700 1913 1980 2000 >2020 Time
products

MP: Mass Production

MCP: Mass Customized

Production

MPP: Mass Personalized
Production

Figure 1: Evolution of production paradigm in different dimensions (inspired by (Wang et al., 2017)
and (Jovane et al., 2003)).

Towards the mass personalization, we encounter a shift from a traditional manufacturing-
based approach where value is created for the customer, to a service approach where value is
created with the customer as a collaborative partner (Salunke et al., 2011). This value co-
creation in a service-dominant logic (Grefen, 2015; Kowalkowski, 2011); (Vargo & Lusch,
2004) requires manufacturers to embrace the customer in their operations. The changes are
disruptive and we experience radical changes in business models, like for instance in the
automotive industry where many car manufacturers? are shifting to online sales, giving the
possibility to customers to customize and order directly the car they desire, even bypassing
the car dealers>.

Giving, though, the opportunity to customers to design and configure the product they want,
be it big or small (Figure 2 shows two examples of online order configuration and
customization systems), demands that the manufacturers have the required capabilities to do
so. They should have the needed resources, the right technology and the ability to adapt their
processes in order to satisfy the increasing customer demands for mass customization and
personalization (Tseng & Piller, 2003) and keep up with or even be ahead of the competition.

2 https://europe.autonews.com/automakers/why-vw-ford-volvo-others-are-accelerating-shift-online-
sales-europe

3 https://www.forbes.com/sites/larrylight/2020/11/02/personalization-will-change-your-car-
dealership-experience-forever/

https://europe.autonews.com/automakers/why-vw-ford-volvo-others-are-accelerating-shift-online-sales-europe
https://europe.autonews.com/automakers/why-vw-ford-volvo-others-are-accelerating-shift-online-sales-europe
https://www.forbes.com/sites/larrylight/2020/11/02/personalization-will-change-your-car-dealership-experience-forever/
https://www.forbes.com/sites/larrylight/2020/11/02/personalization-will-change-your-car-dealership-experience-forever/

D/AE DAF Truck Configurator = opeEN

Refine by oo
Model name GCW max Manoeuverability Cab access Traction

Select your business
GF 300 FT 40000

CFS70FT 60000
CF 370 FTT 78000

@ Distribution

CF 370 FTT Construction = 78000 Long distance

GFHDFTG 60000 © Speciais-Logging
CF 410FTP 50000 GWW max

GF 410 FTR 60000

CF 410 FIN 80000

DAF series Chassis typs

> L ino

b BED DOD Shi) Ex

HOME . MARKERS, RANDD CONTACT SUPPORT ABOUTUS WEBSHOP

PRODUCT SELEGTOR

Thomas Regout
Products | Telescopic slides Hhow ‘ ! T N S LA

PRODUCT SELECTOR

Selectdimensions.

Load caparity
Heigh

Tved

Figure 2: Examples of online product configuration/customization for direct ordering - trucks? (top),
telescopic slides” (bottom).

The technological advancements of the ongoing industrial revolution offer manufacturers
many opportunities but also pose many challenges (Khan & Turowski, 2016; Mosterman &
Zander, 2016). This research aims to tackle a few of those challenges, from a few given
perspectives.

1.2 Research context

Until the recent years, the market demands of each period of the manufacturing paradigm
have well been addressed by the various types of manufacturing systems that have been

4 https://www.daf.co.uk/en-gb/trucks/3d-daf-truck-configurator.
5 https://www.thomasregout-telescopicslides.com/products/selector.

3

https://www.daf.co.uk/en-gb/trucks/3d-daf-truck-configurator
https://www.thomasregout-telescopicslides.com/products/selector

developed. Mass production at affordable costs has been achieved with dedicated
manufacturing lines (DML)®. In such setups, material and products move through a transfer
line, from one station to the next one to undergo the corresponding operations or treatments
(Koren et al., 1999). These stations, aimed at handling high volumes, are rather fixed, with
typically little configurability. While DML are cost effective, their rigidity does not allow for
customization or production of a larger variety of products. These needs have been addressed
by flexible manufacturing systems (FMS), consisting of general-purpose computer
numerically controlled (CNC) machines and other programmable automation. Different
products can be produced by the same system with varied volume and mix. However,
equipment in FMS setups is typically expensive and with combination with the low
throughput time (due to the single-tool operation), make the cost per part relatively high
(Koren et al., 1999).

A new class of systems, called reconfigurable manufacturing systems (RMS), emerged to
provide the versatility of machines for producing a wide range of products (Koren &
Shpitalni, 2010). These systems make use of changeable tools that can be reconfigured per
production run, offering in this way the capability of producing smaller batches of variable
products. Apart from being modular, RMS are convertible, as individual modules can be
repositioned/re-oriented on the machines, and scalable, as new machines can be relatively
easily added in the production setup (Landers et al., 2001). RMS can achieve high throughput
as DML systems, providing also the flexibility for customized production like in FMS.
However, all these types of systems are not well-suited to support concepts that the new era
of “Industry 4.0” brings, such as systems and technology interoperability and consciousness
through intelligence, self-awareness and self-configuration (Qin et al., 2016).

Industry 4.0 is a term originally coined by the German Academy of Science and Engineering
(acatech”) to describe the fourth stage of industrialization, in a national initiative to secure
the future of the German manufacturing industry (Kagermann et al., 2013). Since then, the
term has been widely used to largely denote the developments in manufacturing in the fourth
industrial revolution. These developments are often described as “smart” or “intelligent” due
to their advanced character and possibilities. The terms Industry 4.0 and Smart
Manufacturing are often used interchangeably to describe similar concepts, however they are
not strictly synonymous, as illustrated in Figure 3 (Brouns, 2019) (other terms such as smart
city, smart mobility and smart health are used to describe developments in various domains
in the current era but are not included under the Industry 4.0 term, which has a manufacturing
perspective).

% A list of terms and abbreviations is available in Appendix A.
7 https:/en.acatech.de/

https://en.acatech.de/

Fourth Industrial Revolution
Industry 4.0
Smart
Intelligent Health
Industrial Internet Manufacturing
of Things
Cloud
Manufacturing
Industrial
Internet
loT
Manufacturing
Smart
Factor
Smart ¥
Logistics
Smart Smart
Mobility Grid Smart .
Smart Manufacturing
City

Figure 3: Related concepts in the fourth industrial revolution (from (Brouns, 2019)).

Apart from the German initiative and the term Industry 4.0, other countries have announced,
in the past years, their strategies for the future of manufacturing; the New Industrial France®
by France, the National strategic plan for advanced manufacturing (Holdren et al., 2012) and
the National Network for Manufacturing Innovation (Molnar, 2015) by the United States of
America, Made in China 2025 (Wiibbeke et al., 2016) by China, the Industrial Value Chain®
by Japan. No matter though the differences in initiatives and the terms used, manufacturing
is going through disruptive changes.

From a technology perspective, there are rapid developments on the equipment and
techniques to manufacture products. Versatile robots, with the appropriate end effectors
attached, can switch modes and perform various operations (Heyer, 2010). By programming
by demonstration (Dillmann & Friedrich, 1996; Dey et al., 2004) manipulators can more
easily add new functionalities to robots, making their utilization more efficient. Collaborative
robots (cobots) increase efficiency by allowing robots and human operators to work together
(Bejarano et al., 2019). Augmented reality (AR) systems support operators in their daily
tasks, which are getting more complex (Khan et al., 2011; Longo et al., 2017). Automated
guided vehicles (AGV) transport material and products around a factory, without human
intervention (Le-Anh & de Koster, 2006), promising increased productivity (Fragapane et
al., 2020). Smart sensors gather any kind of values from devices that help in predictive
maintenance or decision making. And all these developments are leveraged by the

8 https://www.economie.gouv.fr/files/files/PDF/industrie-du-futur_dp.pdf
® https://iv-i.org/wp-test/wp-
content/uploads/2017/09/doc_161208_Industrial Value Chain_Reference_Architecture.pdf

5

https://www.economie.gouv.fr/files/files/PDF/industrie-du-futur_dp.pdf
https://iv-i.org/wp-test/wp-content/uploads/2017/09/doc_161208_Industrial_Value_Chain_Reference_Architecture.pdf
https://iv-i.org/wp-test/wp-content/uploads/2017/09/doc_161208_Industrial_Value_Chain_Reference_Architecture.pdf

connectivity that the Internet-of-Things (IoT) (Atzori et al., 2010) and cloud computing (Liu
& Liu, 2010; Zhang et al., 2014) provide.

From a business perspective, there are new market pull forces, such as the increasing demand
for customized and personalized products, with higher quality and, if possible, same day
delivery. On a global level, business environments are getting more dynamic with a result of
high fluctuations in demand for materials and products. Manufacturing enterprises strive to
retain or increase their efficiency in operations and to deal with the production of small series
of products, while on the same time they pursue the flexibility (Mishra et al., 2014) to quickly
reposition themselves and reconfigure their competences (Tan & Wang, 2010) in order to
stay competitive. All these market forces shift traditional supply chain models, which are
typically based on manufacturing-to-stock approaches according to sales predictions
(production-driven), into demand chain models, with a focus into value and outcome
provisioning (Christopher & Ryals, 2014; Grefen et al., 2021). The implementation, though,
of demand chain models require near-real time synchronization of manufacturing processes
and their context.

The recent technologies that Industry 4.0 brings can enable manufacturers to respond to the
current business requirements, driven by the market forces. There are promises for increased
productivity, higher efficiency, flexibility and labor cost reduction (Dalenogare et al., 2018;
Hofmann & Riisch, 2017). However, the transition from a traditional factory into a smart one
is a challenging endeavor, as the optimal utilization of the new technologies into
manufacturing operations in complex and dynamic environments is not an easy task.

1.3 Problem identification

In the line of mass customization and personalization, manufacturers have to provide product
variety which can have a great impact on operations performance (EIMaraghy et al., 2013;
Johnsen & Hvam, 2019; Park & Okudan Kremer, 2015). Product variety imposes variety on
production equipment and processes (Brunoe & Nielsen, 2016). The “high mix — low
volume” production (i.e., high number of predefined product variants and low volume per
variant) can cause complexity in operations (Hu et al., 2011) and often demands for fast
equipment and tool changeovers. Reconfigurable machines and versatile robots are deployed
to perform as many operations as possible and support the efficient production of smaller
batches of various and customized products. But as product specifications and customer
requirements are getting more and more sophisticated, production scenarios are getting more
complex as well. Raw materials and (semi-finished) products typically have to go through a
series of activities which involve various equipment and human resources. These activities
may vary per batch or lot and their coordination is not an easy task. In case of small batch
sizes and many product variants, the final assembly activities are often performed manually
for better performance (Michalos et al., 2010). While the latest collaborative robots help
human operators in production and assembly, by providing task dexterity, speed and quality,
their utilization in production requires redesign of traditional workcells (Bruno & Antonelli,
2018). Moreover, the co-presence and collaboration of humans and robots require a lot of
attention with respect to safety requirements to prevent hazards for humans (Reniers, 2017).
Such safety requirements and restrictions can add extra complexity to current production
scenarios.

Apart from the mass personalization trends, the manufacturing domain is currently
characterized by fierce competition, a high degree of globalization and increased market
uncertainty (Choi et al., 2016). Dynamic environments, which as described by Miller &
Friesen (1983) are characterized by the rate of change (velocity/volatility) and its
unpredictability, can directly affect the performance and sustainability of an enterprise
(Nitsche & Straube, 2020; Saldanha et al., 2013). Rapid and unpredictable changes cause
uncertainty, which can be encountered in various phases of manufacturing and supply chains
in a broader perspective, ranging from the firm’s environment down to the lowest task within
the firm (Miller & Shamsie, 1999; Sawhney, 2006). According to Angkiriwang et al. (2014)
uncertainty is classified in the supply chain context as upstream (supply) uncertainty, internal
(process) uncertainty, and downstream (demand) uncertainty. Manufacturers might face
material unavailability or late supplier’s delivery. With the growing engagement of
customers in their chain of activities, they might also face demand fluctuations, order
specifications changes or last-minute cancellations. Such exceptional situations have a direct
impact on internal business processes and manufacturing operations. In extreme cases, they
might even have to completely alter their facilities and operations, as, for example, many car
manufacturers did in the beginning of the COVID-19 pandemic!?, when they turned their
vehicle production work-places into medical equipment ateliers for aiding on the excess
demand on masks, respirators, ventilators, etc. Regarding the process uncertainty, the
occurrence of unexpected events and the deviations from schedules are more likely to
increase with the growing introduction and utilization of new technologies, as the probability
of equipment and machinery malfunctions and failures is proportional to the count of
resources.

The changes caused in dynamic environments require humans and machines to adapt and
reconfigure their activities. However, the control systems of machines and robots are often
not flexible enough to respond to changes and cope with resource relocation or alterations
(Newman et al., 2008). Also, it is typically hard to transfer tasks from robotics to humans and
vice versa, as each actor class is controlled differently and independently (Tsarouchi et al.,
2016); robots and machines are forced to action through their control systems, while humans
receive instructions orally, written, or visually through screens. Think, for example, a
scenario of an AGV raising an alert of low battery capacity and a human operator having to
take over a materials transportation task. With a rigid process design and reconfiguration,
resources are under-utilized (Erasmus, Vanderfeesten, Traganos, Keulen, et al., 2020) and
production operations can get complex if not properly managed.

Regardless of the high attention and the effort needed to embrace new technologies in
operations, manufacturers should aim to include automated devices that will increase
production efficiency and quality. However, as the acquisition is typically done in stages, it
is very common that new robotic solutions are employed in disparate work cells, following a
vertical orientation in their robot control processes. This normally leads to isolated,
fragmented developments that do not solve the need for production adaptability and
flexibility at entire process level. Moreover, as the number of systems and technologies
increase, typically based on different control regimes and offered by multi-vendors (Weyer
et al., 2015) their integration is a challenge (Dalmarco et al., 2019; Sanchez et al., 2020). As
Kagermann et al. (2013) recommend, apart from vertical integration of manufacturing
systems within the factory, horizontal integration of value networks and end-to-end digital

10 https://www.caranddriver.com/news/g32041246/automakers-gowns-masks-ventilators-coronavirus/

7

https://www.caranddriver.com/news/g32041246/automakers-gowns-masks-ventilators-coronavirus/

Problem
Statement

integration of engineering across the entire value chain are key concepts of implementing the
Industry 4.0 initiative. Cross-functional process integration (Brettel et al., 2011; Tang, 2010a)
is crucial, but existing infrastructures are not ready to support it (da Xu et al., 2018). There
exist well-developed information systems suitable for different types of functions (e.g.,
Enterprise Resource Planning (ERP), Manufacturing Execution Systems (MES) — presented
in detail in Chapter 2), but their interoperability issues and the poor process alignment hinder
flexibility.

The various factors described above lead to a general complexity issue, from operations
perspective, in smart production environments, as illustrated with a cause-and-effect diagram
(as proposed by (Ishikawa, 1990)) in Figure 4.

Discrete manufacturing in Industry 4.0 Problem identification

Complex
. o Rise of exceptions
production scenarios P

Product Supply
variety uncertainty

Safety requirements

Equipment
New Technology malfunctions
technologies push Market

Market {Mass customization —p
dynamicity

push | Mass personalization —
Increasing number
of technologies

Versatile & mobile Global (business) ~ Demand
robots changes uncertainty

Production variety

Complexity in
manufacturing
operations

Fragmented
robotic developments

Rigid process
. design and
Enterprise systems

. reconfiguration
“islands”
Rigid resource
reassignment
ERP/MES
Integration
complexity

Technologies
heterogeneity

disconnection
Resource
under-utilization

Figure 4. Problem identification presented in an Ishikawa (fishbone) diagram.

The identified problems and causes, which are discussed in more details in Section 2.1.6, are
distilled into the following problem statement:

Production environments face an increased process complexity in their effort to enter the
smart manufacturing era, which is characterized by a high degree of variety and dynamism.

1.4 Proposition

Operations complexity can pose difficulties and challenges to manufacturers to adopt new
technologies and keep up with the competition. The various factors that lead to complexity,
as discussed in the previous section, should be addressed towards tackling the identified
problem. The production variety, caused by the product variety, requires robust process
design (Salvador et al., 2009). Manufacturing activities should be modeled, so as the
sequence of who performs what is clear. This is more crucial when the production scenarios
are getting more complex, when there is an increasing number of new technologies and
resources involved and when there is a high level of collaboration between humans and
machines. The modeling of the processes should allow for synchronization of activities
during execution, often in near real-time, for higher production efficiency. With the use of

well-defined modeling patterns and mechanisms, process designers shall be able to represent
the requested activities in the exact way that should allow for smooth execution. Moreover,
processes, both business and manufacturing (the distinction of which we discuss in Section
1.5), should be modeled flexibly, i.e., with low sensitivity to changes (Chryssolouris et al.,
2013). Especially in current dynamic environments, with high uncertainty, the need for
responsiveness to exceptional events is imperative (Wang et al., 2014). That, of course,
requires a structured classification of exceptions and proposed handling strategies. The
classification should include events occurring both on business (e.g., last-minute order
cancellations) and on operational levels (e.g., machine breakdowns). With respect to resource
under-utilization, dynamic resource allocation mechanisms are required for selecting, also
during runtime, the most suitable actor to perform a specific task. Lastly, the integration
complexity issue shall be addressed by an information system (IS) able to provide both
horizontal, cross-functional integration and vertical (for direct process control) integration.
Such a system shall orchestrate end-to-end business and production processes performed by
heterogeneous actors, coupling the “cyber” aspect of business information processing with
the “physical” aspects of robotics and devices, as part of a cyber-physical system (CPS). Of
course, as the developed system shall integrate and be integrated with other systems, it should
be based on well-adopted standards (Lu et al., 2016; Weyer et al., 2015).

The propositions discussed above can be realized with concepts, methods and tooling from
the business process management (BPM) paradigm, whose employment helps organizations
to be more responsive to an increasingly changing environment (Lindsay et al., 2003). BPM,
as defined by van der Aalst et al., (van der Aalst et al., 2003) is a paradigm for supporting
business processes using methods, techniques, and software to design, enact, control, and
analyze operational processes involving humans, organizations, applications, documents
and other sources of information. A business process is defined as the combination of a set
of activities within an enterprise with a structure describing their logical order and
dependence whose objective is to produce a desired result (Aguilar-Savén, 2004). On a more
philosophical level, a process, in general, is a coordinated group of changes in the
complexion of reality, an organized family of occurrences that are systematically linked to
one another either casually or functionally (Rescher, 1996). In that respect, manufacturers
have to structure and coordinate their activities (either business or manufacturing), which can
get more and more complex, in order to achieve their corporate objectives.

This research advocates BPM as a good candidate approach towards tackling complexity in
manufacturing operations, as it can support all the aforementioned aspects that are proposed
as solutions to the various factors causing complexity. With respect to modeling, the
paradigm offers well-defined notations, such as the Business Process Model & Notation 2.0'!
(BPMN 2.0) or Petri Nets (van der Aalst, 2009), as graphical representations that provide a
comprehensive and common understanding of a business process. The notations typically
have a formal foundation to avoid ambiguity (Aalst, 1998) and enable process analysis
(Aguilar-Savén, 2004; Wodtke & Weikum, 1997). Regarding responsiveness to exceptions
and changes, various handling patterns have been developed in the context of business
process management (Rinderle & Reichert, 2006; Russell et al., 2006a). With respect to
resource and task allocation, BPM provides different strategies to select the right resources
to perform a task (Dumas et al., 2018). Finally, as all the business processes have to be
controlled and enacted in an automated way, a Business Process Management System

1 https://www.omg.org/spec/BPMN/2.0/

https://www.omg.org/spec/BPMN/2.0/

—
Proposition

(BPMS) typically provides the support of executing the defined process models, handling
exceptions during runtime, delegating tasks to resources based on the allocation strategies
and monitoring the running process instances. As the processes in concern might involve
various resources and information systems, a BPMS improves enterprise integration by
enabling the invocation of applications and services across heterogeneous systems (Harmon,
2010; van der Aalst, 2013). To guarantee this integration, BPM systems are often designed
and implemented according to well-established information systems reference architectures,
such as are the Workflow Reference Model (Hollingsworth, 1995) and the Mercurius
Reference Architecture (Grefen & Remmerts De Vries, 1998).

BPM has originated from business sectors where information processing is dominant, e.g.,
finance (Brahe, 2007), but it has also been extensively applied in healthcare (Reichert, 2011;
van Gorp et al., 2013), automotive (Grefen, Mehandjiev, et al., 2009) and transportation
(BaumgraB et al., 2015), where physical entities are included as well. In this research, the
terms Manufacturing Process Management (MPM) and Manufacturing Process Management
System (MPMS) are used often to denote the application of the BPM paradigm in the
manufacturing domain. In that respect, the proposition of the current research can be
summarized in the following sentence and illustrated in more details in Figure 5:

Process management theories and techniques applied in the manufacturing domain can
tackle the process complexity in smart production environments.

- e

Complex
producmm scenarios

—

} Rise of exceptions

Flexible
Responsiveness
process modeling
o a

Tackling
process

cOmplemy
in manuf.
operanans

MPM

Integration Resource Dynamic resource P —
complexity under-utilization allocation

\ S)

Figure 5: Overview of proposed solutions to tackle the identified issues in discrete manufacturing.

BPM in manufacturing is ongoing research (Janiesch et al., 2017) (as discussed extensively
in Section 2.1.7.4. Erasmus’ work (2019) on application of BPM in discrete manufacturing
has proven feasibility and distinct advantages. That work focuses on main aspects such as
modeling manufacturing operations as business processes and providing a system (MPMS)
to enact these models. Its main focus is on resource allocation, by providing an algorithm to
select the most appropriate (in terms of various criteria) actor to execute a task during
runtime. While this covers the resource under-utilization issue, that work has to be extended
with functionality that will enhance and cover all the other identified issues in manufacturing.

10

More specifically, the current research proposes extensions on three aspects: 1) design of
more flexible patterns to model the complex manufacturing processes, ii) support exception
handling with BPM approaches, and iii) extend the scope of MPMS to offer integration
functionality with other enterprise systems. These extensions give the notion of the
“advanced” solutions (as denoted in Figure 5) and are illustrated, with respect to Erasmus’
work (2019), in Figure 6.

Exception
handling in
manufacturing
processes

Integration
to enterprise
systems
(ERP/MES)

Full-blown
information
system for
process
P R . integration

Flexible
modeling of
dynamic and

complex
manufacturing

Architecture
model of IS to
design and
enact
manufacturing

Modelling of
manufacturing
operations as
business
processes

Vertical
integration to
heterogeneous
systems

Advanced
MPMS

Process modeling

* of complex scenarios General

BPM

concepts
and tools

Process modeling

Mechanism to
allocate
resources to
manufacturing
activities

Description of
resources that
participate in
manufacturing
activities

Resource allocation

“\Process Management in discrete manufacturing domam

Advanced Process Management in discrete manufacturmg domaln

Figure 6: BPM concepts as proposition to tackle the process complexity in smart manufacturing.
Concepts in green dashed box has been covered by previous research (Erasmus, 2019). Concepts
outside the green box (and within the blue dashed box) are covered by the current research.

To be clear, the application of BPM in discrete manufacturing in smart environments is
proposed as an addition, rather than as replacement of existing approaches and techniques,
with the aim to enhance current practices where process-oriented approaches are desired. In
the next section we outline the scope of this research, whereas the state-of-the art of systems
and technologies in discrete smart manufacturing is discussed in Section 2.1.

1.5 Research scope

The proposition of applying BPM in smart manufacturing is broad and thus, scoping is
required. The current section discusses the focus of this research in different aspects, more
specifically the manufacturing sector, the functional hierarchy and the BPM lifecycle.

11

1.5.1 Manufacturing sector

The manufacturing sector is very diverse, combining activities with relatively low apparent
labor productivity and average personnel costs, such as the manufacture of wearing apparel,
wood products, furniture, and textiles, with other activities that have considerably higher
values for the same indicators, such as manufacture of basic pharmaceutical products and
pharmaceutical preparations, refined petroleum products and the manufacture of tobacco
products. According to the statistical classification of economic activities in the European
Community (NACE'?), there are 24 different manufacturing subsectors, with the largest ones
in terms of value added the manufacture of machinery and equipment and manufacture of
motor vehicles and (semi-)trailers (data of 2018'3). In European Union (EU), more than 2
million enterprises are classified as manufacturing in 2018, while the vast majority (1.96
million'%) being small and medium-sized enterprises (SMEs). With more than 29.9 million
people being employed in manufacturing in the EU in 2018, the manufacturing sector plays
an important role in the economical and societal growth of many countries. The uptake of
advanced technologies is growing but still in rather low levels — around only 30% of
enterprises in the manufacturing sector in the EU27 zone have adopted advanced
technologies's. While large manufacturers have the resources to invest in new technologies,
the SMEs face difficulties to keep up with the technology trends and market competition
(European Commission, 2021). This research targets SMEs, to support their efforts to
integrate smart technologies in their operations. And while obtaining one AGV or a universal
robotic arm can be affordable by a small manufacturer, there is often lack of knowledge and
techniques how to smoothly integrate those in a set of operations (compared to a large
enterprise which has, probably, already in place advanced systems to do so). Moreover, the
focus of this research is the discrete production (as has already been mentioned in the
previous sections), i.e., the manufacture of individual products or batches of individual
products (countable pieces) (ORACLE, 2017), as SMEs in this domain face the most pressure
from the mass customization and personalization trends.

1.5.2 Functional hierarchy

Regarding the operations and functions occurring in a manufacturing enterprise, there is a
great range and therefore the current research needs to consider a relevant set of those. To do
so, the widely adopted IEC 62264 (IEC, 2013b) international standard series is consulted.
The series is a long-running development for pursue of integration of control systems to
enterprise systems in the manufacturing domain. The first part (IEC 62264-1, also referred
to as ANSI/ISA-95.00.01-2010) describes the interface content between manufacturing-
control functions and other enterprise functions, based upon the Purdue reference model for
computer integrated manufacturing (CIM) (Williams, 1990). The various types of control are
classified in a functional hierarchy model, consisting of business planning and logistics,
manufacturing operations and control, and batch, continuous or discrete control. The levels
provide different functions and work in different time frames. At the bottom, Level 0 (not a
control level) defines the actual physical process, i.c., the flow of material and products

12 https://ec.europa.cu/eurostat/statistics-

explained/index.php?title=Glossary:Statistical classification of economic activities in the Europea
n_Community (NACE)

13 https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Manufacturing_statistics_-
NACE Rev. 2

14 https://www.statista.com/statistics/1252884/smes-in-europe-by-sector/

15 https://ati.ec.europa.eu/data-dashboard/sectoral
12

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Manufacturing_statistics_-_NACE_Rev._2
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Manufacturing_statistics_-_NACE_Rev._2
https://www.statista.com/statistics/1252884/smes-in-europe-by-sector/
https://ati.ec.europa.eu/data-dashboard/sectoral

throughout a factory. Level 1 defines the activities involved in sensing and manipulating the
physical processes. This level typically operates on time frames of (milli-)seconds. Level 2
is concerned with the activities of monitoring and controlling the physical processes (through
the sensors and manipulators of Level 1). Level 2 typically operates on time frames of hours,
minutes and (sub-)seconds. Level 3 defines the workflow to produce the desired (end-)
products. It includes activities of coordinating the processes and maintaining records. Level
3 typically operates on time frames of days, shifts, hours, minutes and seconds. On top, Level
4 defines the business-related activities needed to manage a manufacturing enterprise.
Manufacturing-related activities include establishing the basic plant schedule, determining
the inventory levels and making sure that materials are delivered on time to the right place.
Level 4 typically operates on time frames of months, weeks and days. Activities of Levels 0,
1 and 2 are of less interest from a BPM perspective, as they represent the control of the
physical aspects of manufacturing (i.e., the actual work performed by humans and machines).
On the other hand, BPM is suitable for enterprise-level activities and is often employed to
cover Level 4. Level 3 activities and information flows are defined by Manufacturing
Operations Management (MOM) terminology and is the level of interest for this research, as
the operations and processes on this level are the main concern for applying and extending
BPM approaches.

The scope of the current research, with respect to the functional hierarchy of the IEC 62264-
1 standard, is shown in Figure 7. As the end-to-end processes (e.g., including order reception
and product delivery) are in concern, integration to Level 4 is also taken into account (only
processes that are directly connected to production processes, e.g., order processing, are
considered, excluding business-related ones such as account management, sales support or
even product design). Accordingly, as the developed MPMS should be part of a CPS,
integration to Level 2 is examined.

Level 4
v Establishing the basic plant schedule -

Business Planning Plant production scheduling p:.)dl{cﬁon, materialluses deliver}/, a"ld Enterprise
& Logistics supply and delivery plan s‘ ipping. Determining inventory levels. - domain
Inventory plan B
Months, weeks, days
Level 3

Work flow / recipe control to produce the

Manufacturing . . . desired end products. Maintaining records
Operations Workflow control for production — Dispatching and optimizing the production process.
Maintenance and optimization Time Frame

Management

8 Days, Shifts, hours, minutes, seconds

Manufacturing
Level 2 l l Operations &
Supervisory control /~ Monitoring, supervisory control and r Control
d d automated control of the production process .
an aultomate Time Frame domain
control process . - a
P! Continuous laErie Batch Days, Shifts, hours, minutes, seconds

Control - Control [Control

Level 1

Sensing the production process,

Sensing and manipulating the production process

manipulation

Level 0 A B q
| reve Actual continuous / discrete / batch production process

Figure 7: Functional domains and hierarchy of control in manufacturing (according to (IEC, 2013b)),
with the main focus of the current research on activities and interfaces related to Level 3 in discrete
production environments.

13

According to IEC 62264-1 standard, MOM shall be modelled using four categories:
production operations management, quality operations management, inventory operations
management, and maintenance operations management. This research is mainly concerned
with the production operations management, which typically covers the largest part of
operations, belongs merely to Level 3 and inherently has a process perspective.

1.5.3 BPM lifecycle

Engaging BPM in an enterprise helps to manage processes, actors and information. But which
processes should be managed? In other words, which sequence of events and decisions are
important to lead to a desired outcome? How far has a process been implemented? How is a
process being controlled and monitored, so possible improvements can be identified? Such
questions indicate that processes can be in different phases, typically with a cyclical link.
Dumas et al., (2018) provide an overview of such a lifecycle, as shown in Figure 8. Adopting
BPM starts with the process identification phase, when a business problem or need is posed.
Processes related to the problem being addressed are identified. Those are then captured in
as-is process models during the process discovery phase. In the subsequent process analysis
phase, issues on the current processes are identified and documented, and whenever possible
quantified with performance measures. Next, changes are identified in order to solve the
issues and improve the as-is processes. Changes are then implemented to move processes to
the desired, to-be state. Once the re-designed processes are running, relevant data are
collected and analyzed to determine how well processes are performed. New issues,
bottlenecks and deviations from the performance measures are identified and corrective
actions are taken, which might mean that new or other affected processes have to be re-
discovered.

R
Process
identification

Process architecture

Conformance and Process

performance discovery
insights
S —

Process
monitoring
Executable
Process
implementation

process
model

Figure 8: BPM lifecycle (according to (Dumas et al., 2018)) with the phases in scope highlighted in

blue.

As-is process
model

Process
analysis

Insights on
weaknesses and
their impact

Process
redesign

To-be process
model

14

Assuming that manufacturers have already posed their problems and needs, and have
identified what has to be done to address those, the process identification phase is not relevant
and thus out of scope of the current research. All the rest of the phases of the above BPM
lifecycle are of interest and this research intends to cover them. In case an organization has
already started engaging BPM, there might already exist as-is process models in a notation
that the current research considers, and thus the application of BPM can “start” from the
process analysis phase. However, as there are not many BPM initiatives concerning
manufacturing and production processes, most likely as-is process models have to be
designed with the notation and methods explained in this research.

Lastly, apart from the three scoping aspects that are discussed above, it should be noted that
this research does not put strong emphasis on aspects such as cyber security, system
performance and robustness (the actual evaluated aspects are discussed in Section 7.2). The
reason is that as the objective is to examine the application of an existing paradigm in new
problems in an application domain that has not been (extensively) applied so far (as further
discussed in Section 1.6), the emphasis is put on the functionality of the developed MPMS,
rather than on its optimal utilization, which can be future work.

1.6 Research Objective

As already discussed, BPM is well-established and has proven its strength in various
domains, but the adoption in manufacturing is not extensive, let alone at a mature level. Due
to the nature of the paradigm and the domain (e.g., BPM focuses more on the information
processing, ignoring in most cases the physical aspect, which is predominant in
manufacturing), current BPM techniques and tooling are not well suitable for manufacturing.
Adaptations and extensions are needed to support manufacturing operations. Moreover, the
suggested solutions (Section 1.4) should consider the new problems that the current market
trends and the advent of new technologies pose into the manufacturing domain (e.g., complex
production scenarios or integration of autonomous robotic devices as introduced in Section
1.3). According to Gregor & Hevner (2013), this type of research, i.e., the adoption and
extension of know solutions from another domain to solve new problems in a given domain,
is referred to as exaptation. However, considering that new problems in the domain (e.g.,
increased collaboration between humans and robots) require new solutions (e.g., new
modeling constructs), the research can be referred to as invention. Thus, this research is
positioned, in the spectrum of the four types of design science research, at the intersection of
invention and exaptation, as shown in Figure 9.

15

Improvement: Develop Invention: Invent new

Contribution other fields)
Research Opportunity and

Knowledge Contribution

% new solutions for known solutions for new problems
— problems 3 Research Opportunity and
= Research Opportunity and Knowledge Contribution
g Knowledge Contribution 3
g |
E 77 7777777 Application and extensionof |
o ; BPM in smart manufacturing
E 1
o !
“ Routine Design: Apply known | Exaptation: Extend known
% solutions to known problems ! solutions to new problems
T No Major Knowledge (e.g., Adopt solutions from

High Low

Application Domain Maturity

Figure 9: Positioning current research on the the design science research knowledge contribution
framework (per (Gregor & Hevner, 2013)).

There has already been work on extending BPM for application in manufacturing. For
instance, there are approaches to use BPMN for modeling manufacturing processes (e.g.,
(Zor et al., 2011; Prades et al., 2013; Abouzid & Saidi, 2019)), but they do not provide
execution support. Erasmus’ work (2019) covers execution aspects, but the work has to be
complemented (as shown in Figure 6). Extensive discussion on existing work is provided in
Section 2.1.7 and in Chapters 3, 4 and 5 where the individual developments of the current
research are elaborated. Here, the main contributions that the current research adds are
summarized:

e Modeling of manufacturing processes is approached from a wide perspective in
order to cover as many manufacturing operations scenarios as possible.

e BPM is applied to a wide extent, covering many aspects of the paradigm (e.g.,
modeling, inclusion of resources/participants, exception handling, integration,
technologies/systems to support the runtime execution).

e The theoretical concepts and tooling take into account that solutions should support
integration to cyber-physical systems, to enable both horizontal and vertical
integration.

e The theory and technology are applied to and evaluated with real-world
manufacturing cases, within large European research and innovation projects.

The objective of this research, which leads to the above research significance, can be
summarized in the following:

16

The objective of this research project is to provide models/constructs, guidelines and
specifications of systems to apply advanced process management in smart manufacturing to
tackle process complexity.

1.7 Research design

To achieve the research objective, the research framework of Verschuren & Doorewaard
(2010) is followed, which is a schematic and highly visualized representation of the
phases/steps that need to be followed. Figure 10 illustrates the approach in 4 broad phases.
In phase (a), an analysis phase, process modeling theory is confronted with real-world
processes, as those being analyzed in practice, resulting in modeling constructs for
representing complex processes. Similarly, both theoretical and practical analysis of
exception handling in smart manufacturing is performed, resulting to a categorization of
exceptions and handling strategies. For providing operational support, a manufacturing
process management system (MPMS) is designed and implemented based on theory and
standards on process integration. In phase (b), a design and implementation phase, the
modeling constructs are applied to complex production scenarios and implemented in the
system. Accordingly, the developed categorization for exception handling is mapped out on
practical scenarios with the support of MPMS. The applied modeling constructs and the
exception handling classification are evaluated in phase (c), i.e., an evaluation phase. The
realized system, which incorporates all designs, is evaluated as well. Evaluation leads to the
final artefacts of the given research objective.

Complex production
scenarios

Analysis of processes in
real-world production

environments N y
Modeling constructs .
Results of design:
of complex
5 evaluated constructs
Modeling theory on processes

(manufacturing)
processes

Models/constructs,
guidelines, and system
Results of design: specification for
evaluated system advanced manufacturing
process management

Manufacturing
process
management system

Theory and standards
on process integration

1

Analysis of exception in
real production

T EImETS Categorization of Results of design:
exceptions and evaluated exception
handling strategies handling approach v

Theory on exceptions in
smart manufacturing

Dynamic production
environments with
exceptions

v
(a) Analysis (b) Design & Implementation (c) Demonstration & Evaluation (d) (Artefacts)

Figure 10: Research framework (based on (Verschuren & Doorewaard, 2010)) visualizing the steps to
achieve the research objective.

The research framework helps to identify the research question(s) whose answers yield
information that is necessary for accomplishing the research objective. The research
objective, as formulated based on the problem statement, yields the following main research
question:

17

Research
objective

Research
Question

How can manufacturers tackle the process complexity in dynamic, discrete, smart production
environments, in terms of flexible modeling and responsive enactment of their processes?

To derive an answer to this question, the following sub questions have been identified with
the help of the above research framework (by subdividing the research framework into
identifiable components):

RQI: How can we provide flexible modeling of complex production processes?

RQ2: How can events and exceptions be handled in dynamic manufacturing environments?

RQO3: How can we enable process integration for end-to-end manufacturing process
management?

RQ4: How can an advanced manufacturing process management system support the
complexity tackling in smart manufacturing environments?

As this research aims to create and evaluate information systems artefacts with the ultimate
purpose to solve practical needs within an organizational context, it follows the design
science paradigm (March & Smith, 1995). As such, the activities to perform the research are
guided based on the Design Science Research Methodology (DSRM) of Peffers et al. (2007)
which consists of six main activities: motivation and problem identification, solution
objectives definition, design and development, evaluation, and finally, communication. The
mapping of the current research on DSRM is shown in Figure 11, with a rather
straightforward sequence.

Process Iteration

' |

Identify Define Analysis Design & D i i c
Problem and Objectives of a Development
Motivate Solution Analyse
problems in

l
l
l

PhD
dissertation

Use of the
artifacts in
various pilots
Assess
utility aspects

Prototype

systems in
real-world
settings

Nominal process
sequence

Advanced
MPMS with
modeling
constructs and

Increased Advanced smart
process MPM to tackle manufacturing
complexity in process - both theory
smart complexity and practice exception
manufacturing perspectives handling

Inference
Theory
Extracted
knowledge
How to
Knowledge
Disciplinary
Knowledge

Publications on
MPM in smart
manufacturing

Metrics, Analysis
Knowledge

Objective- Design & Client
Development

Centered Centered Context-

Solution L Initiated
Initiation

Problem-
Centered
Initiation

Possible research entry points

Figure 11: Design science research methodology (DSRM) process model (based on (Peffers et al.,
2007)) as applied in the current research.

Regarding the second activity, the purpose of solving practical problems dictates that the
objective of the solutions should be to generate knowledge that can be applied by users, in
other words, to create utility (Gregor & Hevner, 2013). In the nominal process sequence, an
analysis activity has been included after the definition of the objectives to extract the
knowledge required for the actual design and development of the artifacts. Note that this
analysis activity is not a new activity compared to the original DSRM (which is implicitly
incorporated either in the problem identification or the design and development activities
(Peffers et al., 2007)), but it is added to highlight what has to be analyzed. With respect to
the research entry point, the current research follows a problem-centered approach. The
colored phases correspond to the phases of Figure 10. Regarding the communication activity,

18

apart from the current dissertation, a set of related scientific publications has been produced,
listed in Table 1.

Table 1: Scientific publications related to this dissertation (listed per chronological order — newest

first).

Chapter/Section | Article
Chapter 3 (Pantano et al., 2022)

Pantano, M., Pavlovskyi, Y., Schulenburg, E., Traganos, K., Ahmadi, S.,
Regulin, D., Lee, D., Saenz, J., Pini, F., Francalanza, E., & Fraboni, F. (2022).
Novel Approach using Risk Analysis Component to Continuously Update
Collaborative Robotics Applications in the Smart, Connected Factory
Model. Applied Sciences 2022, Vol. 12, Page 5639, 12(11), 5639.
https://doi.org/10.3390/APP12115639

Chapter 8 (Grefen et al., 2022)

Grefen, P., Vanderfeesten, 1., Traganos, K., Domagala-Schmidt, Z., & Vleuten,
J. van der. (2022). Advancing Smart Manufacturing in Europe: Experiences
from Two Decades of Research and Innovation Projects. Machines 2022,
Vol. 10, Page 45, 10(1), 45. https://doi.org/10.3390/MACHINES 10010045
Chapter 5/6/7 | (Traganos et al., 2021)

Traganos, K., Grefen, P., Vanderfeesten, 1., Erasmus, J., Boultadakis, G., &
Bouklis, P. (2021). The HORSE framework: A reference architecture for
cyber-physical systems in hybrid smart manufacturing. Journal of
Manufacturing Systems, 61 (November 2020), 461-494.
https://doi.org/10.1016/j.jmsy.2021.09.003

Chapter 3/ 6 (Traganos, Spijkers, et al., 2020)

Traganos, K., Spijkers, D., Grefen, P., & Vanderfeesten, 1. (2020). Dynamic
Process Synchronization Using BPMN 2.0 to Support Buffering and
(Un)Bundling in Manufacturing. Lecture Notes in Business Information
Processing, 392 LNBIP, 18-34. https://doi.org/10.1007/978-3-030-58638-6_2
Chapter3/6/7 (Traganos, Vanderfeesten, et al., 2020)

Traganos, K., Vanderfeesten, 1., Grefen, P., Erasmus, J., Gerrits, T., &
Verhofstad, W. (2020). End-To-End Production Process Orchestration for
Smart Printing Factories: An Application in Industry. Proceedings - 2020
IEEE 24th International Enterprise Distributed Object Computing Conference,
EDOC 2020, 155-164. https://doi.org/10.1109/EDOC49727.2020.00027
Chapter 7/ 8 (Erasmus, Vanderfeesten, Traganos, Keulen, et al., 2020)

Erasmus, J., Vanderfeesten, 1., Traganos, K., Keulen, R., & Grefen, P. (2020).
The HORSE Project: The Application of Business Process Management
for Flexibility in Smart Manufacturing. Applied Sciences, 10(12), 4145.
https://doi.org/10.3390/app10124145

Chapter 3 (Erasmus, Vanderfeesten, Traganos, & Grefen, 2020)

Erasmus, J., Vanderfeesten, 1., Traganos, K., & Grefen, P. (2020). Using
business process models for the specification of manufacturing operations.
Computers in Industry, 123, 103297.
https://doi.org/10.1016/J.COMPIND.2020.103297

19

https://doi.org/10.3390/APP12115639
https://doi.org/10.3390/MACHINES10010045
https://doi.org/10.1016/j.jmsy.2021.09.003
https://doi.org/10.1007/978-3-030-58638-6_2
https://doi.org/10.1109/EDOC49727.2020.00027
https://doi.org/10.3390/app10124145
https://doi.org/10.1016/J.COMPIND.2020.103297

Chapter 6 /7 (Vanderfeesten et al., 2019)

Vanderfeesten, 1., Erasmus, J., Traganos, K., Bouklis, P., Garbi, A.,
Boultadakis, G., Dijkman, R., & Grefen, P. (2019). Developing Process
Execution Support for High-Tech Manufacturing Processes. Empirical
Studies on the Development of Executable Business Processes, 113-142.
https://doi.org/10.1007/978-3-030-17666-2 6

Chapter 5 (Erasmus, Vanderfeesten, Traganos, & Grefen, 2018)

Erasmus, J., Vanderfeesten, 1., Traganos, K., & Grefen, P. (2018). The case for
unified process management in smart manufacturing. Proceedings - 2018
IEEE 22nd International Enterprise Distributed Object Computing Conference,
EDOC 2018, 218-227. https://doi.org/10.1109/EDOC.2018.00035

Chapter 6 (Erasmus, Vanderfeesten, Traganos, Jie-A-Looi, et al., 2018)

Erasmus, J., Vanderfeesten, 1., Traganos, K., Jie-A-Looi, X., Kleingeld, A., &
Grefen, P. (2018). A Method to Enable Ability-Based Human Resource
Allocation in Business Process Management Systems. /n: Buchmann R.,
Karagiannis D., Kirikova M. (eds) The Practice of Enterprise Modeling. PoOEM
2018. Lecture Notes in Business Information Processing, vol 335. Springer,
Cham. https://doi.org/10.1007/978-3-030-02302-7 3

Chapter 5 (Erasmus, Grefen, et al., 2018)

Erasmus, J., Grefen, P., Vanderfeesten, 1., & Traganos, K. (2018). Smart
Hybrid Manufacturing Control Using Cloud Computing and the Internet-
of-Things. Machines 2018, Vol. 6, Page 62, 6(4), 62.
https://doi.org/10.3390/MACHINES6040062

Chapter 3 (Polderdijk et al., 2017)

Polderdijk, M., Vanderfeesten, ., Erasmus, J., Traganos, K., Bosch, T., Rhijn,
G. van, & Fahland, D. (2017). A Visualization of Human Physical Risks in
Manufacturing Processes Using BPMN. /n: Teniente E., Weidlich M. (eds)
Business Process Management Workshops. BPM 2017. Lecture Notes in
Business Information Processing, vol 308. Springer, Cham.
https://doi.org/10.1007/978-3-319-74030-0_58

To ensure scientific rigor and practical relevance of our research, the IS design science
research framework (DSR) from Hevner et al. (2004) is adopted. The framework is used to
structure the core concepts of this research, the existing or extracted (after analysis)
knowledge, the research activities (which follow the adapted DSRM)), the developed artefacts
and the produced knowledge. Figure 12 presents the symbols used in the representation of
the framework.

Produced
knowledge/element

Existing/Extracted

Concept knowledge/element Research activity Developed

artefact

Figure 12: Legend for symbols used in the design science research framework of Figure 13.

20

https://doi.org/10.1007/978-3-030-17666-2_6
https://doi.org/10.1109/EDOC.2018.00035
https://doi.org/10.1007/978-3-030-02302-7_3
https://doi.org/10.3390/MACHINES6040062
https://doi.org/10.1007/978-3-319-74030-0_58

The DSR structure for this research is shown in Figure 13. The Environment lane provides
the practical input elements such as the industry needs, the current practices and the identified
issues. On the other hand, the Knowledge Base lane provides established scientific
foundations and methodologies (e.g., process modeling notations). Both lanes also serve as
places to position the outcome of the research. More specifically, practical insights are gained
from the evaluated demonstrations of the implemented solutions. In addition, technical
documentation and the developed software can be used for further application and extensions.
Accordingly, the research generates useful knowledge that is added in the base for knowledge
establishment and for future research (in the form of this thesis and the publications of Table

1.

In the IS Research lane (which, as already stated, follows the adapted DSRM), the artefacts
that provide answers to the research questions are generated. Adhering to the naming
convention proposed by March & Smith (1995) for defining types of artefacts, this research
produces:

1. A set of modeling constructs to represent (complex) manufacturing operations
processes.

2. A categorization of exception types appearing is smart production environments and
set of guidelines to determine suitable handling approaches.

3. A specification of an information system to design and enact manufacturing
processes, as part of a CPS.

4. An architecture model of an advanced manufacturing process management system
that integrates the first three design artefacts.

21

Environment

Design Scien

ce IS Research

Kauiecgs
Rigor
Base

Industry needs:
Mass
customization
High-mix/low
volume
Flexible
production

Technology
drivers:
Internet of Things
Smart devices

Identify and define
problem

Define
objective

Complex
production
scenarios

Define problem

Increased
process
complexity

Define objective

Advanced
MPMto
tackle
process
complexity

Applicable
knowledge:
Theoretical
solutions on
process

complexity in
smart
manufacturing

2 Z Problems in smart GRLSasinjsmart
L E 4 Analyse problems manufacturing as
25 manufacturing as) h
&5 Aenearinpractice] > insmart [appear in
<° prearinp manufacturing literature
s
""""" Modeling theory
(on
Design constructs Categorize lassification manufacturing
for modeling exceptions and a2 of exceptions processes)
complex manuf. provide exc. and handling
= operations handling strategies strategies
o T " Theory on
o Modeling. e
H ptions in
7} > constructs of e
=l
- Provide support complex manufacturing
& for process |- - - - - - processes =
< integration | cirrreer s
‘a‘ lanufacturing
a Process Theory and
Y standards on
System process
integration
Integrate aspects A
into overall
: Pl
solution R1EMS
g
®
s Real-world
2
H manufact.unng PSS
13 scenarios
o
a
Invention and
. Insights on Exaptation of
§ tackling complex BPM solutions in
= production |- - |- - 1T RN P o smart
o scenarios manufacturing
> domain
8
8 Software Communicate Thesis
E Technical reports [« « f««f« v v oeeeee e e e EEEEEEEEFEER L L -+ p Publications
E results
£ _/—\ _/—\
]
o

Figure 13: Information systems design science research framework (per (Hevner et al., 2004)), as
applied in the current research, following the DSRM process model of Figure 11.

Regarding the significance of this research, the DSR knowledge contribution framework by
Gregor & Hevner (2013) is referred. According to the framework, the knowledge produced
through DSR can be either descriptive or prescriptive. As the outcomes of the current
research are models, constructs and methods to support manufacturing operations, the

22

contribution is considered as prescriptive. Concerning the level of knowledge contribution
(all types shown in Table 2), all four artefacts are considered as nascent design theory (Level
2), as they generate knowledge as operational principles and architecture model. An
instantiation outcome (Level 1) has also been generated for application in real-world settings
and final evaluation of utility aspects. Together all four artefacts form a design theory!'®
(Level 3 contribution) to provide enough knowledge on how to tackle process complexity in
smart manufacturing with the BPM paradigm.

Table 2: Contribution types for design science research (Gregor & Hevner, 2013).

Contribution types Example artefacts
More abstract, complete, and Level 3. Well-developed Design theories (mid-range
mature knowledge design theory about and grand theories)

embedded phenomena

Level 2. Nascent design Constructs, methods,

theory—knowledge models, design principles,

as operational technological rules.

principles/architecture

Level 1. Situated Instantiations (software
More specific, limited, and less | implementation of artefact products or implemented
mature knowledge processes)

1.8 Thesis outline

The thesis chapters follow the same structure as the DSRM of Figure 11 (except the
Communication activity which has resulted in the current dissertation, together with a list of
related publications), shown in Figure 14.

The current chapter has introduced the context of this research, the problem motivation and
the solution proposition. The design approach with the defined research objective, the
identified research questions and the research methodology is presented as well.

Chapter 2 discusses the problem analysis from two perspectives. First, it provides a state-of-
the-art overview of the status, theories and technologies seen in smart manufacturing.
Second, it describes real-world problems encountered in manufacturing organizations. The
identified problems appearing in practice are confronted with the available solutions to define
the requirements of the proposed solutions.

Chapter 3 presents the details of the first designed artefact that deals with the process
modeling of complex production scenarios. The developed BPMN 2.0 patterns and
mechanisms are explained thoroughly, providing answers to RQ1.

Chapter 4 examines the exceptions that appear in smart manufacturing environments, with
the goal to provide a classification for more effective identification. As each exception type
typically requires a different handling strategy, a method to select one is elaborated. The
second developed artefact answers RQ?2.

16 Design theory, as the fifth of the five types of theory in Gregor’s (2006) taxonomy, gives prescriptions
for design and action: it says how to do something.

23

Chapter 5 presents the architecture of MPMS, its main functionality and the integration
specifications to other systems in the context of a complete CPS. The architectural model, as
the third artefact of the current thesis, responds to RQ3.

Chapter 6 provides the consolidation of the first three artefacts into an architecture model of
an advanced process management system (fourth artefact). It also presents a system
instantiation, as developed to demonstrate feasibility and effectiveness of the models. The
advanced MPMS is considered as the response to RQ4.

Chapter 7 presents the demonstration of the advanced MPMS in real-world use cases. It also
discusses the evaluation of the system, as a verification of the solutions to solve the problems
discussed in Chapter 2.

Chapter 8 concludes this thesis by, first, reflecting on the developed solutions against the
identified problem(s) (as introduced in Chapter 1 and elaborated in Chapter 2), validating in
that way the relevance of this research. After discussing limitations of the current research,
the chapter, then, outlines future research. Finally, it summarizes key take-away messages.

24

3 Chapter 1 - Introduction
> o £
EEs
=
R Context . -
3 = Problem identification
—— Problem definition

Research objective
Research questions
Research framework

Define
objective

ICha pter 2 — Problem Analysis

e State of the art theories and technologies
Analysis of processes in real-world
production environments

e System requirements

Analyse
problem(s)
L]

IChapter 3 - Flexible Process Modeling II rRQ1
e Modeling constructs for complex processes
IChapter 4 - Exception Handling RQ2
g
E e Categorization of exceptions and guidelines
g for handling approaches
s R Verification Validation
& Icha pter 5 — Process Automation & Integration I RQ3
g e Manufacturing Process Management
System
Chapter 6 — Advanced MPMS Il RQ4
e Integrated solution
e System realization
5 Chapter 7 — Demonstration & Evaluation
S
A e Application in real-world scenarios
é e Verification of solutions and evaluation
]
(=]
Q
o
©
=
S
w
Chapter 8 — Conclusion
o
T . .
% e Research summary and contributions
5 e Limitations & future work
o

e Takeaway messages

Figure 14: Schematic representation of the structure of the thesis.

25

26

CHAPTER 2

Problem Analysis

The current research focuses on solutions to tackle the operations complexity encountered in
manufacturing environments, on the efforts of transforming traditional factories into smart
ones from the process perspective. As it follows the DSR paradigm, as explained in Section
1.7, it must be grounded on existing scientific knowledge and be based on relevant problems
appeared in practice. Therefore, this chapter presents the analysis of the problems to be solved
from two perspectives: theory and literature on the one hand (Section 2.1), and practical
situations from real-world use cases (Section 2.2). Both referring to the research context of
smart manufacturing, from the scope of operations management (as delineated in Section
1.5). The problems and situations from literature and practice are then consolidated to form
the requirements that the developed artefacts of this research should satisfy (Section 2.3).

2.1 State of manufacturing

This section provides an overview of the state of manufacturing, by providing relevant
background information and discussing current approaches to dealing with process
complexity. As understanding relevant concepts is important for the problem analysis and
solutions design, the section first provides a classification of production, types of
manufacturing systems, concepts of manufacturing operations management, and relevant
information systems that support the operations. Then, the latest developments in the smart
manufacturing era are presented. Current challenges and problems are examined, discussing
also approaches to face them. With these problems identified from literature in mind, Section
2.2 presents them as identified in practical cases.

2.1.1 Typologies of production systems

A few decades ago, and especially towards the era of the third industrial revolution, various
typologies of production and operations management systems had been developed with the
intent to provide a meaningful methodology reappraisal, integration, and synthesis within
production and operations management (Adam, 1983). Each of those have been based
according to different dimensions and viewpoints. One of the first and highly influential
typology of productions systems was provided by Joan Woodward (1965), who classified
production according to technical complexity in ten classes, grouped in three main categories
(from low to high technical complexity): Small batch and unit production (e.g., production
of single pieces or fabrication of large equipment in stages), large batch and mass production
(e.g., production of identical products in large numbers), and continuous process production
(e.g., production of liquids and gases). Hull & Collins (1987) revised Woodward’s typology
by introducing the knowledge complexity (i.e., the technical expertise that is manifested in
human knowledge and computers) as the criterion variable to subdivide the original batch
category into traditional and technical batch (e.g., the production of an aircraft requires many
highly trained workers). Hayes & Wheelwright (1984) used the process life cycle as the
dimension to categorize production in jumbled flow (job shop), disconnected line flow
(batch), connected line flow (assembly line) and continuous flow systems.

27

Kim & Lee (1993) included technical flexibility, i.e., the ability of a manufacturing system
to cope with changing circumstances (Gupta & Goyal, 1989; Gupta & Somers, 1992), as a
dimension to categorize production systems, which together with the technical complexity
yielded a matrix of four possible production system types, shown in Figure 15. The four types
are briefly explained below:

Intermittent production systems: These systems retain technologies that are
flexible in terms of production volume, product, expansion, machine, process,
and routing, but do not have the capability of continuous use of facilities. The
flow of the item being processed in such a production system is variable.
Typical intermittent production systems are traditional job shops and batch
processing systems (described briefly in Section 2.1.2).

Continuous production systems: These systems retain technologies that are
complex in terms of knowledge, automation, integration, and regulation, yet not
flexible. The nature of the demand on such production systems that produce
high-volume and standardized products results in continuous use of the
facilities. Also, the material flow may be continuous as with automobile
fabrication and assembly. The production process is integrated and makes use
of mechanization and automation to achieve standardization and low cost.
Typical systems in this class are assembly lines, transfer lines, and continuous
flow processes.

Concurrent production systems: These systems retain technologies that are
complex in terms of knowledge, automation, integration, and regulation, yet
have the capacity to produce small runs of different products. The advent of
computer-aided manufacturing (CAM) systems, flexible assembly lines and
FMS in general enabled the production of less standardized products, with
concurrent activities and shorter manufacturing processes.

Degenerate production systems: Systems that lack new process technologies,
capital investment, intense supervision of labor, research and development
activities, and the flexibility required to achieve low-cost production. A
degenerate production system corresponds to a technologically inferior
production system, non-competitive declining manufacturing system, and is
characterized as “anachronistic factory”.

28

1 S
_________ K ‘\\
LT { Concurrent "~
7 S 1 N,
e . Y \ production systems™
< / Intermittent ~, WP v ™
T i production systems s\
! \\\ CAM .
\ \\\‘ ™,
\ \
=2 \ Job shop NN FMS \
= \ AN N
o] \ v . \
2 \ VN Flexible %
\ N) \
k) N Batch | .. assemblyline
\, e —— . 1
L . LT T |
— ——— 7 NS !
IS T > 4 { SR .
Q ! IR / / NN
£ | Degenerate s, / d .
. SO TS.eL VoL ”
3 ' production systems . "=---—_ 4---""Assembly ™
L \ N v Transfer ™
\ . \ line R
\ N \ line \
; AN - \\ \ N
o) N Anachronistic NN \
| N \ 3 \
" factory NN Continuous \
\
\\ NN flow process \
~ \ AN :
~, \ ~, . 1
Ny i .. Continuous /
N I S .]
el)i <. production systems ,/
\‘~~~ ,r' \"~~_ -
Low High

Technical Complexity

Figure 15: Production systems typology based on technical flexibility and technical complexity (per
(Kim & Lee, 1993)).

According to IEC 61512-1 standard (IEC, 1997), also referred to as ANSI/ISA-88.01-1995
(ISA, 1995), industrial production processes can generally be classified as continuous,
discrete parts manufacturing or batch:

e Continuous processes: In this type of processes materials are passed in a continuous
flow through various processing equipment. Each piece of equipment typically
performs one dedicated processing function. Once established in a steady operating
state, the nature of the process is not dependent on the length of time of operations.
The product output appears in a continuous flow and measured in amount/time. Oil
refineries are typical examples for continuous production.

o Discrete parts manufacturing processes: In such processes, products are classified
into production lots that are based on common raw materials, production
requirements and production histories. In a discrete parts manufacturing process, a
specified quantity of product moves as a unit (group of parts) between workstations,
and each part maintains its unique identity. The product output is countable (in
pieces). Consumer electronics (e.g., mobile phones) are typical products of discrete
manufacturing processes.

e Batch processes: This type of processes leads to the production of finite quantities
of material (batches) by subjecting quantities of input materials to a defined order
of processing actions using one or more pieces of equipment. The product
produced by a batch process is called a batch. Batch processes are neither discrete

29

nor continuous; however, they have characteristics of both. The product output is
measurable (e.g., in kilograms or liters), but it is typically difficult to maintain batch
identity if common storage is used.

The word production has, in general, a broader meaning and covers all types of processes,
compared to manufacturing, which typically refers to discrete or batch processes (for
instance, the term “crude oil manufacturing” in a refinery plant, referring to a continuous
process, does not make much sense). Thus, as this research is mostly focused on discrete
parts or batch processes (as already mentioned in Section 1.5.2), the term manufacturing is
heavily used. Technologically speaking, the term manufacturing, as defined by Groover
(2010), refers to the application of physical and chemical processes to alter the geometry,
properties, and/or appearance of a given starting material to make parts or products; it also
includes assembly of multiple parts to make products. Manufacturing processes involve a
combination of machinery, tools, power, and labor, with the intention to add value onto
starting material. While the principle of transforming material in order to get (economic)
value out of it is still valid in the modern types of manufacturing, it is the combination of all
involved parts that is getting more complex and requires attention.

2.1.2 Manufacturing systems

The physical way manufacturing companies arrange their factory facilities and equipment is
called plant layout, while the way they organize them into logical groupings is called
manufacturing systems. Over the years, certain types of manufacturing systems have been
well-established as the most appropriate way to organize production for a given combination
of product variety and production quantity (Groover, 2010).

A job shop is a type of production facility that makes specialized and customized products in
the low-quantity range (1-100 units/year), e.g., ships, aircrafts or special machinery. When
the product is heavy and thus, hard to move, it typically stays in a single location during its
fabrication and assembly. Such a fixed-position layout is shown in Figure 16(a) . In practice,
the individual components are built at single locations in factories and brought together for
the final assembly. In case the facilities and equipment are arranged according to type or
function, the arrangement is called a process layout. An example is illustrated in Figure 16(b),
where parts that require a different processing or operation sequence are routed through
different departments in a particular order. It should be noted that the process layout should
not be confused with the process perspective that this research mainly considers. Any type
of plant layout involves processes. The product variety determines also the type of facilities
in the medium-quantity range (100 — 10,000 units/year). To deal with a wide product
variation, batch production is usually followed, in which the equipment is changed over
between the production of batches of products. This type of production is commonly used
for make-to-stock product delivery strategies (Olhager, 2003), in which items are
manufactured and stored as intermediate or finished products. In case the product variation
is limited, manufacturing systems are often configured as cells, consisting of several
workstations and machines, where each cell is specialized in the processing or assembly of a
given set of similar parts or products. The cellural layout is depicted in Figure 16(c) . Process
and cellural layouts are typical layouts in mass production as well (i.e., 10,000 to millions of
units/year). For products that their processing requires units and parts that are physically
moved through a sequence of equipment and workstations, product layouts, as shown in
Figure 16(d) , are the commonly arranged manufacturing systems. Car assembly lines are
familiar examples of a series of connected line of segments.

30

ﬂbﬁq}o . Production

Departments Work unit machines

Product \ W
~ / D |:_|§|;|§ D,I*@I Iml @i: I

@W':'\ 3 ps
= PP psle

of
|
E_
«;D
=D
A

S bl !
(@) (b)
Worker Workstation Equipment Conveyor

Fod 7. m A -0« O O ~Q

_ o
B o g
o NI I
Cell Cell Workers
(c) (d)

Figure 16: Various types of plant layout: (a) fixed-position layout, (b) process layout, (c) cellural
layout, and (d) product layout (Groover, 2010).

Apart from the product variety and production quantity, other aspects play a determining role
on the type of manufacturing systems. Low-cost production, enhanced product quality and
rapid responsiveness to changes are main goals of every manufacturing enterprise and in turn
its manufacturing systems (Koren, 2006). Cost-effective systems are the dedicated machining
systems (DMS) that produce one specific part type at high volumes and the required quality
(Mehrabi et al., 2000). They use transfer line technology (also referred to as dedicated
manufacturing lines — DML) with fixed automation and tooling, i.e., product-specific
machine tools (PSMT). DMS are driven by the economy of scale and are suitable for mass
production, but they do not respond to market needs for smaller quantities of differing
products. For such production cases, flexible manufacturing systems (FMS) have been
introduced. These systems consist of computer numerically controlled (CNC) machines, and
other fixed but programmable software to produce a variety of products on the same system.
FMS provide a general flexibility through the use of equipment with built-in high
functionality and shortened changeover times (el Maraghy, 2006). However, the equipment
is typically expensive, and the production-rate is very small due to the single-tool operation.
The category of systems that provide some flexibility at affordable costs and with acceptable
productivity is the reconfigurable manufacturing systems (RMS). As Abele et al. (2006)
classifies them (Figure 17), RMS lay between DMS and FMS with regards to productivity
and flexibility aspects. They are designed to quickly adjust production capacity and
functionality, within a part family (i.e., one or more part types with similar characteristics),
in response to changes in market demands (Koren, 2006). They consist of reconfigurable
machine tools (RMT) (Landers et al., 2001) which on a system level are linked into sequential
or parallel production lines. Through the ability to add, rearrange, replace and remove
components, RMS provide modularity and versatility of the machines.

31

productivity flexibility

Dedicatad B Flesibie

Manufﬁctunng' B \ i l. Manufacturing |
System L~ # = System
(DMS) 2 Reconfigurable | (FM3)

—_— Manufacturing System (RMS) ~——_
el g

system

Seabae | [Techeangy

o

Product . .’__; Flexible

SpacificMach:netl gl Machine Toal |
Toal (PSMT) j [w

stand-alone

Figure 17: Classification of traditional manufacturing systems (Abele et al., 2006).

Regardless the plant layout and the characteristics of production, the equipment and assets of
a manufacturing enterprise, which form its manufacturing systems, are usually organized in
a hierarchical way, where lower-level groupings are combined to form higher levels. The
IEC 62264-1 standard (IEC, 2013b) provides a reference model to describe such equipment
hierarchies with a common terminology. An enterprise is a collection of sites, which in turn
is a collection of areas. It is responsible to determine what products will be manufactured, at
which sites and in general how they will be manufactured. A site is a physical, geographical,
or logical grouping determined by the enterprise. An area is a physical, geographical, or
logical grouping within a site and may contain work centers. In turn, work centers contain
work units. That hierarchy is a role-based hierarchy, as the equipment model is defined in
terms of performed functions and activities (described in Section 2.1.3) that equipment
entities may perform. A physical hierarchy model can be then designed, including the specific
assets. Depending on the type of production (i.e., batch, continuous, discrete), the terms work
centers and work units get more specific. These types are shown in Figure 18. Thus, a work
center can be a process cell, a production unit, or a production line. A storage zone is
included to describe equipment for storage or movement. A work unit can be a unit, a work
cell or a storage unit.

32

ENTERPRISE
|
SITE
|
AREA

;" PROCESS PRODUCTION| | PRODUCTION STORAGE \‘; - WORK
CELL UNIT LINE ZONE CENTERS

’_::::::::#éé:n:t%:iazsz::::::::::::A:C:é%:té:iéé::::::::::::f\ié:éé%éi:nzsz::::::::::::#é:ozét:;%:;\
; T 1 T 1 X 1 1 L™ - WORK
/ WORK STORAGE ;
: ! UNITS
UNIT UNIT CELL UNIT

N J\ J J J

Equipment used Equipment used Equipmentused Equipment used

in batch in continuous in repetitive or for storage or
production production discrete production movement

Figure 18: Types of work centers and work units according to the role-based equipment hierarchy of
[EC62264-1 standards (IEC, 2013b).

2.1.3 Manufacturing operations management

Every manufacturing firm performs various production activities, together with enterprise
ones that any business entity performs. The integration and collaboration of these two broad
categories of functions, while crucial and beneficial, is often a challenge (Hausman et al.,
2002; O’Leary-Kelly & Flores, 2002; Tang, 2010b). A very important first step is to identify
and describe the boundaries between the enterprise domain and the manufacturing operations
and control domain (Chen 1, 2005). The IEC 62264 standard (IEC, 2013b), as already briefly
introduced in Section 1.5.2, provides reference models to define and categorize functions and
activities across those two domains, and to specify the information and data flow between
corresponding systems.

The standard provides a functional hierarchy to classify the various types of control in
manufacturing, as is shown in Figure 7. Manufacturing operations management (MOM),
labeled as Level 3, is concerned with activities of a facility (Area level and levels below per
the role-based hierarchy of Figure 18) that coordinates the personnel, equipment and material
in manufacturing. These involve both physical activities and digital activities performed by
information systems. Four categories of manufacturing operations are defined, each of which
consists of main functions:
e Production operations
o Production scheduling
o Production control
e Quality operations
o Quality assurance
e Inventory operations
o Product inventory control

33

o Material and energy control
e Maintenance operations
o Maintenance

Of course, every manufacturing enterprise performs other supporting functions within
manufacturing operations management, such as management of security or management of
documents, etc., which are not the main interest of this research.

Within production operations management, production control, as the main focus of the
current research, includes functions associated with manufacturing operations and control.
These typically are: controlling the manufacturing of products from raw materials according
to a production schedule, designs and standards, performing plant engineering activities,
generating performance reports, evaluating capacity constraints. Production control also
encompasses functions of process support engineering such as issuing requests for
modification or maintenance, coordinating maintenance and engineering functions, and
providing technical support to operators. It also includes operations planning functions such
as setting-up a short-term production plan according to a production schedule, checking the
schedule against equipment and personnel availability.

Regarding production scheduling, it is the level of detailing and time frame that make it part
of productions operations management. Determination of detailed production schedule (i.e.,
which resource shall handle which productions activities) in short-term (e.g., days, shifts,
hours, minutes), and refers to specific site and area is a Level 3 function. Broader scheduling
on orders level, which happens on monthly or weekly basis and on enterprise or site level, is
a Level 4 (enterprise level) function. Therefore, production scheduling functions are
considered as interfacing functions between enterprise and manufacturing operations.
Similarly, product inventory and material and energy control functions span over both
enterprise and manufacturing and control levels. Other enterprise functions are order
processing, procurement, product cost accounting, product shipping administration, market
and sales, research and development. The set of main functions for both Level 4 (enterprise)
and Level 3 (MOM) is illustrated (based on the Yourdon model notation (DeMarco, 1979))
in Figure 19. Data flows among these functions are also shown (omitting, at this point,
discussion on what these data flows represent). It should be noted that the categorization and
representation of functions do not reflect any organization structure. In other words, an
enterprise might structure their organizational activities and departments in a different way
than the operations clustering.

34

N
Product \

Cost ‘(-7
. 1N - RS
Accounting S ¢7 Product
R £ Shipping)

Enterprises._* -

Production
Scheduling

Product
Inventory
Control

Production
Control

O Functions relevant for MOM
level

(’ ~ =~ Functions in Enterprise level
«__." (outside MOM level)

Material
and Energy
Control

Data flows relevant for MOM
level

Data flows in Enterprise level
(outside MOM level)

]
Quality
Assurance

[Procurement
\

’
A TGRS

- \ Sales h

PP O ~ .

R&D and
\ Engineering 4
N ;

Figure 19: Simplified enterprise and control functions model (per IEC 62264-1 standard (IEC, 2013b)).

For each of the four main categories of MOM, an activity model is defined to further elaborate
the operations and their functions, and the data flow between them. A generic model consists
of the following activities (as collections of tasks): detailed scheduling, dispatching,
execution, resource management, definition management, tracking, data collection and
(performance) analysis. Specifying this for production operations management, the activity
model of Figure 20 is developed. The arrowheads represent information flow, both between
activities within Level 3 (MOM level) and between Level 3 and other levels. The IEC 62264-
1 standard distinguishes four main categories of information exchanged between Level 4 and
Level 3, namely definition information (i.e., what it takes to manufacture a product),
capability information (i.e., what resources are available), schedule information (i.e., what to
produce and use, and when to do so) and performance information (i.e., what was made and
used). These categories, specified for production operations, are also shown in Figure 20.

35

Product Production Production Production
definition capability schedule performance

Detailed
production
scheduling

Production
resource
management

Production
tracking

Production
Performance
analysis

Production
dispatching

Product
definition
managemen

Production
data
collection

Production
execution

Equipment and process
specific production rules

Operational
commands

Operational
responses

Equipment and process
specific data

Figure 20: Activity model of productions operations management (per IEC 62264-1 standard, (Chen
7, 2005)).

2.1.4 Manufacturing information systems

Various types of information systems have emerged to support the different functions and
activities of manufacturing enterprises. Romero & Vernadat (2016) distinguish six main
types of enterprise information systems (EIS): enterprise resource planning (ERP) systems,
supply chain management (SCM) systems, manufacturing execution systems (MES),
customer relationship management (CRM) systems, product lifecycle management (PLM)
systems and business intelligence (BI) systems. Except MES, the rest types support business
functions (enterprise domain) such as order processing, marketing and sales, product
specifications data management, accounting and finance, etc. Other systems encountered for
business functions support are the business process management systems (BPMS), which are
considered as more mature Workflow Management Systems (WfMS). Each of these types
specializes in particular functional areas, but all are considered to cover the Level 4 of the
IEC 62264 standard (to be clear, the standard does not explicitly define the functions of Level
4 but rather assumes all business functions, which are not covered by the other levels, to be
in that level).

In the control domain, the four main categories of operations (Figure 19), namely production,
quality, inventory and maintenance, are primary supported by manufacturing execution
systems (MES), quality management systems (QMS), warehouse management systems
(WMS) and computerized maintenance management systems (CMMS). These systems cover
Level 3 of IEC 62264 standard. On Level 2 of the standard, the most common control and

36

automation systems that handle the hardware of Level 1 (e.g., actuators, sensors, input/output
(I/O) devices) are: supervisory control and data acquisition (SCADA) system, programmable
logical controller (PLC), computer numerical controller (CNC), distributed control system
(DCS), batch automation system (BAS) and robot controller (Alexakos et al., 2006; Mehta
& Reddy, 2015; Nagorny et al., 2012).

Figure 21 places the typical information systems in manufacturing on the functional levels
of the IEC 62264 standard, as discussed above. This serves rather as an overview and not as
a robust classification, especially when the advancements in EIS make them cover more and
more functions. For instance, ERP systems have significantly expanded their scope over the
last decades (Kurbel, 2013; Nwankpa, 2015; Rerup Schlichter & Kraemmergaard, 2010;
Seethamraju, 2015). Rashid et al. (2002) consider them as software systems that integrate
business processes including planning, marketing, sales, accounting, human resource
management, e-business etc. Similarly, Monk & Wagner (2013) argue that ERP may support
many functional areas. Accordingly, advanced MES from large vendors might integrate
functionality of all types of operations. Moreover, as the boundaries between levels are not
distinct, there can be systems with cross-level functionality, such as the manufacturing
intelligence system proposed by Unver (2013) that contextualizes low-level shopfloor data
using production operation information from ERP systems. It should be noted also, that
typical BPMS cover Level 4 functions, while the current research investigates the exaptation
of a BPM system to cover Level 3 functions.

Level 4

HUMAN
RESOURCE
MANAGEMENT

HRM
system

BUSINESS
INTELLIGENCE

Bl
system

SUPPLY CHAIN
MANAGEMENT

SCM
system

PRODUCT
LIFECYCLE
MANAGEMENT

Business Planning
& Logistics

ACCOUNTING
& FINANCE
MARKETING & SALES
OTHER FUNCTIONS

Other IS

ENTERPRISE
RESOURCE PLANNING

ERP
system

system

CUSTOMER
RELATIONSHIP
MANAGEMENT

CRM
system

BUSINESS PROCESS
MANAGEMENT

BPMS

Level 3

MAINTENANCE
OPERATIONS
MANAGEMENT

CMMS

PRODUCTION
OPERATIONS
MANAGEMENT

MES

QUALITY
OPERATIONS
MANAGEMENT

QmMms

INVENTORY
OPERATIONS
MANAGEMENT

WHMS

Manufacturing
Operations
Management

Levels2 /1

Supervisory control

and automated SCADA ROBOT

control process

- system Controller
ensing and

manipulation

Figure 21: Typical information systems per functional control level and function areas.

MES, as the most dominant EIS for MOM, is worth further investigation. The Manufacturing
Enterprise Solutions Association (MESA'!7) defines MES as a system that “delivers
information that enables the optimization of production activities from order launch to
finished goods. Using current and accurate data, an MES guides, initiates, responds to and

17 https://mesa.org/
37

https://mesa.org/

reports on plant activities as they occur” (MESA, 1997). MESA, through a survey on major
actors of the market, gathered the following 11 functions of an MES (de Ugarte et al., 2009):

1.

Operations/Detail Scheduling: sequencing and timing activities for optimized plant
performance based on finite capacities of the resources.

. Process Management: directing the flow of work in the plant based on planned and

actual production activities. It should not be confused with the general business
process management approaches that this research applies, as here process
management covers only sequence of activities.

. Document Control: managing and distributing information on products, processes,

designs or orders, as well as gathering certification statements of work and
conditions.

Data Collection/Acquisition: monitoring, gathering and organizing data about the
processes, materials and operations from people, machines or controls.

Labor Management: tracking and directing the use of personnel during a shift based
on qualifications, work patterns and business needs.

. Quality Management: recording, tracking and analyzing product and process

characteristics against engineering ideals.

. Dispatching Production Units: giving the command to send materials or orders to

certain parts of the plant to begin a process or step.

Maintenance Management: planning and executing appropriate activities to keep
equipment and other capital assets in the plant performing to goal.

10.Product Tracking and Genealogy: monitoring the progress of units, batches or lots of

output to create a full history of the product.

11.Performance Analysis: comparing measured results in the plant with goals and

metrics set by the corporation, customers or regulatory bodies.

12.Resource Allocation and Status: guiding what people, machines, tools and materials

should do, and tracking what they are currently doing or have just done.

The 11 functions are shown in Figure 22, where MES is presented as a full MOM system
integrating shop floor data and ERP information, covering all four types of operations. Of
course, not every MES system (has to) cover(s) all 11 functions and depending on the needs,
extra focus is given on specific ones. Moreover, while the functions are still relevant in smart
manufacturing, MES (whose origin dates back to mid-1990s (de Ugarte et al., 2009) or even
in early 1980s (Kletti, 2007)) has to be adapted to Industry 4.0 concepts (Mantravadi &
Moller, 2019). For instance, Kannan et al. (2017) propose, through model-based requirement
modeling, a set of requirements for building an MES in automotive sector, compliant with

38

current industry standards. Though, an MES implementation according to those requirements
is not provided (and thus validating the requirements).

Production Scheduling
Orders .

Resource allocation

Resource Allocation - Machines / Labour
and Status Process - Tasks / Products
Management
Resource
Status
Performance Document
Analysis Control
< Process Status
Tracking Product Tracking Data Collection/
! Acquisition
& Genealogy cq Resource Status
Maintenance
Management
Produced Dispatching
Quantities Production Units

Figure 22: MES functionalities (de Ugarte et al., 2009).

2.1.5 Smart manufacturing

While the core concepts of manufacturing are still valid and applicable, the domain is going
through disruptive changes on various aspects, resulting in many of the current systems to be
obsolete or needing evolvement. On business aspects, there is a shift from traditional supply
chain models that focus on the efficiency on the production side to demand chain models that
put emphasis on the customer side. Manufacturers try to satisfy customers by providing
highly customized or mass-personalized products and offering shorter delivery times, which
requires of course operations flexibility (Thoben et al., 2017; Wang et al., 2017). Moreover,
in their efforts to decrease (or even avoid) intermediate stock and react on last-minute
changes due to dynamic market conditions, just-in-time (JIT) production models (Brox et al.,
2010) become more important (Hofmann & Riisch, 2017).

On technology aspects, manufacturing domain encounters growing developments and
application of digital technologies (Lu, 2017), such as cloud computing (Shawish & Salama,
2014), internet-of-things (IoT) (Atzori et al., 2010; Lu & Cecil, 2015), artificial intelligence,
big data. Devices and machines are equipped with a plethora of sensors that turn them into
intelligent, context-aware and even self-controlled nodes of production systems, often placed
in network setups. The coupling of digital systems to physical ones into cyber physical
systems, shifts automated manufacturing towards intelligent manufacturing (Thoben et al.,
2017). Moreover, advancements in robotics, such as collaborative robots (el Zaatari et al.,
2019) and augmented reality (Nee et al., 2012) change the landscape of production systems
for more agile manufacturing. The existing DMS are decaying in industries where highly
customization is needed (Koren, 2006) and is expected that customized products will be
manufactured by smart robotics acting in dynamic processes managed on cloud platforms
(Zhang et al., 2014). On the other hand, FMS have not been widely adopted and many of the
manufacturers that bought FMSs are not pleased with their performance (Koren, 2010).
Manufacturers have to reorganize their production facilities to include more modern types of
equipment and machinery.

39

The term smart manufacturing is used to characterize the current, new traits of manufacturing
in the ongoing fourth industrial revolution, both from business and technology perspectives
as briefly described above. Other terms widely encountered in literature to describe the
technological progress of manufacturing are intelligent manufacturing, IoT-enabled
manufacturing and cloud manufacturing. According to Zhong et al. (2017), intelligent
manufacturing is regarded as “a new manufacturing model based on intelligent science and
technology that greatly upgrades the design, production, management, and integration of the
whole life cycle of a typical product”. Thoben et al. (2017) stress the ability of manufacturing
systems to “self-regulate and/or self-control to manufacture the product within the design
specifications”. The main technology in intelligent manufacturing is artificial intelligence,
which enables production systems to adapt to market circumstances (Lu et al., 2016). The
term typically focuses on technological aspects and not on organizational ones (Thoben et
al., 2017). Thus, intelligent manufacturing is considered as a part of the broader smart
manufacturing term, as has already been shown in Figure 3. The terms IoT enabled
manufacturing and cloud manufacturing are heavily influenced by the underlying
technologies. IoT-enabled manufacturing is based on the principle of converting production
resources (devices, material and products) into smart manufacturing objects that have the
ability to sense, connect and interact with each other to execute production activities (Zhong
et al., 2017). In cloud manufacturing, cloud computing technology is applied. Wu et al.
(2013) define it as “a customer-centric manufacturing model that exploits on-demand access
to a shared collection of diversified and distributed manufacturing resources to form
temporary, reconfigurable production lines which enhance efficiency, reduce product
lifecycle costs, and allow for optimal resource loading in response to variable- demand
customer generated tasking”.

As the term smart manufacturing has a broader view, it is the one adopted in this research.
Nevertheless, regardless the term, the modern type of manufacturing possesses
characteristics and adheres to principles of the general Industry 4.0 developments, which are
discussed below. As the current research is motivated by how manufacturers can overcome
issues and adapt their traditional factories to embrace Industry 4.0 technologies, the concept
of smart factory is analyzed as well.

2.1.5.1 Industry 4.0

Driven by market pull requirements, such as product individualization on demand, flexibility
in product development, demand fluctuations, stricter regulations, and pushed by technology
developments, such as smart devices, versatile and collaborative robots, increasing
digitization, cloud computing (Ahuett-Garza & Kurfess, 2018; Lasi et al., 2014; Monostori,
2014), Industry 4.0 promises increased productivity, higher resources efficiency, flexibility
and labor cost reduction (Dalenogare et al., 2018; McKinsey Digital, 2015; Pereira &
Romero, 2017). Core components that realize such promises and goals are (Oztemel &
Gursev, 2020): cyber-physical systems, cloud systems, machine to machine (M2M)
communication, smart factories, augmented reality and simulation, (big) data mining,
internet of things, ERP and BI systems, and virtual manufacturing technologies. Other
fundamental features and concepts surrounding Industry 4.0 are self-
organization/decentralization, modularity, interoperability, real-time capability, corporate
social responsibility and sustainability (Carvalho et al., 2018; Lasi et al., 2014).

40

The term Industry 4.0, as one of the most used to describe the developments in the fourth
industrial revolution, especially in Europe, collectively refers to a wide range of concepts.
Lichtblau et al., (2015) nicely describe it as the “fusion of the physical and virtual worlds” —
with digitization as the merging mechanism of the smart factory and smart products from the
physical world with the smart operations and data-driven services from the virtual world —
but an holistic and unanimous definition is rather hard to give. Though, several frameworks
already exist to give structure in the broad Industry 4.0 term. A generally acceptable in the
manufacturing domain framework is the Reference Architectural Model for Industry 4.0
(RAMI 4.0), established in 2015 (DIN/DKE, 2016; Hankel & Rexroth, 2015). The reference
architecture describes all crucial elements of Industry 4.0 in a three-dimensional layer model,
to break down complex interrelations and classify relevant technologies. More specifically,
it relates layers, life cycle & value stream and hierarchy levels, illustrated by the three-
dimensional cube shown in Figure 23 and briefly described below.

Li *"Z
Ife A1
Cye rarclrgc 619

Layers S 62890 &Vamestrea ""36 4
e

Business

"‘““ancej

I / USage

Figure 23: Reference Architectural Model Industry (RAMI) 4.0 (Hankel & Rexroth, 2015).

e The layers dimension represents the information that is relevant to the role of an
asset. It covers the business-to-technology spectrum by relating different aspects of
a manufacturing asset to layers of the enterprise architecture.

e The life cycle & value stream dimension represents the lifetime of an asset and the
value-added process. This axis distinguishes between the type and instance of a
production system and its elements, for example the digital design of a product and
its (multiple) instantiation as a manufactured product.

o The hierarchy levels dimension is used to assign functional models to specific levels
of an enterprise. This axis uses aggregation to establish enterprise levels, ranging
from the connected world (i.e., networks of manufacturing organizations in their
eco-systems) via stations (manufacturing work cells) to devices and products. The
hierarchy levels dimension is related to the IEC62264-1 standard. The connected

41

world level is introduced above the enterprise level of the standard to emphasize the
importance of supply chain networks in Industry 4.0. Additionally, lower levels are
added to elaborate the control systems and equipment typically encountered in
modern factories.

A few other approaches structure the concepts of Industry 4.0. The Industrial Internet
Reference Architecture (IIRA), designed by the Industrial Internet Consortium, consists of
four viewpoints to support the design and implementation of an Industrial IoT (IIoT) system
(Lin et al., 2017). The Smart Manufacturing Ecosystem (Lu et al., 2016), developed by the
National Institute of Standards and Technology (NIST), provides a complete overview of
various lifecycles of smart manufacturing. The framework’s standardization mainly focuses
on ICT application systems and how information is exchanged among software applications,
omitting infrastructures concepts like IoT and cloud computing (Li et al., 2018). Fraile et al.
(2019) present and realize the Industrial Internet Integrated Reference Model (I3RM), which
integrates features of NIST smart manufacturing standards, IIRA, and RAMI 4.0 reference
models and architectural patterns, to facilitate the definition of the system architecture of
digital manufacturing platforms. The Internet of Things Architectural Reference Framework
(IoT-ARF), designed within the Internet of Things — Architecture (IoT-A) project (Bauer et
al., 2013), provides a functional overview of the various IoT components, as well as an
information, a communication, and a trust, security and privacy models. However, no clear
interaction among the components is proposed, as it is dependent on design decisions. The
Software-defined Industrial Internet of Things architecture (SD-IIoT) (Wan et al., 2016)
mainly provides clear communication protocols for data transmission from the physical layer
to cloud environments. The architecture, though, does not provide guidance to develop IoT
systems. The 8C architecture (Jiang, 2018) was proposed as an improved extension of the 5C
architecture (Lee et al., 2015) for CPS for smart factories. The 3 added facets improved the
emphasis on the horizontal integration, while 5C focuses mainly on the vertical integration.
An example of a developed CPS system is presented but without structured instructions.

Li et al. (2018) performed a comparative analysis of most of the reference architectures
mentioned above, including also others such as the Intelligent Manufacturing System
Architecture (IMSA) (DKE, 2015; MIIT & SAC, 2015), developed by the Ministry of
Industry and Information Technology of China (MIIT) and Standardization Administration
of China (SAC), and the Industrial Value Chain Reference Architecture (IVRA) (Industrial
Value Chain Initiative, 2016), developed by the Industrial Value Chain Initiative (IVI). They
concluded that the construction of the reference architectures is based on three main
principles; decomposition into multiple dimensions, focalization by focusing on specific
smart manufacturing aspects and concepts and excluding others, and strategic consistency by
embodying related national manufacturing strategies and initiatives, such as Industry 4.0.
Bader et al. (2019) provide a structured analysis of existing reference frameworks, their
classifications and the concerns they target. The work of Brouns (2019), not only positions
numerous reference architectures in the fourth industrial revolution area but also proposes an
integration framework for defining a roadmap towards smart manufacturing.

The current research adopts RAMI 4.0, as a widely adopted framework. Specific mapping of

the designed artefacts onto the architectural model of Figure 23 are discussed in the
corresponding sections.

42

2.1.5.2 Smart factory

The term smart factory has seen many definitions, as it is apparent from extensive literature
studies (Osterrieder et al., 2020; Strozzi et al., 2017). There are references for equipping the
machines with sensors to harness a “continuous stream of data” (Sjodin et al., 2018),
machine-to-machine communication in networked systems for self-organization of processes
and tasks (Tang et al., 2016), use of cloud systems for resources efficiency, use of
autonomous devices (e.g., AGVs) for little or no human intervention, etc. Thus, the smart
factory is a multi-aspected concept, similarly to the contexts of smart manufacturing and
Industry 4.0, where it belongs (Figure 3). Osterrieder et al. (2020) propose a research model
to approach the term from eight different pillars, listed in Table 3.

Table 3: Key pillars of the concept of "smart factory” (from research perspective) (Osterrieder et al.,

2020).

Key pillar

Content

Decision making

Activities around data-based decision-making in manufacturing using
different technologies, including visualization techniques, machine
learning and AI. All kind of decisions in manufacturing, for instance
design, scheduling, process planning and control are part of this research
stream.

Cyber-physical

Developing concepts, models for assistant systems for operators, self-

systems steering manufacturing systems and CPS, towards an autonomous running
factory.
Data handling Research activities deriving models and theories on how to exploit the

potential of data with a focus on data generation, acquisition, mining and
analysis. The objective is to provide data models towards a single source of
truth and intelligent data exchange models.

IT infrastructure

Discussion around the IT infrastructure of a factory to enable and foster a

(hardware & development towards a connected system. The field concerns with both

software) horizontal and vertical data integration, thus requiring an interdisciplinary
approach with the data handling field.

Digital Research on the transformational path of factories towards smart factories

transformation by including and focusing on the human perspective that comes along with

this revolution.

Human machine
interaction

Activities creating solutions for the co-automation, physical and digital
assistant systems. Beside technological developments, the human
perspective and role in autonomous smart factories is central within this
stream. This pillar is solidly connected to decision-making and CPS.

Internet-of-Things

Accounts for the connectivity of elements and sensor technologies to
increase transparency and traceability of (real-time) information about
products and process states.

Cloud manufacturing
and services

Split into a technology and business stream. The technology stream
discusses cloud manufacturing architectures models and theories. The
business stream highlights the business development perspective for smart
factories, such as new operating models enabled by the digitalisation of
factory capabilities.

A good way to describe what makes a factory smart, is to compare it to a traditional one.
Wang et al. (2016) summarize such a comparison, presented in Table 4.

43

Table 4: Technical features of smart factory compared with the traditional factory (Wang et al.,

2016).

Number Traditional production system | Smart factory production system

1 Limited and Predetermined | Diverse Resources. To produce multiple
Resources. To build a fixed line for | types of small-lot products, more resources of
mass production of a special product | different types should be able to coexist in the
type, the needed resources are | system.
carefully calculated, tailored, and
configured to minimize resource
redundancy.

2 Fixed Routing. The production line | Dynamic Routing. When switching between
is fixed unless manually | different types of products, the needed
reconfigured by people with system | resources and the route to link these resources
power down. should be reconfigured automatically

3 Shop Floor Control Network. The | Comprehensive Connections. The
field buses may be used to connect | machines, products, information systems, and
the controller with its slave stations. | people are connected and interact with each
But communication among | other through the high-speed network
machines is not necessary. infrastructure.

4 Separated Layer. The field devices | Deep Convergence. The smart factory
are separated from the wupper | operates in a networked environment where
information systems. the industrial wireless network and the cloud

integrate all the physical artifacts and
information systems to form the IoT and
services.

5 Independent Control. Every | Self-Organization. The control function
machine is preprogrammed to | distributes to multiple entities. These smart
perform the assigned functions. Any | entities negotiate with each other to organize
malfunction of single device will | themselves to cope with system dynamics.
break the full line.

6 Isolated Information. The machine | Big Data. The smart artifacts can produce
may record its own process | massive data, the high bandwidth network
information. But this information is | can transfer them, and the cloud can process
seldom used by others. the big data.

In a broad sense, a smart factory embraces and integrates the recent Industry 4.0 technological
advances in computer networks, data integration and analytics to bring transparency to
manufacturing units (Lee, 2015). While most of the definitions give a purely intra-
organizational concept, by considering a smart shop floor as the main realization of a smart
factory (often referred to as connected factory), it should be noted that the concept may span
beyond the boundaries of a manufacturing site or enterprise to embrace the extended supply
chain (Davis et al., 2012). As Radziwon et al. (2014) define, a smart factory is not only “a
manufacturing solution that provides flexible and adaptive production processes that will
solve problems arising on a production facility”, but also it could be seen as “a perspective
of collaboration between different industrial and nonindustrial partners, where the smartness
comes from forming a dynamic organization”.

As the current research mostly focuses on the complexity (on various levels as illustrated in
Figure 4) within factories, the term of smart factory is rather interpretated as a connected
shop floor. To further understand the transition to smart production environments, key
Industry 4.0 technologies have been explored (from various sources) and briefly listed below

44

(the three broad categories implicitly follow the IoT technology stack of Wortmann &

Fliichter (2015)):

e (Smart) Physical devices:

o

Robotics, such as multi-axial arms with customized and reconfigurable end
effectors (e.g., grippers) attached or collaborative robots (cobots) (Heyer,
2010; Pantano et al., 2021).

Automated guided vehicles (AGV), that transport material and products
around a factory, for unmanned logistics (Le-Anh & de Koster, 2006).
Sensors that can measure (by responding to stimuli and generating
processable outputs) physical data (e.g., temperature, vibration, light, etc.).
They are embedded/attached in machines, on equipment or even human
operators.

(Chipless) RFID tags (and their scanners) (Tedjini et al., 2010) that replace
the optical barcodes or the quick response (QR) codes as they have larger
data capacity, are adaptable and flexible in applications, are battery-less
and low-powered (and thus more sustainable).

Augmentation devices, like AR/VR glasses or head-mounted displays
(Fraga-Lamas et al., 2018), to support operators in their daily tasks (Khan
et al., 2011), which are getting more complex (Longo et al., 2017).
Augmented reality is also used for remote maintenance or support
(Palmarini et al., 2017).

Handheld, portable and wearable devices (Kadir & Broberg, 2020), e.g.,
smartwatches to provide information to the operator and allow for tracking
of manufacturing tasks performed by humans, or wristbands to capture
physiological signals such as heart rate, skin temperature and conduction,
for monitoring physical and mental health conditions.

Data gloves (Fang et al., 2015). While joysticks, dials, and buttons have
been commonly used as robot and machine input devices, data gloves
provide the most natural and humanlike motion to interact with a device.
3D printers for additive manufacturing (Mpofu et al., 2014; Ngo et al.,
2018; Shahrubudin et al., 2019), to create not only highly customized end
products, but also parts that are used in manufacturing processes, e.g., a
specific type of gripper to handle a new type of product.

(Inspection) Cameras, for object detection, image recognition or quality
inspection.

e Connectivity/Networking:

o

Wireless communication, with protocols such as WiFi, Bluetooth, ZigBee,
IPv6 over Low-power Wireless Personal Area Networks (6LoWPANS)
(Kushalnagar et al., 2007), that allow connection of various devices in
different network settings.

Industrial Internet of Things (IloT), that brings together industrial
internet (for real-time data availability and high reliability) and IoT (Sadiku
etal., 2017; Thoben et al., 2017; Zhong et al., 2017).

Cloud/Fog/Edge networks. The three available service models
Infrastructure as a Service (laaS), Platform as a Service (PaaS), Software
as a Service (SaaS) (Zissis & Lekkas, 2012) can be used in the
manufacturing domain as well (Xu, 2012). Depending on the industry

45

requirements/constraints (e.g., low latency), fog or edge computing is
preferred (or combined) over cloud solutions (Caiza et al., 2020; Carvalho
etal., 2019; Qi & Tao, 2019).

e Computing applications:
o Big data algorithms and analytics to support and optimize decision making

(Babiceanu & Seker, 2016; Lee et al., 2014; Ren et al., 2019).

o Artificial Intelligence (AI) for assisting in maintenance activities, in
image-based object recognition (Kim et al., 2021; Rai et al., 2021; Tran,
2021), in augmented reality tasks by users (Sahu et al., 2020), and other
data-intensive activities.

o Virtual computing, to enable concepts of virtual factory (Terkaj et al.,
2015), digital factory (Gregor et al., 2015), and digital twin (Cimino et al.,
2019; Tao et al., 2019), for simulation, testing and evaluation of physical
systems.

It is noteworthy to highlight that while most of the recent Industry 4.0 developments
encountered in production environments focus on making robotics and machines more
autonomous and intelligent, there are also ones that aim at supporting humans in their daily
tasks and improving their well-being at work, enabling the concept of “Operator 4.0 (Longo
et al., 2017; Romero et al., 2016).

2.1.6 Challenges and problems in smart manufacturing

Transforming into a smart factory is a challenging endeavor for manufacturers. The adoption
of Industry 4.0 advancements, while promising positive consequences, comes with collateral
effects and costs, as the higher the intelligence and automation in a factory, the higher the
complexity (Qin et al., 2016; Sjodin et al., 2018). Complexity, scoped either to parts,
products, systems, or system of systems (Mourtzis et al., 2019), should not be confused with
complicatedness. As Elmaraghy et al. (2012) distinguish in their spectrum of process
complexity (ranging from simple to chaotic systems), “a complicated system could refer to a
system having many parts, making it somewhat harder to understand, perhaps by virtue of
its size, whereas complex refers to a system containing uncertainty during the development
process or intrinsically in its design, the outcome not being fully predictable or controlled”.
Thus, complexity exists where is uncertainty, which together with variability, are concepts
embedded in the fundamental nature of manufacturing (Hon, 2005). Especially in the smart
manufacturing era, where the plethora of new technologies and concepts might cause a lack
of common understanding (Sjodin et al., 2018), product variety is rather the norm, and
distributed global markets increase volatility (Mourtzis et al., 2018), manufacturing systems
are getting more and more complex.

In research literature, the concept of complexity is reviewed from three perspectives
(Elmaraghy et al., 2012): (i) complexity of engineering design and the product development
process, (i) complexity of manufacturing processes and systems, and (iii) complexity of the
global supply chain and managing the entire business, as well as their intersections. As the
current research rather focuses on how the manufacturing operations are being transformed
towards realization of the smart factory concept, the second perspective is taken. That means
that the focus is not on how to design a complex product (first perspective), but how the

46

processes and systems are organized to produce it. Also, as the focus is on the operations
within the boundaries of a factory (as mentioned in Section 2.1.5.2), the broader scope of the
global supply chain (third perspective) is not considered. Though, as these perspectives have
intersecting scopes, references from the two excluded perspectives are taken into account as
well (for example, how a market event can affect a running manufacturing process).

This section discusses identified causes in literature that lead to the general complexity issue
in manufacturing operations (see Problem statement in Section 1.3). Tackling complexity in
engineering is achieved with the use of methods and tools to transform the problem from
complex to manageable and controlled (Elmaraghy et al., 2012). Thus, the general problem
is decomposed into smaller problems, by grouping relevant causes together, which will then
allow for better design and implementation of solutions. Four general problems have been
identified, namely complex production scenarios, rise of exceptions, resource under-
utilization and integration complexity, which have been summarized in Section 1.3 and
illustrated in Figure 4. While the resource under-utilization problem has been covered in
Erasmus (2019), and thus not further discussed here, the rest problems are investigated below.

Of course, the following problems are not the only ones faced by enterprises which strive to
enter smart manufacturing, but it is the specific angle of the identified problem under research
that puts the focus on those. General challenges and barriers have been extensively studied
(Horvath & Szabo, 2019; Moeuf et al., 2017; Raj et al., 2020), where aspects such as lack of
(financial and infrastructure) resources, organizational resistance to change, cyber-security
risks, or lack of digital skills are proved to be hindering the adoption of Industry 4.0
technologies and concepts, especially by SMEs (Devos et al., 2014; Mittal et al., 2018;
Schroeder, 2016; Stentoft et al., 2019).

2.1.6.1 Complex production scenarios

In recent years, the demand for customized and personalized products, together with the
fierce competition among manufacturers in global markets, has increased the product variety
offerings. When the products are complicated, like a truck or an aircraft, the variety is
distinguished in various levels. EIMaraghy (2009) provides a product variety hierarchy in
automotive industry, consisting of eight levels: 1) part features, ii) parts/components, iii) parts
family, iv) product modules or sub-assemblies, v) products, vi) products families, vii)
products platform, and viii) products portfolios. With hundreds, or thousands, or even
millions'® of parts for a single product, the combinations can get extremely high. For
example, the number of possible vehicle variations in the BMW 7 series alone could reach
10'7 (Hu et al., 2008), while the Dutch truck manufacturer DAF Trucks (see Figure 2 for their
online configurator) claims that each truck is unique'®. Inevitably, product variety results in
production variety (Johansson et al., 2016) and complexity, as it takes hundreds of
manufacturing and assembly steps to produce all the variants (ElMaraghy et al., 2013).
Considering, also, that most products nowadays incorporate not only mechanical and
electrical components but also software and human-machine interfaces (HMI), the
complexity of production operations is increased (EIMaraghy et al., 2013).

18 https://edition.cnn.com/travel/article/airbus-a380-parts-together/index.html
19 https://www.daf.com/en/news-and-media/news-articles/global/2021/q3/daf-trucks-flanders-
3000000-axles-in-50-years

47

https://edition.cnn.com/travel/article/airbus-a380-parts-together/index.html
https://www.daf.com/en/news-and-media/news-articles/global/2021/q3/daf-trucks-flanders-3000000-axles-in-50-years
https://www.daf.com/en/news-and-media/news-articles/global/2021/q3/daf-trucks-flanders-3000000-axles-in-50-years

High product customization and personalization depends on the point of customer
involvement (Duray et al., 2000), also referred to as customer decoupling point (Rudberg &
Wikner, 2004) or order penetration point (Olhager, 2003). Customer can be injected in any
of the four main stages of the production cycle, i.e., design, fabrication, assembly and
distribution, with pure customization (or personalization) happening when the customer is
involved at the design of product specifications (Lampel & Mintzberg, 1996). This decision
determines accordingly the engineering strategies. The most established ones are the
build/make-to-stock (BTS/MTS), assemble-to-order (ATO), make-to-order (MTO),
engineer-to-order (ETO) or design-to-order (DTO) (Mahdavi & Olsen, 2017). In high-
customization environments, enterprises employ upstream decoupling points, i.e., involve the
customer as early as possible, and thus MTO or DTO are the preferred strategies (Um et al.,
2017). This is typically related with low volumes and high mix production, which requires
frequent and rapid changes in activities and use of machinery and equipment.

Achieving lean manufacturing in “high mix — low volume” environments is a complex and
still under research topic (Tomasevic¢ et al., 2021). The recent Industry 4.0 technologies can
enable manufacturing and assembly systems to switch fast between variants of parts and
products (Johansen et al., 2021). Collaborative robots are employed in (final) assembly to
assist humans (Karaulova et al., 2019). There are various levels of corporation between a
human worker and a robot (Bauer et al., 2016), as shown in Figure 24. The different
interaction styles, though, require adaptation of current working styles. Similarly, the
introduction of an AGV to assist with transportation tasks might result not only in
restructuring of the physical layout (e.g., by building navigation paths), but also the sequence
of activities. Considering also safety requirements to prevent hazards for humans, the
production operations increase the level of complexity, with extra parameters and unexpected
events that have to be taken into account (Gualtieri et al., 2020).

Cell Coexistence Synchronized Cooperation Collaboration

o A

Figure 24: Human-robot collaboration levels (Bauer et al., 2016).

2.1.6.2 Rise of exceptions

Manufacturing products, processes and production systems are being challenged by evolving
forces, including high demand turbulence, introduction of new regulations, pressure on costs,
demand for shorter delivery times and (increasing number of) new technologies (Tolio et al.,
2010). These forces create complex dynamics in the domain, as illustrated in Figure 25. The
dynamicity and volatility, arising either within an organization, or endogenous and

48

exogenous to its corresponding supply chain (Nitsche & Straube, 2020), often generate
unplanned events, i.e., exceptions, that disturb the manufacturing processes and require quick
actions (Block et al., 2018).

xte""a’ Driving F°fce
s

E

Figure 25: Complex dynamics in manufacturing (Tolio et al., 2010).

Involving customers, e.g., through ETO or DTO strategies, might result in change of
requirements that have to be reflected in production systems. An order alteration or
cancellation while the product is under processing will impose re-arrangement of activities
and resources. Similarly, late supply deliveries might result in re-scheduling of production to
avoid waste of time or even trigger production in another facility where the stock is available.
It is crucial then that such deviations from the normal flows are captured and transferred as
soon as possible to the involved systems.

Within the boundaries of the factory, uncertainties manifest themselves in the form of
equipment breakdowns or malfunctions, tasks rejects and reworks, labor absenteeism and
turnovers, material mishandling, etc. (Sawhney, 2006). With the use of various new
technologies, some of them still not on mature level, the exceptions are likely to be more
frequent. While fully automated devices can have self-recovery mechanisms, systems that
still keep humans in the loop need to provide the right and in understandable way information
for any manual corrective actions (Gorecky et al., 2014). Especially in production scenarios
with high degree of variety and configurations, current manufacturing systems are rigid and
static, as each error might require different handling (Keddis et al., 2016). Moreover, in
distributed and decentralized systems, error handling requires well defined actions, as more
than one resources might have to be restarted (Farooqui et al., 2016).

2.1.6.3 Integration complexity

Manufacturing involves a lot of functions and activities, including fabrication, assembly,
packaging, sales, maintenance, quality control, IT support and more, performed by various

49

stakeholders such as producers, suppliers, logistics experts, system integrators, operators, etc.
The functions, grouped in various levels as shown in Figure 7, are supported by
corresponding information systems, as shown in Figure 21. Integration of systems, especially
across functional levels is a challenge. Unver (2013) talks about disconnection between
enterprise and shop floor systems. Lanza et al. (2019) and Orzes et al. (2020) have discovered
data silos in manufacturing systems and applications. Scenarios of reacting on external
triggers (like the ones mentioned in Section 2.1.6.2) are hard to address if, for instance, ERP
and MES systems are not well integrated. Respectively, shop floor data are not efficiently
exploited if they are not propagated to enterprise systems for better decisions. Considering,
also, the introduction of new technologies, the integration is getting more challenging. As
Frank et al. (2019) summarize in their categorization of Industry 4.0 technologies, shown in
Figure 26, the higher the automation and flexibilization desired, the higher the complexity
level to integrate and implement the technologies that promise those desires.

Smart) Stage 1 Stage 2 Stage 3
IfINg| Vertical integration Energy Traceability A i Virtualizati Flexibilization

Automatic
MES nonconformities ’T‘
identification maintenance

2 SCADA Energy Traceability of ——— Virtual Flexible
E‘ improving final products commissioning lines
]
c
‘g Sensors + Energy Traceability of M2M Al ducti Additive
L actuators + PLCs monitering raw materials communication OFiprasiiction manufacturing
s
£ Smart
E Products Passive Smart Products Active Smart Products Autonomus Smart Products
(connectivity, monitoring and control capabilities) (optimization bilities) (i bilities)
Smart
Working Remote monitoring et eration Augmented &
& Collaborative robots P Virtual reallity
Smart -))
Supply-Chain Digital platforms with other companies’ units gloll :;‘I :‘m”;’s i D"’Rai_f: :y’::r: with >
Base 3 3 3
Technologies [Cloud] [Internet of Things] [Big Data][Analytics]

»
>

Complexity level of implementation of Industry 4.0 technologies
Figure 26. Increasing complexity of implementation of Industry 4.0 technologies (Frank et al., 2019).

The lack of integration of technology platforms is a challenge for adopting Industry 4.0
initiatives (Luthra & Mangla, 2018), but CPS can facilitate such integration (Wang et al.,
2015). However, a CPS is inherently a complex system as its elements are heterogeneous
technologies of various forms (as the ones introduced in Section 2.1.5.2) (Napoleone et al.,
2020). Moreover, as many companies start the journey towards smart manufacturing in an
incremental way by building solutions on top of legacy systems and not from a greenfield
landscape (Tabim et al., 2021), the technologies heterogeneity challenge is greater towards
achieving the vertical and horizontal integration that the new paradigm requires.

Seamless integration of technologies, systems and the operations those support is also
hindered by the fact that smart factory technologies are applied in a piecemeal approach,
resulting in isolated, fragmented and uncoordinated operations from a broader perspective
(Strozzi et al., 2017). Deploying smart solutions on separate production lines might result in

50

local process improvements, but the full potential is not being leveraged across all production
lines or the entire factory for end-to-end process management (Schuh et al., 2020).

2.1.7 Approaches to face challenges and problems in smart manufacturing

The operations complexity problem in the new manufacturing era is multi-dimensional and
broad. Various paradigms have been proposed and applied in response to the challenges
discussed in Section 2.1.6. Recent developments are discussed in this section to discover the
state of the art in manufacturing operations management.

2.1.71 Model-driven paradigm

The model-driven (MD) paradigm orientates towards the use of models to facilitate the
specification of a system, its parts, its structure and behavior. MD as a prefix (often referred
to as model-based) is an umbrella term to indicate approaches like MD engineering (MDE),
MD development (MDD), MD architecture (MDA), MD software engineering (MDSE).
MDE (Schmidt, 2006) is rather a software engineering approach that considers models not
just as documentation artefacts, but also central artefacts, from which software systems can
be created and automatically executed (Rodrigues Da Silva, 2015). MDE still faces great
challenges and adoption barriers. Bucchiarone et al. (2020) classifie the challenges on
foundation, domain, tool and implementation, social and community levels, while
Mussbacher et al. (2014) stresses the lack of (industrial) evidence of benefits and
consequently its limited widespread adoption in industry. However, as the paradigm allows
coping with the complexity of reality by abstracting the relevant aspects of a system or an
application into corresponding models (Bucchiarone et al., 2020), its principles and methods
are useful in building solutions for smart manufacturing.

Jeschke et al. (2017) consider the concept of digital factory as a comprehensive model of the
real factory that can be used for communication, simulation and optimization during its life
cycle. Combined with PLM models in a network of digital models, the physical world of
products and their production are represented in an IIoT setting. Cadavid et al. (2015) apply
MDE techniques to conceive the concept of smart factory with the following six
characteristics: i) use of specialized model libraries for manufacturing processes, ii) a specific
architectural framework composed of a dedicated architecture viewpoint description, iii)
automated and context-aware generation of user interfaces, iv) tailoring of manufacturing
processes, V) traceability management and vi) model-based simulation. Similarly, Pérez et
al. (2015) see MDE as a fitting approach for building cyber-physical production systems
(CPPS) as it, with respect to methods and techniques, offers: i) separation of concerns through
domain modeling, promoting system descriptions from different points of view, ii) domain
model mappings through model-to-model transformations, supporting consistency analysis
and iii) automatic generation of configuration files and code through model-to-text
transformations. Moreover, VjeStica et al. (2021) use modeling for representation of
production processes, while Calvary et al. (2014) discusse the interaction between human-
computer interface (HCI) engineering and MDE to build and transform more efficient user
interface (UI) models.

2.1.7.2 Event-driven process management

Event-driven approaches are the response to the need for reaction on changing situations,
through immediate identification of events and their correlation. Be it business and market
events, or low-level machines and sensors data, organizations have to catch and integrate

51

them, refine them into useful information and make timely decisions (preferably in an
automated way). The paradigm has been widely adopted in various industries, like for
example in transportations and logistics, where real-time information (e.g., a strike or bad
weather conditions) can be used to adjust the planning of freight transportation (Baumgrafl
etal., 2016).

In smart manufacturing, the plethora of events and the enabling technology, make the
paradigm a good fit to address the challenges of responsiveness and situational awareness.
Yao et al. (2018) propose a radio-frequency identification (RFID) event-driven integrated
production planning and control framework to address the growing need for rapid
responsiveness to customers’ orders (in MTO production environment). Theorin et al. (2017)
present an event-driven manufacturing information system architecture, in a service-oriented
architecture (SOA) fashion, to enable flexible factory integration and data utilization. It offers
control of both low-level applications and aggregation of higher-level information, such as
key performance indicators (KPIs).

Event-driven approaches are often combined with the BPM paradigm, aiming at providing
support on operational level. Krumeich et al. (2014) discusse the application of complex
event processing (CEP) in the context of BPM. An event-driven business process
management approach, resulting in operational transparency, builds the foundation for (near)
real-time reactions. Similarly, Estruch & Heredia Alvaro (2012) introduce event-driven
manufacturing process management by combining BPM with CEP to model the logic of
complex events in manufacturing processes.

2.1.7.3 Agents-based manufacturing

Towards distributed, intelligent and autonomous systems, agent technology is a promising
paradigm. The term agent refers to an entity that is capable to take action continuously and
autonomously to meet its design objectives, in dynamic environments where often other
entities and processes exist (Adeyeri et al., 2015). The term holon is also used to denote an
autonomous and cooperative building block of a system, which consists of an information
processing part (software component) and a physical processing part (hardware component)
(Colombo et al., 2006). The premise of the paradigm is that since each agent has
computational and decision-making capabilities, agent-based (or multi-agents) systems will
react faster in changes (Mafik & McFarlane, 2005).

Agent-based systems have already been applied in manufacturing (Leitdo, 2009; Monostori
et al., 2006). Most of the approaches are focused on production scheduling optimization
(Rolon & Martinez, 2012) or self-organizing manufacturing systems (Barbosa et al., 2015;
Park & Tran, 2012; Schild & Bussmann, 2007). These approaches typically require
homogenous manufacturing systems, occupied by robots that can negotiate with each other.
Alternatively, these approaches opt for software deployment only, where the physical agents
are represented by software agents who negotiate a course of action. The course of action is
then translated to a production schedule, which is deployed by a different production control
information system.

Giving a process-oriented perspective in the communication of agents, subject-oriented
business process management (S-BPM) (Fleischmann et al., 2015) has been proposed for
smart manufacturing (Kannengiesser et al., 2015). While practical demonstrations and
evaluations have been performed (Neubauer & Stary, 2016), the uptake of the approach is

52

rather limited despite the promises, possibly due to the lack of interest of the used modeling
notation.

2.1.7.4 BPM approaches

BPM, as a successful paradigm in various domains, has already seen interest in (smart)
manufacturing (Castro & Teixeira, 2021; Janiesch et al., 2017) with positive effects (Gazova
et al., 2022). There are efforts focusing both on the modeling and the execution support of
manufacturing processes. For instance, Abouzid & Saidi (2019), Prades et al. (2013) and Zor
etal. (2010, 2011) have used and extended BPMN, the de-facto standard for business process
modeling (Chinosi & Trombetta, 2012; Decker & Barros, 2008). Similarly, Meyer et al.
(2013, 2015) and Petrasch & Hentschke (2016) focus on modeling IoT-aware processes. All
of these approaches though, do not provide execution support.

Schonig et al. (2020) provide an integrated approach that exploits IoT on top of BPM
concepts. The focus is on (mobile) task assistance and decision support systems, without
though discussion on resource allocation, exception handling or process monitoring. A more
complete application of BPM in smart manufacturing has been provided by Pauker et al.
(2018), with tools to design manufacturing processes and a process engine to enact those.
However, aspects such as safety or situational awareness are not considered.

2.2 Practical cases

Having ensured scientific rigor by studying the literature for the current state-of-the art of the
aspects of manufacturing that this research deals with, practical relevance (in accordance to
the DSR framework of Figure 13) is ensured by examining practical cases in real
environments in manufacturing industry. These cases are in the context of three research and
innovation European projects, namely HORSE, EIT OEDIPUS and SHOP4CF, in which the
author of this thesis has been actively involved. The projects are briefly introduced in Section
2.2.1, while the subsequent three sub sections present the practical cases (the cases presented
in this thesis have been selected as representative examples for analysis and application
scenarios, out of a substantial set of cases, summarized in Appendix B).

The scenarios of the practical cases are presented with the following two purposes:
1. To validate the problems identified from scientific literature, as discussed in
Section 2.1.6.

2. To serve as testbed to realize and evaluate the artefacts of this research in real-
world operational environments, as discussed in Chapter 7.

2.2.1 Involved EU projects

A brief introduction of the three EU projects is given below.

53

2.2.1.1 HORSE

HORSE? was a Research and Innovation Project in the EU Horizon 2020 program, running
from 2015 to 2020, as a collaboration of fifteen organizations across Europe, among which
academic and applied research institutions technology providers and manufacturing
enterprises. The goal of the project was to make a significant advancement in the industrial
use of smart manufacturing by developing an integrated framework (Grefen & Boultadakis,
2021) that extends and unifies several state-of-the-art technologies, including smart robotics,
business process management technology, as well as the development of software technology
components to implement this framework in practice. The project focused on SMEs, as these
enterprises face the greatest challenges in the adoption of smart manufacturing technology.
Also, it focused on the discrete manufacturing domain, i.e., on companies that manufacture
individual or batches of individual products, as this domain faces the most pressure from the
mass customization and personalization trends. Apart from initial three factories, which
served as pilots, seven more experiments managed to integrate and use the system in their
industrial environments (Traganos et al., 2021).

2.2.1.2 EIT OEDIPUS

OEDIPUS?! (Operate European Digital Industry with Products and Services) was a research
and innovation program funded by the European Institute of Technology under its EIT Digital
overall program. OEDIPUS covered several use cases between 2017 and 2019. Within these,
the author of this thesis was involved in the Print 4.0 use case, which focused on the
application of flexible end-to-end process orchestration of manufacturing processes in smart
printing factories (Traganos et al., 2020).

2.2.1.3 SHOP4CF

SHOP4CF?? (Smart Human Oriented Platform for Connected Factories) is an EU-funded
project within the eighth framework program Horizon 2020, running from 2020 to 2023.
SHOPA4CF aims to create a unique infrastructure for the convenient deployment of human-
centric industrial applications. In the project, twenty partners develop a comprehensive
software platform containing a wide range of components that cover a broad spectrum of
industrial requirements, especially in the context of flexible and data-rich manufacturing.
SHOPACEF aims to find the right balance between cost-effective automation of repetitive tasks
and involve the human workers in areas such as adaptability, creativity and agility where they
create the greatest added value. In doing so, the project pursues a highly connected factory
model to reap the benefits of all data generated within a factory.

20 http://www.horse-project.eu/ - The full title of the project is “Smart Integrated Robotics System for
SMEs Controlled by Internet of Things based on Dynamic Manufacturing Processes”, but a shorter
name of the project was chosen for pragmatic reasons, referring to the analogy between a robot in
modern manufacturing and a horse in old times.

2! https://www.eitdigital.eu/innovation-factory/digital-industry/oedipus/ - Operate European Digital
Industry with Products and Services; OEDIPUS Fact Sheet; EIT Digital: Brussels, Belgium, 2017.

22 https://shop4cf.eu/

54

http://www.horse-project.eu/
https://www.eitdigital.eu/innovation-factory/digital-industry/oedipus/
https://shop4cf.eu/

2.2.2 Thomas Regout International (TRI)

Thomas Regout International?® (TRI), a pilot partner in the HORSE project, is a Dutch
manufacturer, based in Maastricht, the Netherlands, specialized in the design and production
of customized telescopic slides (examples shown in Figure 27). The telescopic slides provide
horizontal and vertical movement, e.g., those used in drawers and cabinets to protrude and
extract, with several industrial equipment applications including heavy machinery,
automotive and acrospace. Although a typical slide consists out of only five parts (three metal
profiles and two ball-bearing cages), the high customization of these parts results in
approximately 900 product variations.

Figure 27: TRI's telescopic slides and vertical balance systems.

TRI, with its high-quality products and short delivery times of customized, small batches, is
a global leader in their market. However, the company faces problems in their production
and they aim to transition into smart manufacturing to keep and enhance its competitive
advantages.

2.2.2.1 Production layout
TRI can be classified as a small batch producer (Woodward, 1965), with its factory

considered as a reconfigurable manufacturing system. The high-level production process,
visualized in Figure 28, involves three main production phases in respective production areas:

e Cold forming of steel coil into profiles, stamping and welding (P1).
e Surface treatment of the steel profiles (P2).
e Final assembly of slides (profiles and ball-bearings) (P3).

Additionally, a tool preparation production area precedes P1, for assembling tools for the
cutting, stamping and bending operations.

23 https://www.thomasregout-telescopicslides.com/home

55

https://www.thomasregout-telescopicslides.com/home

P1 P2 P3 P
Q n[> Cold forming l[:> Surface treatment ||E> Final Assembly l[:> Shlpplng

Figure 28: High-level production process at TRI, consisting of three main production phases.

P1 shapes coils of steel sheets into the main three or four profile types. It consists of the
following steps:

Load steel coil into the machine.

Cut the steel coil into profiles lengths.

Stamp holes and bend lips according to product and production requirements.
Bend lips according to assembly requirements.

Deburr the profiles to remove unwanted material.

Approximately 60% of profiles are processed on an automated production line, called
Profistans, consisting of a computer-operated crane for switching between coils and a series
of hydraulic presses. The remaining 40% of profiles are either too small or large for the
automated line, thus necessitating manual execution at three human-operated production
lines, specialized for different product dimensions.

P2 improves the corrosions resistance of the profiles through electro-galvanic zinc plating. It
consists of the following steps:

Load profiles on racks.

Automatic transportation of racks to galvanic process.
Electro-galvanic zinc plating of profiles (on the racks).
Automatic transportation of racks to unloading position.
e Unload profiles from the rack.

Loading and unloading profiles on/from racks are currently performed completely manually
by operators, a rather heavy-loaded task. Automated (un)loading is difficulty with current
machinery as the profiles are hooked on through small holes.

P3 assembles the prepared steel profiles and ball-bearings into the finished telescopic slides.
It consists of the following steps:

e Assembly of telescopic slides (final product).
e Quality control of final product.
e Packaging for warehousing and distribution.

Three production lines perform the final assembly in P3. A fully automated assembly line,
consisting of eight robots, assembles about 60% of the production volume. However, the

56

parts are loaded into and unloaded from this line by human operators. A semi-automated
assembly line handles at about 35% of the volume. A series of specialized work cells
compose a manually assembly line for the remaining 5% of the production volume.

Lastly, three storage zones are also located in the factory, two as buffers between P1-P2 and
P2-P3, and one warehouse zone. Figure 29 shows the physical hierarchy of TRI, with the
blue-highlighted work cells to indicate the focus of the application scenarios within HORSE
project.

Enterprise
TRI

Site N
Maastricht
NL
‘ f I I 1 1 1
Production
Area Tool
preparat.

Cold Buffer Surface Buffer
forming P1/P2 treatment P2/P3
T T T

Assembly Warehouse

e ———] ——
\ 1 ‘ ‘ \
Production 2 parallel X 3 manual 4 parallel Autom. Semi-auto. Manual
Line Profistans : ;
lines lines lines assembly assembly assembly
[—— I I
f T ! T 1
s | I 1 1 I 1 I e |
i Single tool Tool set Profile ' Glavanisati
Cell
assembly assembly Cutting Stamping Bending Deburring e Ioadlng & on

Figure 29: Physical hierarchy of TRI, according to IEC62264-1 standard, with the three blue-
highlighted work cells as the focus of the application scenarios within HORSE project.

2.2.2.2 Manufacturing process

The operations in tool preparation phase and the three main production phases are described
with BPMN, as a high-level process model, shown in Figure 30. Each of the four phases has
been modeled as separate process (swim pools). This respects the physical separation, but
from a functional perspective it indicates whether the phases are well-connected or not.
Indeed, while a production order has to go through all the phases in a sequential way, in the
current situation there is no automated production flow. Semi-finished products from P1 are
temporarily stored in a buffer zone, until retrieved for further processing in P2.

57

Transport tool
setto P1

Single tool
assembly

=

assembly for
production order;

Cs
&] Select Tool set
Order
Production orders
available

Tool preparation

Flow of tools to
PI

Tools assembled

Standard cold
forming

Additonal steps.

No addiional
operation needed

&Producnon

preparation for
P1

Production area 1

Taakkaart
received

)

Special product
cold forming

forming

‘ Additional cold .

Place profles in Transportto P2

bin H storage

N

Place in P2
storage

Pl co:me«e

P2 production

&Ich bin(s) and

position for
loading

P2 loading

Galvanisation
n

P2 unloading

jE=

P2 Sarted

Place in P3
storage

Transportto P3
storage

Production area 2

P2 process
will be started
manually for

each order, to | current

Informs operator
which bin for the
production order

accountfor

P2 conplete

Auto assembly

G

Transportto
warehouse

Place products
in warehouse
storage

Semi-auto
assembly

Retrieve from
P3 storage

P3 started

Production area 3

Manual
assembly

] co:nvle1ed

Figure 30: TRI current production process, with a tool preparation phase and three main production
phases, modelled as high-level BPMN processes.The bue-highlighted subprocesses are the main focus

of Industry 4.0 interventions.

2.2.2.3 Support systems

Figure 31gives an overview of the support systems of the production, in accordance to Figure
21. A cross-functional ERP system (Microsoft Dynamics) processes customer orders and
manage company resources. It also generates production orders, whose scheduling is
performed by a proprietary production planning system. The latter generates work
instructions, printed on paper and moving along the production areas.

TRI has a achieved a good level of automation at the physical level (in disparate control
fashion though), but not the same at a system support level, as can be seen at the overview
with the disconnection of Levels 3 and 2. Instead, it solely relies on verbal communication
among personnel and the printed instructions that can be easily lost around the factory.

58

Level 4

Business Planning

& Logistics
Level3 | el l
Bespoke - ™ < Manual

Manufacturing rodSction / Printedwork 2 formati Y
Operations pro \ instructions / | information H

\. / y .]
Management planning system . % \. gathering
tevel2 b

~Observation and™,
verbal i

. .)
‘\commumca‘uon//

Supervisory control
and automated P1 Profistans PLC P2 crane PLC
control process

P3 automated
assembly line PLC

Level 1/0

Sensing and

manipulation Overhead crane Multiple assembly
Physical robots
devices

Figure 31: Overview of hardware, sofiware and human support of production at TRI, positioned across
the functional hierachy levels of IEC62264-1 standard.

2.2.2.4 Identified problems

The type of production and the way production is organized at TRI raise issues at operations
level from various aspects.

Operating in high mix-low-volume environments requires frequent changes of machines and
tools to manufacture the different product types. This is takes time and is error prone.
Unplanned down time is relatively high. While this can be attributed to many causes, as
illustrated with the fishbone diagram of Figure 32, it results in under-utilization of resources.

Maintenance Human Method

Prolonged
8 Profiles checked
Tool breakdown Insufficient training measurements <&——— by morethan 1
operators
Wrong Measurement
Flawed maintenance ~———
measurements error

Unplanned
downtime too
high

Incorrect order

. . Incorrect profiles
information

on 1 iteration

Electrical/mechanical

—— .
malfunction

Too many iterations

Tools absence
to determine —_—,
position of tools

Figure 32: Identified causes of high unplanned downtimes, presented as an Ishikawa (fishbone)
diagram.

59

At P1, every different type of product requires different tools to be produced. The high
product variety makes infeasible to have the tools readily available. Instead, tools are
assembled on demand from modular parts. Tool assembly is a precise and complex task
performed by experienced operators. The heavy reliance on experts, not only can increase
the costs (and consequently the product price) but also causes problems in production from
a time perspective. When tool experts are not available, P1 is delayed.

At P2, the heavy tasks of loading and unloading profiles on racks place a lot of physical stress
on human operators. While challenging, both technically and financially, a robotic solution
should be found to alleviate operators.

The automated hanging of profiles on racks for galvanization is also hindered by the way
profiles are organized between P1 and P2. Profiles are dumped unstructured in a crate and
placed in buffer zone. The operator has to manually lift them and place them in order for the
next operation, a repetitive and tedious task.

The disconnected production and storage areas does not allow for continuous production
flow. Apart from any physical limitations, this is also caused by a missing process
management information system to provide control and overview of operations. Activities
are organized through verbal communication and printed instructions. Without digitalization
of work instructions, there is no transparent vertical integration across control levels.

While recognizing the challenges of automating some of its human knowledge and skill
dependent operations, TRI aims to transform into a smart factory. Through innovative robotic
solutions and a process orchestration system, the company hopes to address the identified
problems.

2.2.2.5 Intervention scenario(s)

TRI identified three scenarios for intervention, which are discussed in this section to
demonstrate the intended use of process management to support production operations. The
current way of operating and the desired changes of each scenario are discussed individually
in the following three sub-sections.

2.2.2.5.1 Single tool assembly

Tool assembly is performed by a few highly skilled and experienced employees. It takes up
to two years of on-the-job training to reach the base level of tool assembly competence.
Unavailability of experts causes delays, while incorrect tools can cause loss of production,
rework and eventually extra costs. The process is linear and fully manual. Operators select
one of the available printed productions orders, which requires a set of tools to be assembled.
They, then, assemble each single tool one-by-one, as shown in the top process model of
Figure 30. The single tool assembly subprocess is shown in Figure 33.

60

Not
acceptable
Tool

a °
ﬁ_p &] quality Place
etch tooling Acceptable| ssembled
Fe":h '°°"”9 parts from mﬁ:ﬂ;’mik Check > X »| block on cart
storage and scan
) barcode

Figure 33: Single tool assembly process at TRI (current), with the blue-highlighted activities as the
main focus of Industry 4.0 interventions.

g-assembly

Tool engineer

TRI_PO_Toolin

The process will undergo the following three changes through the introduction of modern
technologies:

1. The task “fetch tooling parts from storage” will be performed by a mobile robot,
with a robotic arm mounted on it, such that the assembly process does not need to
be interrupted and less errors are made.

2. The task “assemble tooling block” will be supported by augmented reality, guiding
inexperienced operators through the steps of tool assembly.

3. Introduction of process management technology to orchestrate the activities of the
human and robot.

2.2.2.5.2 Profile stacking
Intermediate products after P1 and P2 areas are placed into containers for transportation to
storage zones before the next production area. The three-steps process is shown in Figure 34.

fzﬁwkrfwr:gf:e Transport bin to Place bin in
storage zone,
output and place using a forklif storage
in bin
Cold forming Bin placed in

complete storage

Figure 34. Profile stacking and transportation process at TRI (current).

The process will undergo the following two transformative changes:

1. The task “pick profiles from machine and place in bin” will be performed by two
robots. The first will pick up the profiles and place them on a conveyor belt, then
the second will pick up the profiles form the conveyor belt and place them, in an
orderly fashion, in the bin.

2. The remaining two tasks (transport bin to storage zone and place bin in storage) will
be performed by an autonomous guided vehicle that is specifically designed to
transport bins.

2.2.2.5.3 Loading and unloading of profiles

Profiles are hooked onto racks, the racks then are moved through galvanization baths, and
upon exiting from there, they are emptied by unloading the profiles onto bins. The scenario
is split into two process models the automated galvanization process decouples them both
from a physical and time perspective. Also, the loading and unloading is performed rather
ad-hoc based on the available spots on the racks. Figure 35 shows the loading process. All
tasks are completely manual except the last task performed automatically by the crane.

61

Day schedule ':' :“ Taskcard

Signal to release
Place bin at Prepare for P2 Pick up handM Hang profiles Rackful | Check rackand the order to Crane moves
desginated lower cages filled rack to
loading of profiles one byone surface
station over profiles baths
P2 loading started treatment P2 loading

conplete

Open space on
Binis prowded bythe Operamr rack
team leader, based on deades which
the daily schedule order to mount

Figure 35: Loading of profiles onto racks for galvanization treatment at P2 phase at TRI (current).

Figure 36 shows the unloading process. All tasks are manual except the first one.

Profiles left on

Place handful of
profiles in the
bin

Pick up a
handful of
profiles

No defects

Rackis empty

Overhead crane Visual
moves rack Lit cages inspection of
back to work cell treated profiles
Galvinisation
completed

Nonconformances
detected

P2 conpleted

Remove
nonconforming
profiles and

place in
rejection bin

Figure 36: Unloading of profiles from racks after galvanization treatment at P2 phase at TRI (current).

Both processes will undergo similar changes:
1. A conveyor belt is introduced, on which a robotic arm will place the orderly stacked
profiles from the bin (from the second scenario).
2. A second robot picks a set of profiles from the conveyor belt and hooks it onto the
rack.
3. Opposite tasks will be performed for the unloading part.

2.2.3 Canon Production Printing (CPP)

Canon Production Printing?* (CPP) (formerly known as Océ), a partner in the EIT OEDIPUS
project, is a global leader in consumer and professional imaging. They provide technologies,
products and services for their main markets in printing, with customers ranging from local
creative studios to global blue-chip multinationals. In digital media printing (e.g., books,
brochures, magazines), they offer industrial printers, like the ones shown in Figure 37.

24 https://cpp.canon/
62

https://cpp.canon/

Figure 37: CPP industrial printers (a) monochrome production printer for light and mid production
VarioPrint 1407, (b) high-volume colour inkjet sheetfed press VarioPrint i300%°, (c) continuous feed
inkjet press ColorStream 3000Z%.

Production activities in a print shop include, apart from the printing by the printers, media
(e.g., paper) loading and unloading, material binding, transportation of (semi-)finished
products, etc. The volume of production, the variety of products requested, and the number
of equipment can cause complexity and inefficiency in production printing. In response to
customer demands for facilities and operations optimization, 24x7 production printing, and
less human errors, CPP aims to realize the concept of factorization of printing, where all
activities on a shop floor will be fully automated. This of course requires not only
introduction of robotic solutions (e.g., robotic grippers or transportation AGVs) but also
system support for process orchestration.

2.23.1 Production layout

A print shop, like the one shown in Figure 38, is not a typical manufacturing environment,
and as such, it cannot easily be structured according to the physical hierarchy of IEC62264-
1 standard. The notion of production lines and work cells does not really apply. Every print
shop organizes its facilities according to the equipment they possess and the physical layout
of their shop. Equipment can be organized based on the type of printers (e.g., arrange all
monochrome printers in the same area) or based on the sequence of production activities. In
the latter case, the layout can resemble a production line. Also, there are usually storage zones
to keep (semi-finished) products.

25 https://cpp.canon/products/varioprint-140-series/
26 https://cpp.canon/products/varioprint-i-series/
27 https://cpp.canon/products/colorstream-3000z/

63

https://cpp.canon/products/varioprint-140-series/
https://cpp.canon/products/varioprint-i-series/
https://cpp.canon/products/colorstream-3000z/

Figure 38: An example of a print shop, with different types of printers, storage places, and moving
carts?s.

Apart from printers, other typical machinery used in production printing are forklifts or
trolleys to move media, binding machines to bind together a printed cover and a bookblock,
and cutting machines (guillotines) to trim the printed media in the correct size. Examples of
the last two types of machines, called finishing machines, are shown in Figure 39.

28 Courtesy of https://www.bookmobile.com/book-production/bookmobile-thirty-three-years-old-st-
patricks-day-origin-story/, used under fair use policy.

64

https://www.bookmobile.com/book-production/bookmobile-thirty-three-years-old-st-patricks-day-origin-story/
https://www.bookmobile.com/book-production/bookmobile-thirty-three-years-old-st-patricks-day-origin-story/

(a) (b)

Figure 39: Examples of finishing machines at a print shop (a) binding machine®, (b) cutting machine
(guillotine)*".

2.2.3.2 Production process

The media print production flow comprises three main stages (Kipphan, 2001); the prepress
stage (e.g., pre-flight, vector conversion, imposition, trapping), the press stage (the actual
printing), and the postpress stage (e.g., binding, stapling, trimming), summarized in Figure
40.

r
L}
L}
I
L}
1
S 1 S
1
i
8 Printed g
5 Clist etc. pages g
= i Aok Pre- *| Printing ™| Postpress/ £
S a%?gﬁgr press | ____,| process | ____.| Finishing e
g pu Data Data Data Data £
= A @
£ T Film, plate, etc. Paper, ink, etc. T Material, etc. S

Production flow

Storage

Consumables

Figure 40: Production, material and data flows in the main phases of print media production
((Kipphan, 2001)).

29 Courtesy of https://www.printingnews.com/print-finishing-mailing/postpress-finishing-

equipment/product/10012709/standard-finishing-systems-standard-horizon-bq270c-singleclamp-
perfect-binder, used under fair use policy.

30 Courtesy of https://brainrack.co/recognise-ideal-6660-guillotine-easily/, used under fair use policy.

65

https://www.printingnews.com/print-finishing-mailing/postpress-finishing-equipment/product/10012709/standard-finishing-systems-standard-horizon-bq270c-singleclamp-perfect-binder
https://www.printingnews.com/print-finishing-mailing/postpress-finishing-equipment/product/10012709/standard-finishing-systems-standard-horizon-bq270c-singleclamp-perfect-binder
https://www.printingnews.com/print-finishing-mailing/postpress-finishing-equipment/product/10012709/standard-finishing-systems-standard-horizon-bq270c-singleclamp-perfect-binder
https://brainrack.co/recognise-ideal-6660-guillotine-easily/

Modeling an end-to-end process for a print media order in BPMN results in Figure 41. The
process is modelled in a layered approach, with every individual process model referring to
a main activity. Order requirements are first checked whether the facilities are capable of
producing it. Planning involves the determination of the production path. The model
considers the example of a book to be printed, thus parallel printing activities are initiated,
one for the cover, one for the bookblock. Merging the two printed semi-products requires
some finishing activities and then the order is ready for warehousing and distribution.

Order handling

N[Orders defvered

Order-to-Delivery Printing Process

Production Pack &
process. Ship Order Deliver Order
|] Ordor handed

Order Handling Process

rod
o
H

Proer . =)
o 4 Unioad paper farsporto
i Foed § from HCS Finisher
0 e o [Tamgor

Bookblock Printing Process

Print in CS)

Figure 41: End-to-end process of a printing order, modelled in layered BPMN processes.

While the actual printing is performed in a fully automated way by the printers, manual
activities are required by human operators. These include loading the right material to the
right printer, unloading printed media into storage units, checking errors raised by printers
(not modelled in Figure 41 for simplicity reasons), etc.

2.2.3.3 Support systems

The process automation among standard equipment encountered in a print shop has been
enabled by the standardization of the exchanged data. The International Cooperation for the
Integration of Processes in Prepress, Press and Postpress Organization (CIP43!), defined the

31 https://www.cip4.org/

66

https://www.cip4.org/

XML-based Job Definition Format (JDF) open standard32. JDF uses the term (print) job to
describe the output that is desired by a customer. A job details both the resources/components
(devices and their software) and the processes required to produce a final or intermediate
product. The communication among the resources is done via the Job Messaging Format
(JMF) protocol (also defined in the JDF standard), enabling their integration. With JDF,
printing firms can also exchange production information with their enterprise information
systems (EIS), such as Management Information Systems (MIS), Production Management
System (PMS) or Manufacturing Planning and Control (MPC) system. These are typically
used for administrative functions, order handling, resource planning, etc. That integration is
made even easier with the newest XJDF (Exchange Job Definition Format) standard**, which
is a simplified version of JDF and is designed to be a pure information interchange interface.
These standards though, do not actually execute the specified activities. Software
applications that enact the JDF production paths are required.

Apart from using the JDF standards for defining workflows, other approaches have been
developed, such as by using the Petri net notation (Gottumukkala & Sun, 2005). That
approach provides both modeling and assessment, through simulation, of production
processes, but no execution support in terms of coordination and allocation of tasks.

The benefits of the workflow automation are not scoped only to production, but are expanded
to, and even beyond, pre- and post-production stages, where customers are also involved.
Print on demand (PoD) concepts are realized with workflow and process management
applications (Glykas, 2004; Zhu & Li, 2012). A workflow management system has also been
introduced in Wang & Su (2011). Similarly, Wang et al. (2018) propose workflow
technology, based on BPM, in printing and publishing industry.

2.2.3.4 Identified problems

Various issues have been identified in the current way of operations at various levels.

At operational level, the media loading and unloading onto/from are broadly performed by
human operators. The recent years, examples of robots performing these tasks have already
been introduced®**, but the issue is broader than the physical motion of loading/unloading.
The routing of printing jobs and orders is a knowledge intensive process. At the input side of
a printer, operators keep track of the job queues of the various printers, and the different types
of media which are required to print these jobs. Based on the schedule, they create mental
“shopping lists” in their mind of what media to collect from the media store and to what
printer they should bring it, at what moment in time (preferably just in time for a print job to
start). Similarly, output from multiple printers needs to be collected and brought together at
a post-processing machine, in order to be combined in a finished application product. (e.g.,
bookblock and cover need to come together at a binder). Every application has its own

32 https://www.cip4.org/files/cip4/documents/JDF%20Specification%201.7%20www.pdf

33 https://www.cip4.org/files/cip4/documents/XJDF%20Specification%202.1.pdf

34
https://staticl.squarespace.com/static/576137c607eaa0ea7778f49b/t/5937d5{fb3db2b9774275691/149
6831490450/Co-working+robots.pdf

35 https://printbusiness.co.uk/news/Robots-are-coming-to-a-print-plant-near-you/106315

67

https://www.cip4.org/files/cip4/documents/JDF%20Specification%201.7%20www.pdf
https://www.cip4.org/files/cip4/documents/XJDF%20Specification%202.1.pdf
https://static1.squarespace.com/static/576137c607eaa0ea7778f49b/t/5937d5ffb3db2b977427569f/1496831490450/Co-working+robots.pdf
https://static1.squarespace.com/static/576137c607eaa0ea7778f49b/t/5937d5ffb3db2b977427569f/1496831490450/Co-working+robots.pdf
https://printbusiness.co.uk/news/Robots-are-coming-to-a-print-plant-near-you/106315

(unique) route but as it is not viable to transport each of them independently (to avoid
excessive walking), transportation is often done in large batches. Because the different parts
of a job are often not printed at exactly the same time, some parts need to be stored in a work-
in-progress (WIP) place, waiting to be collected when the rest of the job has also been printed.
Figure 42 illustrates the coordination of post-pressing transportation, currently performed by
operators.

Obviously, this way of working causes physical and mental stress on operators.
Consequently, more errors might appear (e.g., wrong media in a printer) or delays due to
missing media on time, resulting in inefficient production.

WIP stock

2 = S
@N

Printers

T
o]

°] 7]
o] Lo
.

T'

C
SN)

Figure 42: Current post-pressing flow, with human operators to coordinate the transportation of semi-
finished products to work-in-progress (WIP) stock and finishing machines (source: OEDIPUS project’s
material).

At a physical level, handling media and products for long time is a tedious task. Forklifts are
used but in many cases the activities are performed completely by hand, in non-ergonomic
postures, as shown in Figure 43.

68

Figure 43: Unloading paper from printers, either completely by hand, or assisted with a forklifi
(source: OEDIPUS project’s material).

At systems support level, while all the standards and workflow applications mentioned in
Section 2.2.3.3 have enabled the production process automation, an end-to-end process-
oriented coordination is often disregarded. Moreover, there are still activities, especially in
the post-press stage — where the physical aspect is very relevant —, for which integration and
orchestration of non-standard resources for printing environments (e.g., AGVs, robotic arms)
is required and not yet matured. A process management system is missing to provide control
among heterogeneous resources and a broad overview of operations.

2.2.3.5 Intervention scenario(s)

Within EIT OEDIPUS project, CPP has defined two intervention scenarios, towards realizing
the factorization of printing. Both refer to the post-pressing operations and are individually
discussed in the following two subsections.

2.2.3.5.1 Automated paper unloading by a fixed cobotic arm

The paper unloading from a printer, currently performed by operators, will be performed by
a collaborative robotic (cobotic) arm with a special gripper to grasp the paper. Figure 44
shows the design of the special gripper.

Figure 44: Design of a cobotic manipulator arm with a special designed gripper to unload paper from
printers (source. OEDIPUS project’s material).

The vision is that the cobotic arm will unload the paper from the printer and deposit it directly
on an AGV, which in turn will navigate to the next post processing machine, as illustrated in
Figure 45. With a sufficient number of AGVs, no WIP will be needed.

69

Printers

B Cm

b
5
~
5

%5, 5%

Figure 45: Future scenario for automated post-pressing transportation of semi-finished products, with

Post processing

fixed robotic arms to preform the unloading onto AGVs (source: OEDIPUS project’s material).

The scenario requires orchestration of heterogenous actors by a process management system.
That system shall be able to communicate with both the printer (to receive signals that paper
has been printed) and the cobotic arm (to start the unloading).

For experimental and demonstrations purposes, the scope of this scenario is limited to one
printer. A WIP place will be placed next to the printer, so the cobotic arm can deposit the
paper in case no AGV is there yet. The scope is illustrated in Figure 46. Note that since the

robotic arms is of collaborative technology, no safety zones are needed.

70

Figure 46: Illustration of the scope of the first intervention scenario (source: OEDIPUS project’s
material).

2.2.3.5.2 Automated collection of printer output by a mobile robot

The second intervention scenario extends the scope of the first by involving more printing
equipment and replacing the fixed cobotic arm with a mobile robot. The mobile robot consists
of an AGV with a cobotic arm mounted on it (with the same gripper as in the first scenario).

As more printers are included, AGVs can hop from one printer to the other, to collect output
from the same printing job or to provide the requested material in the next device. A WIP
place might be needed to cover excessive production volume. In that case, it should also be
connected to the orchestration system so robotics know exactly on which shelves to deposit
or pick parts. The vision is illustrated in Figure 47.

Post processing
JIE

Connected
o 14-- 4= R e
7/
/

~]

o - R
/ /,/* \@"
El @//

;'///

Figure 47: Future scenario for automated post-pressing transportation of semi-finished products, with
mobile robots (AGVs with mounted robotic arms) (source: OEDIPUS project’s material).

T'

T‘

71

2.2.4 Robert Bosch Espaiia Fabrica Madrid (BOS)

Robert Bosch Espafia Fabrica Madrid?® (abbreviated as BOS in this thesis), a pilot partner in
the SHOP4CF project, is the Automotive Electronics division factory in Madrid. In this
location, peripheral acceleration and pressure sensors (PAS, PPS) for impact detection (e.g.,
on airbags) and ultrasonic parking assistance sensors (USS) are produced, shown in Figure
48, with approximately 64 million sensors manufactured yearly*’.

e A 19

Figure 48: BOSCH automotive sensors: (a) peripheral pressure sensor (PPS) for side impact
detection®®, (b) peripheral acceleration sensor (PAS) for impact detection®, (c) ultrasonic sensor
(USS) for parking assistance?’.

BOS has fully automated production lines for the automotive sensors. However, their
utilization is not 24/7, but depends on the orders and the type of products that are required.
As the utilization rate of these lines is random, it is difficult to schedule dedicated resources
for performing activities. As a result, resources are asked sporadically to perform operations,
while their main responsibility is other tasks. Moreover, some of these tasks are repetitive
and not ergonomic (e.g., loading material onto machines). Thus, BOS aims at better resource
utilization and reducing labour effort with the introduction of mobile robotics, in safe
collaborative workspaces.

2.2.4.1 Production layout

Figure 49 structures the physical organogram of BOS, according to IEC62264-1 standard
(see Figure 18). BOS participates in SHOP4CF project with two use cases, one addressing
transportation and assembly issues at Printed Circuit Board (PCB) and Electronic Control

36 https://www.grupo-bosch.es/en/our-company/bosch-in-spain/madrid-plant/

37 Numbers in year 2011 according to https://www.grupo-bosch.es/en/our-company/bosch-in-
spain/madrid-plant/

38 https://www.bosch-mobility-solutions.com/en/solutions/sensors/peripheral-pressure-sensor/

39 https://www.bosch-mobility-solutions.com/en/solutions/sensors/peripheral-acceleration-sensor/
40 https://www.bosch-mobility-solutions.com/en/solutions/sensors/ultrasonic-sensor/

72

https://www.grupo-bosch.es/en/our-company/bosch-in-spain/madrid-plant/
https://www.grupo-bosch.es/en/our-company/bosch-in-spain/madrid-plant/
https://www.grupo-bosch.es/en/our-company/bosch-in-spain/madrid-plant/
https://www.bosch-mobility-solutions.com/en/solutions/sensors/peripheral-pressure-sensor/
https://www.bosch-mobility-solutions.com/en/solutions/sensors/peripheral-acceleration-sensor/
https://www.bosch-mobility-solutions.com/en/solutions/sensors/ultrasonic-sensor/

Unit (ECU) production areas, and one at Sensors production area and more specifically at
PPS area. The latter use case is the focus of the current research.

Enterprise
BOS
I
. [|
Site Madrid
adrid, .
SPAIN Other sites
|
| r | |
Production
Area PCB ECU Sensors Machinery
I
I I]
PAS area PPS area USS area
I
I [|
PPS1 PPS2 PPS3
I
I i
Production
Line L2 L5
I I
| |
Work ‘ ‘
Cell 1s2 155

Figure 49: Physical hierarchy of BOS, according to IEC62264-1 standard, with the blue-highlighted
work cells as the focus of the one of the two application scenarios within SHOP4CF project.

PPS3 involves production of the latest generation (3rd) of the peripheral pressure sensors
(PPS). These sensors are installed in the door cavity, providing fast and robust side impact
detection. The sensor continuously measures atmospheric pressure and detects any changes
resulting from a deformation of the door. In comparison to central sensors, the peripheral
pressure sensor makes it significantly easier to distinguish between an actual impact and
harmless impulses. By means of continuous pressure distribution within the door interior, the
entire door acts as a sensory element*!.

Two similar production lines (labelled as L2 and L5) in PPS3 are under concern of this
research. Upon manufacturing of the sensors, they are automatically transferred on a
conveyor belt to the last station of each line, which is a packaging station, as visualized in
Figure 50.

41 https://www.bosch-mobility-solutions.com/en/solutions/sensors/peripheral-pressure-sensor/

73

https://www.bosch-mobility-solutions.com/en/solutions/sensors/peripheral-pressure-sensor/

Figure 50: Digital representation of part of the production area, with two loading stations at two
similar production lines*.

The packaging task is performed by a fully automated industrial robot, which places the
sensors into protective blisters (trays). The robot works in a closed, squared station. On the
one side of the station, empty blisters are supplied onto palletizers. Two towers of maximum
12 blisters each can be placed onto the palletizers. The inner (i.e., closer to the robot) tower
is automatically fed to the robot (one blister at a time). When the first tower is “consumed”,
the second tower is automatically shifted closed to the robot (so ready to be fed). A PLC
sensor recognizes then that no second tower exist, so it raises a signal for more blisters. On
the other side of the station, blisters are coming out one by one, filled with the sensors (the
third side of the station is the conveyor belt that brings the produced sensors. The fourth side
is closed).

As there produced several types of sensors, a number of different blister types are used, as
the ones shown in Figure 51. The blisters are available in wagons, close to the packaging
station (a material provider takes care to bring empty blisters in the wagons).

Figure 51: Types of blisters to package the produced sensors for damage-fiee transportation®.

2.2.4.2 Manufacturing process

In the current situation, a human operator is responsible for providing the required blisters to
the packaging station. He is also responsible to put the filled blisters into cartons, ready to be
transported in warehousing. However, the operator is primarily involved in the other

4 Courtesy of JVERNES — https://www.irt-jules-verne.fi/en/, used under fair use policy.
43 Courtesy of BOS pilot, used under fair use policy.

74

https://www.irt-jules-verne.fr/en/

activities in the PPS production area, thus the loading task (mainly) introduces disruption to
his work. Moreover, as he might be busy in other tasks when the robot requires blisters, then
the packaging task is paused, causing delays.

The current packaging process is described in BPMN, shown in Figure 52. Note that the
arrow from the signal start event to the first task does not advance the process automatically.
When the PLC system of a loading station raises a signal for empty tray on its palletizer, the
task for the operator is not triggered automatically, as in the as-is situation there is no system
to inform him. There is a light beacon to physically notify the operator, who in any case has
to observe manually that loading is required. An independent process for provisioning empty
trays into the wagons is modelled as well. This, also, is not an automated trigger as there is
no sensor for identifying empty wagons, but instead the material provider has to take care of
supplying in due time.

Automated robot

Signal from performs the
BOSCHPLC placing of
2 systems sensors onto the
S .
x

: trays. %
vs - ill the empty
trays with
sensors

Loading station -
needs feeding

Operator has to
observe that the
loading station
needs empty
trays.

PPS3 Packaging process

S :

o ;

5 ;

g h

é’eed empty Package the
trays of type filled trays into a ’
${tray_type} at carton.
LS ${LS} = Packaging
completed

2 Manually
3 observed (no
o
= sensor)
>3 .
g3
2l s : =
=N Supply wagon
i) % with empty trays
2|2
8 ‘Wagon empty Wagon full
o
o

Figure 52: BOS current packaging process of PPS sensors, modelled in BPMN.

2.2.43 Support systems

PPS3 is a fully automated production area with a lot of industrial machinery and equipment,
controlled by their respective PLC systems. An MES system takes care of the automation
and scheduling. For privacy reasons, BOS could not share more information on the type of
systems they use.

75

2.2.4.4 Identified problems

Due to the random production of sensors, resources are underutilized. While this might not
be an issue regarding the packaging robot (as it halts its motion when there are no available
sensors or blisters), it is problematic for human operators. They have several work cells under
their responsibility and during their shift they walk around the production lines to ensure that
they operate normally, taking corrective actions when needed. Loading empty blisters onto
the packaging stations disrupts their main tasks. Furthermore, the task can cause fatigue as it
is repetitive and not ergonomic (as they might have to bend to pick up empty blisters and
load them onto the stations).

Delays on loading packaging stations with empty blisters cost time and money. Accurate
planning is not feasible to avoid any delays, due to the random occurrence of activities. A
fully automated solution is necessary. However, the strict cycle times have to be respected.

2.2.4.5 Intervention scenario(s)

The current packaging process of PPS sensors will be enhanced with the introduction of an
AGYV with a robotic arm mounted on it, to be shared across multiple lines. The mobile robot
will be responsible to pick up empty trays from the wagons and load them onto the palletizer
of the loading stations. It will serve both loading stations. The human operator will be called
to load blisters onto a station only when the mobile robot is busy loading onto the other
station. He can also assist in case the mobile robot raises an error (e.g., low battery).

The optimization in resource utilization upon introduction of the mobile robot requires a
process management system to orchestrate the activities and allocate the right tasks to the
right resource at the right time.

The solution will relieve operators from repetitive tasks and allowing them to focus on their

main responsibilities on other work cells. Moreover, the resource optimization will increase
productivity and reduce costs.

2.3 Design requirements

This section summarizes the problems and challenges in smart manufacturing, as identified
both in literature and practice, with the purpose of eliciting requirements for the design of
solutions. Upon design, realization, and demonstration of the solutions, the requirements are
referenced again during evaluation (Chapter 7), to verify that the proposed solutions satisfy
them.

The general problem of complexity in manufacturing operations in the current era is
decomposed into three different perspectives. Demand chain models in “high mix-low
volume” production environments, together with the increasing technology push for modern
manufacturing, result in complex production scenarios (Section 2.1.6.1). For instance, the
high customization of products and the variability in production routes at CPP (Section 2.2.3)
pose difficulties on the automation of operations with the current practices. Dynamic markets,
with high demand uncertainty, and introduction of promising, yet immature technologies
have given rise to disturbances in normal production operations (Section 2.1.6.2). The case
of TRI (Section 2.2.2), with high production and equipment variability to produce highly
customized and small batches, is a representative example of a manufacturer with high risk
of production downtimes due to equipment malfunctions. Heterogeneous technologies and

76

fragmented robotic solutions result in integration complexity (Section 2.1.6.3). For example,
at BOS case (Section 2.2.4), the need for a shared mobile robot across work cells requires
higher level orchestration of different technologies. The integration that Industry 4.0
demands, is also hindered by disconnected enterprise information systems (Section 2.1.6.3),
which has been encountered at TRI case.

The set of problems and challenges, considering also key domain characteristics, are the
source of a list of high-level requirements that the designed solutions should respect. As the
individual conceptual designs for tackling respective aspects of the process complexity issue
(presented in Chapter 3, Chapter 4, and Chapter 5) are consolidated (see Figure 13) into an
integrated system architecture (presented in Chapter 6), the requirements focus on the final
artefact, i.e., to the advanced MPMS, and not to the individual conceptual designs. Table 5
lists the elicited requirements from both literature and practice. These are mainly grouped as
design/execution requirements, respecting the two main phases of traditional BPM lifecycles
(Brocke & Rosemann, 2010; Dumas et al., 2018; van der Aalst et al., 2003; Weske, 2012)
and the distinction between type (design) and instance (execution) along the life cycle &
value stream dimension of the RAMI 4.0 framework (DIN/DKE, 2016). The requirements
are stated based on the “Easy Approach” syntax (Mavin et al., 2009; Mavin & Wilkinson,
2010):

<optional preconditions> <optional trigger> the <system name> shall <system response>

This simple structure forces the separation of the conditions in which the requirement can be
invoked (preconditions), the event that initiates the requirement (trigger) and the necessary
system behavior (system response). Preconditions and trigger are optional, depending on the
requirement type. The order of the clauses in this syntax is also significant, since it follows
temporal logic:
e Any preconditions must be satisfied otherwise the requirement cannot ever be
activated.
e The trigger must be true for the requirement to be “fired”, but only if the
preconditions were already satisfied.
e The system is required to achieve the stated system response if and only if the
preconditions and trigger are true.

The verification type presented in the table denotes how to check whether each requirement
is satisfied upon design, development and realization of the solutions. According to
(International Council on Systems Engineering, 2015), seven types of verification exist:
inspection, analysis, demonstration, test, analogy, simulation and sampling. Quantifying the
impact of the implemented solutions is rather difficult to be achieved, as there can be many
factors that influence a system and its processes. Therefore, the developments presented in
this thesis rely heavily on demonstration of solutions to show correct operation of the system
against operational and observable characteristics without using physical measurements.

77

Table 5: High-level requirements for the design of an advanced MPMS as derived from literature and
practice.

R#

Requirement

Literature
source(s)

Practice
source(s)*

Verification
type

Verification
scenario(s)

Desi

n

RO1

The MPMS shall
provide modeling
support of complex
processes that involve
synchronization of
activities by various
actors (including
human-robot
collaboration
scenarios)

Section 2.1.6.1

CPP
TRI

Demonstration

CPP

RO2

The MPMS shall be
able to define
manufacturing

resources, such that it
can determine during
execution which
resource should
perform an activity
(linked to R06).

(Erasmus,
2019)

BOS
CPP
TRI

Demonstration

(Erasmus,
2019)

RO3

The MPMS shall be
able to define tasks,
such that clear control
of activities is
provided in both
modeling and
execution phases.

Section 2.1.6.1

BOS
CPP
TRI

Demonstration

BOS
CPP
TRI

R04

The MPMS shall be
able to represent the
physical equipment
hierarchy, such that
functional processes
are mapped to their
respective physical
environment.

Section 2.1.2

BOS
CPP
TRI

System
realization

BOS
CPP
TRI

Execution

ROS

The MPMS shall be
able to enact the
modeled processes in
an automated way.

Section 2.1.3
Section 2.1.5

BOS
CPP
TRI

Demonstration

BOS
CPP
TRI

RO6

The MPMS shall be
able to dynamically
select and allocate the
most suitable
resource(s) to tasks,
based on task
requirements and
resource capabilities.

(Erasmus,
2019)

None

Test

(Erasmus,
2019)

78

RO7 | The MPMS shall be | Section2.1.5.2 | BOS Demonstration | BOS
able to send a list of | Section2.1.6.3 | CPP CPP
tasks to be performed TRI TRI
by each actor in the
production
environment, for a
specific ~ production
order.

RO8 [The MPMS shall be | Section2.1.5.2 | BOS Demonstration | BOS
able to accept | Section 2.1.6.3 | CPP CPP
notifications from TRI TRI
actors in the
production
environment regarding
a change of
manufacturing system
status, including
actors’ availability and
status.

RO9 | The MPMS shall be | Section2.1.6.2 | BOS Demonstration | BOS
able to receive events CPP CPP
regarding changes of TRI TRI
the manufacturing
system status.

R10 [The MPMS shall be | Section2.1.6.2 | BOS Demonstration | BOS
able to react on CPP TRI
exceptional events that TRI
change the status of the
manufacturing system

RI11 [The MPMS shall be | Section2.1.3 BOS Demonstration | BOS
able to monitor the | Section2.1.7.4 | CPP CPP
status of the TRI TRI
manufacturing system
during execution of
processes.

General

R12 [The MPMS shall be | Section2.1.7.4 | None System BOS
able to provide realization CPP
administration of TRI
processes.

R13 | The MPMS shall be | Section 2.1.5 BOS Demonstration | BOS
able to integrate to | Section2.1.6.3 | CPP CPP
other EIS, including TRI TRI
ERP/MES.

*Note that this column lists only the three selected pilot cases, presented in Section 2.2. Other
cases from the three projects (Section 2.2.1) might enhance the importance of a requirement
but are not mentioned here as they have not been presented. The author of this thesis has been
personally involved in the requirement analysis of many of these cases (listed in Appendix
B) and studied the others within the frames of the projects.

RO3 and R06 have been covered by the work of Erasmus (2019), but added here for sake of
completeness (considering the importance of resource allocation). R12 is not explicitly

79

elicited from practical cases but is added as a typical system functionality of a BPMS. R12
and R13 are not grouped under design/execution categories as they refer to both in general.

2.4 Chapter conclusion

Manufacturing is shifting into a new paradigm of high technology innovation, digital
transformation, dynamicity, and flexibility. Industry 4.0 developments promise increased
productivity, higher resources efficiency, safer working environments and labor cost
reduction. Yet, the path to those promises is full of complexities.

The current chapter studied concepts of the manufacturing domain and identified problems
and challenges that enterprises face in their transition to smart manufacturing. Based on the
hindering factors, a list of requirements is derived to drive the design of artefacts presented
in Chapters 3, 4, 5, and 6. The developed solutions are demonstrated, in Chapter 7, on testbed
application scenarios that have been described in the current chapter. The solutions are
verified, in Chapter 7, with respect to the elicited requirements and evaluated on their utility.

80

CHAPTER 3

Flexible Process Modeling

Manufacturing enterprises perform a wide variety of operations, ranging from business
processes to low-level machinery procedures, following the functional hierarchy of control
(see Figure 7). Modeling the operations and processes is essential for various reasons. Process
models are used to capture and analyze requirements, identify and prevent issues,
conceptually represent (desired) behaviors of involved parties and systems, enable
discussions between various stakeholders, manage information in a structured manner, and
provide specifications for automated process execution (Aldin & de Cesare, 2011; Dumas et
al., 2018; Ludewig, 2003; Mendling et al., 2008). Of course, process modeling should be
performed at different abstraction levels, each with its own representation and level of details,
and targeting different audience (Szelagowski, 2019). Different notations, languages and
graphical representations exist to model processes related to each of the functional levels.
For instance, modeling of processes on control level is widely represented with Grafchart
(Arzén, 1996), a graphical language for state-based, sequential and procedural systems
(Johnsson, 2008). It applies ideas of object-oriented-programming, and it is based on Petri
Nets and Sequential Function Charts (SFC), a popular programming language for PLC,
described in IEC 61131-3 standard (IEC, 2013a). Similarly, processes managed by an MES
are often described with proprietary graphical languages (Gerber et al., 2014) or domain-
specific modeling languages (Vjestica et al., 2021). Business processes on enterprise control
level of the hierarchy are traditionally modeled in BPMN, Petri Nets, UML (Unified
Modeling Language) Activity Diagrams (AD) (Grady, Rumbaugh & Jacobson 1999) or EPC
(Event-driven Process Chain) diagrams (Niittgens et al., 1998).

The need for integration between business and manufacturing processes is essential in smart
manufacturing, which asks for flexibility, transparency, and efficiency, as has been discussed
in Chapter 2. Consequently, such a need has triggered interest to investigate how processes
on various levels that have been modeled in different notations can interact to each other. In
that respect, Gerber et al. (2014) examined the seamless integration between process
modeling on business and production levels, by combining and transforming BPMN and
Grafchart visualization languages. Conversely, Prades et al. (2013) proposed the use of
BPMN for business to manufacturing integration, through seamless orchestration of
information exchanges between ERP and MES systems.

As the current research advocates the application of BPM in smart manufacturing, it worth
investigating how typical languages of the paradigm that are commonly used for business
process modeling can be used to model manufacturing processes as well. BPMN, as the de-
facto standard for business process modeling (Chinosi & Trombetta, 2012; Decker & Barros,
2008), is widely used for business processes (Wohed et al., 2006). Its interdisciplinary
understandability (la Rosa et al, 2011; Witsch & Vogel-Heuser, 2012) and the
expressiveness with respect to integration to execution (Ko et al., 2009), make it a promising
candidate for use in the discrete manufacturing domain. However, as the language originated
from business sectors where information processing is prevalent, compared to manufacturing

81

where physical entities are included, domain-specific characteristics and challenges might
require extensions to make it applicable.

Thus, the purpose of this chapter is to provide an answer on how to provide flexible modeling

of complex production processes (RQ3) by designing modeling constructs with the use of
BPMN.

3.1 Chapter outline

Design science research, that the current research generally follows, is applied to answer
RQ1, as illustrated in Figure 53 (which zooms-in the aspect under concern of the three-
aspects design and development of Figure 13). The practical relevance is ensured by the
specific requirements identified from the analysis phase and has been summarized in Section
2.3. More specifically, there should be modeling support in three areas of interest: i) task
delivery to heterogeneous agents, i.e., how work instructions are delivered to the actors
(either human or automated operators) that perform activities, ii) human-robot collaboration,
i.e., the interaction between a human operator and a robotic device/equipment on performing
required operations, and iii) the activities synchronization, i.e., the points in time and space
dimensions at which two or more activities have to be synched. On the other hand, the
academic rigor is safeguarded by applying existing knowledge on process modeling of
manufacturing operations, as identified from scientific literature. The design activities, i.e.,
the design of modeling constructs for complex production processes, yield in distinct
artefacts that should satisfy the desired requirements. More specifically, the design produces:
1) task delivery patterns, ii) human-robot collaboration (HRC) patterns, and iii) an activities
synchronization mechanism. As the main focus is on supporting the execution of
manufacturing processes, physical nature of the processes and the executability semantics are
the leading perspectives for the design.

' . . Knowledge
Envi ronment Design Science IS Research Rigor Base g

Applicable
knowledge:

Practical needs:
. 00 b Design constructs for A :
f : | Physical world "~ - .) I el
Process modeling : ‘ P ere 7| modelingcomplex < Executability | paced Wzrkl.""
requirements for: : . ol g manuf. operations S process modeling

- Task delivery to : ; Sections
i : = .
eterogeneous | | aou 331/3.41/3.5.1

agents

- Human-robot

Design and develop

collaboration H H H N
- Activities v h 4 v g Manufa;turlng

synchronization " Human-Robot o operations
Vi zatl Task delivery N Synchronization process model

collaboration A

patterns patterns mechanism fragments

e
_ Modeling constructs of complex manufacturing processes

Figure 53: DSR approach for RQI - Flexible process modeling for complex production processes.

The fact that BPMN is the notation under consideration in the current research is a design
choice based both on the increasing interest for its application in manufacturing (as discussed
in Section 3.2) and the work of Erasmus, Vanderfeesten, Traganos, & Grefen (2020), which
investigates the completeness and suitability of BPMN 2.0 for representing manufacturing
operations. That work presents a set of process model fragments in BPMN 2.0 that can be

82

used to represent the full taxonomy of manufacturing operations. Though, since its purpose
is to use the notation for representing basic concepts of the manufacturing operations, further
research steps are needed to make the process models fragments executable and consequently
widely applicable.

This chapter is organized according to the DSR approach shown in Figure 53. Section 3.2
discusses related work on process modeling to explore what can be learned from similar
efforts before the design activities have taken place. More detailed related work with respect
to the designed artefacts are presented in the corresponding sections. Section 3.3 presents the
design of the task delivery patterns. Section 3.4 presents the design of the human-robot
collaboration method. Section 3.5 presents the activities synchronization mechanism. Section
3.6 concludes the chapter.

3.2 Related work on process modeling

Manufacturing domain, due to its physical nature, have inherent characteristics that need to
be taken into account when modeling processes and production activities. For instance, a task
“Move product from point A to B”, requires information on physical location, weight of the
object and even way how to lift it, and it might take considerable about of time which might
be an important aspect towards efficiency. On the contrary, on business sectors many tasks
typically process information instantaneously, transport information through digital
channels, can easily copy, mutate or delete digital entities, which of course is not the case in
the physical domain.

Thus, languages and notations for process modeling should consider the domain-specific
characteristics and challenges. There have been many efforts to apply languages originated
from administrative sectors into physical sectors, but also languages targeting especially the
physical sector such as manufacturing. It is worthwhile then to study existing process
modeling approaches to explore the current status, identify any gaps, and get inspirations.
The exploration is performed on three areas of interest: ii) process modeling in
manufacturing, iii) BPMN (as the notation under consideration) in (smart) manufacturing,
and iii) general process modeling approaches, discussed correspondingly in the following
three subsections.

3.2.1 Process modeling in manufacturing

Integration DEFinition (IDEF) methods refer to a family of modeling languages in the field
of systems and software engineering**. Originally developed by the U.S. Air Force, it is
heavily used in military and defense industries. The most common techniques for process
modeling are IDEF0 and IDEF3. The former is used to model activities and decisions of a
system or an organization in general. The latter is a capturing method to collect, describe and
document processes. IDEF0/3 have been applied in manufacturing for modeling MES
functions (Choi & Kim, 2010), supporting decision making in ETO strategies (Reid et al.,
2018), process planning (Ciurana et al., 2008), or to design FMS (Pinarbasi et al., 2013).
Karaulova et al. (2019) use IDEF for modeling collaborative processes of humans and robots.
Other applications exist in supply chain (Kuo et al., 2012) and construction industry (Kamara
et al., 2000).

4 https://www.idef.com/

83

https://www.idef.com/

Value stream mapping (VSM) is a lean manufacturing technique to model the flow of
material and information in production environments (Rother et al., 2003) and has been
widely used in manufacturing (Romero & Arce, 2017). It provides high-level views of
processes and is mainly used to depict streams in serial production lines. That means that in
more complex production scenarios the technique is not competent, and extensions are
required (Braglia et al., 2006). Especially in the Industry 4.0 era where production
environments are more dynamic, small batches and multi-variant production is prominent,
and digital information is available from many sources, the concepts of dynamic VSM
(Huang et al., 2019) and VSM 4.0 (Hartmann et al., 2018; Wang et al., 2021) have emerged.

3.2.2 BPMN in (smart) manufacturing

BPMN has already been used and extended in domains where physical entities are involved,
such as healthcare and logistics. Braun et al. (2014) and Scheuerlein et al. (2012) have used
and extended the notation for modeling clinical pathways. Though these applications do not
“touch” the physical world. Khabbazi et al. (2013) propose the complementary use of BPMN
and UML in production logistics, where UML covers the weakness of BPMN to model
material flow.

The strengths of BPMN (as applied in various domains) made the notation a promising
research area for application in manufacturing. Garcia-Dominguez et al. (2012) compared
BPMN 2.0 to IDEF3 and VSM. The study concluded that BPMN 2.0 can be seen as a superset
of IDEF, with respect to schematic process representation, with the explicit addition of
message exchanges, event handlers and process participants. Though, BPMN 2.0 is not able
to model physical objects and their transitions. Compared to VSM, BPMN 2.0 is a
complementary modeling approach, by adding more detailed process design specifications.
As VSM does not provide any execution semantics, Zor et al. (2010) have proposed an
approach to map VSM flows to BPMN models, which can be automatically executed. BPMN
also compares favorably to other modeling languages such as Flowcharts, EPC diagrams, and
UML AD. Araugjo & Gongalves (2016) find that BPMN 2.0 offers versatility that Flowcharts
and EPC lack and considers the ability to describe complex processes as its main advantage.
Entringer et al. (2021) argue that BPMN offers flexibility, while UML, EPC and IDEF
cannot. Michalik et al. (2013) favor BPMN over UML for modeling the MES level functions,
acknowledging though that the notation is not fully sufficient to capture the complexity of
involved systems.

The limitations of BPMN have led researchers to propose various extensions for application
in manufacturing. Zor et al. (2011) proposed extensions in aspects such as new activity types
to cover manufacturing tasks, gateway elements to model material flow, and new resource
types for machinery, parts and tools. However, these extensions refer to the representation
semantiscs of the notation without execution support. Similarly, Sungur et al. (2013) extend
BPMN for wireless sensor networks with new action types. Graja et al. (2016) have also
proposed a BPMN 2.0 extension to handle CPS features, by introducing new task types and
participants. No reference to execution is provided though. Yousfi et al. (2016) propose
uBPMN (ubiquitous BPMN), which extends the BPMN meta-model with elements geared
towards the smart factory including, but not limited to, sensory event definitions, data sensor
representations and specific smart manufacturing task types. Petrasch & Hentschke (2016)
propose the Industry 4.0 process modeling language (I4PML) which extends BPMN with
various elements, such as sensing tasks, actuation tasks, IoT devices, human-computer

84

interfaces and real/device data objects. Considering safety risks, Polderdijk et al. (2017) have
proposed visualization extensions on BPMN process models.

3.2.3 General process modeling approaches

There exist many process modeling languages and approaches, following different paradigms
and styles. There are imperative or declarative languages (Fahland et al., 2009; Pichler et al.,
2011), those who focus on process specification through process fragments, or hybrid
approaches. It worth exploring, then, what these offer for modeling manufacturing processes.

While BPMN is an imperative language, by (over-)specifying how to perform some work, in
declaratives languages an outside-in approach is followed, meaning that any behavior is
permitted unless explicitly restricted by some constraint(s). Declarative languages are
encountered in Adaptive Case Management (ACM) (Motahari-Nezhad & Swenson, 2013)
and Dynamic Case Management (DCM) (Swenson, 2010, 2013) paradigms, where goals are
set but no explicit process paths are specified. The process participants are empowered to
lead the execution and determine the achievement of the goal. Case Management Model and
Notation** (CMMN), (like BPMN, specified also by the Object Management Group*®
(OMQ)), is a graphical notation for capturing work methods that are based on the handling
of cases requiring various activities that may be performed in an unpredictable order. CMMN
follows the guard-stage-milestone (GSM) approach (Hull et al., 2011) and structure cases in
stages guarded by sentries, that denote conditions and events that should be satisfied in order
a case enters or exits a stage. While the notation offers flexibility during execution, by letting
knowledge-workers to select the next activity, it has received limited interest and uptake in
industry.

ConDec (Pesic & van der Aalst, 2006) is another typical declarative language, with which
constraints that must be adhered are depicted as relationships between the activities.
DECLARE (Pesic et al., 2007) provides full support for loosely structured processes, with
the use of constraints in process modeling. Similarly, Dynamic Condition Response (DCR)
Graphs (Andaloussi et al., 2019; Hildebrandt et al., 2012) contain a set of events and five
type of relations between them. Nested sub-graphs that can alternate completion states make
DCR Graphs suitable in scenarios work has to be repeated. DCR Graphs were introduced to
make run-time scheduling simpler and more intuitive for end-users, however the approach
lacks concepts such as multi-instances, time and exceptions. In general, declarative languages
offer flexibility in process execution and rely on the knowledge of the workers to advance a
process. However, this type of modeling might not be suitable in manufacturing scenarios
where such freedom is not allowed, procedures are more standardized, and automation does
not depend on human knowledge.

In the broad scope of declarative approaches, process modeling with microservices offering
(Stigler & Oberhauser, 2017) is a technique, borrowed from software development, for
flexibility. Goal- and constraint-based agents navigate a dynamic landscape of semantically
described microservices that form a dependency graph. Thus, workflows are dynamically
constructed. The approach can be applicable in the physical manufacturing world, where
human and automated agents can provide certain functionality through services which can be
consumed by others. The concept of agents is also used by Fleischmann (2012), called

45 https://www.omg.org/cmmn/
46 https://www.omg.org/index.htm

85

https://www.omg.org/cmmn/
https://www.omg.org/index.htm

subjects though, in the Subject Phase Matrix (S-PM) approach. The S-PM contains process
activities, mapped to their subject (acting resource) and process phase. The matrix can be
automatically converted into Subject Communication Diagrams (SCDs) and Subject
Behavior Diagrams (SBDs), both of which are executable without additional coding required.
S-PMs are a compact way to describe processes in an intuitive way, as processes are
segmented into phases, as is often done in the manufacturing domain. The S-PM line of
thinking is similar to the S-BPM.

The use of process blocks and fragments increase readability, understandability and
maintainability (Gao & Jiang, 2009). Various approaches exist towards fragmented process
modeling. Production Case Management (PCM) (Meyer et al., 2014) combines the modeling
of small rigid process fragments with the flexible execution of ACM. A process model
consists of process components that are combined during runtime in a stepwise goal
refinement. The process components contain control flow nodes (similar to BPMN) and data
nodes that specify pre- and post-conditions of activities. In PCM, knowledge workers are less
needed (opposed to ACM), but there might be data synchronization issues or syntactical
errors when components are combined, either by the modeler during design-time or the
engine during run-time. Haarmann et al. (2015) introduce a prototype architecture and
implementation of a PCM execution engine. Another approach of fragmenting process logic
is the Task Based Process Management (TBPM) (Chung et al., 2003). The main component
is a plan library containing a set of plans, each of which represented one possible way of
achieving a task, by breaking it down into a structure of sub tasks. The plans are then linked
together to from a process model. Through the use of domain ontologies as a means of shared
vocabulary, the approach could be applied in manufacturing, though it mainly concerns the
area of new product development.

In Aspect-Oriented (AO) business process management, a business process is separated into
aspects (Jalali et al., 2013). An extension of BPMN, called Aspect Oriented Business Process
Modeling Notation (AO4BPMN) has been introduced to model an aspect as a process
fragment, containing one or more advices. Each advice captures a (part of a) concern under
a certain condition. The produced models need to be interwoven for execution, either at
design-time (static weaving) or during run-time (dynamic weaving). The approach reduces
complexity and increases re-usability.

3.3 Modeling constructs for task assignment to heterogenous agents

According to van der Aalst & van Hee (2002), a process indicates which tasks must be
performed— and in what order—to successfully complete a case. In other words, all possible
routes are mapped out. A process consists of tasks, conditions, and subprocesses. The
hierarchy of a process consisting of tasks is followed to model manufacturing processes. The
concept of manufacturing task refers to the action(s) performed to complete a production goal
(according to Luck (1995), an action is defined as a discrete event that changes the state of
the environment). Activities, in general, are performed by actors (agents). In hybrid-actor
manufacturing environments, i.e., where activities performed by both humans and
machines/automated devices, often in collaboration, the notion of team has been constructed.
As it is clearly described in the concept data model of the MPMS specification in Section
5.3, a manufacturing task is assigned to a team. Detailed execution of the task, described in
steps, is performed by the members of the team. Tasks for which it is always clear which
actor executes them, direct allocation is used, while for those tasks that a team of actors has

86

to be compiled, an allocation mechanism is required. While for the former tasks a direct
assignment can be easily modeled in BPMN, for the latter, a construct has to be created,
which is embedded in a subprocess, as illustrated in Figure 54.

Problem
escalated

Task failed

E\lo allocation [Agentallocation
required.

required

Figure 54: BPMN construct for tasks requiring no advance allocation (simple task) and tasks requiring
allocation (subprocess, depicted with a bold border to highlight it).

An actor allocation mechanism determines the most suitable team to perform a task. Based
on the outcome of the algorithm, i.e., team composition, a task is assigned to either a single
human actor, or a single automated actor, or a team of actors. This is illustrated in Figure 55.
The team decision algorithm is depicted as a business rule task, described in Decision Model
and Notation*’ (DMN) (like BPMN and CMMN, specified also by the Object Management
Group (OMGQG)). Details of the design and implementation of the decision algorithm can be
found in Erasmus (2019). Note that for illustration purposes, tasks to be assigned to different
type of actors are visualized with different task type icons, as have been designed in Aspridou
(2017). Note, also, that the allocation mechanism includes basic exception handling
functionality, which is not the focus of discussion here (elaborate details on exception
handling is discussed in Chapter 4 and in Section 6.2.2).

47 https://www.omg.org/dmn/

87

https://www.omg.org/dmn/

Single
auto agent

B

Select Team

«
#{parentTaskNa
me}

Retry

Task to be
assigned

Check

Agent Single & task status
allocation human Succeeded
mechanism >

Task completed

Failed

&
#{parentTaskNa
me}

More than one
agent

Task failed

<

)

Place task on hold

Reusable pattern used for allocation tasks

Task on hold

|
[.:'.] Retry automatic
Decide on task allocation

allocation

No eligible team

) E—

Manual decision Manual allocation Manually
by manager allocate agent
~—

Figure 55: Task allocation mechanism to a team of agents (according to (Erasmus, 2019)).

Once it is determined which (team of) actor(s) will execute a task, it should be specified how
this task is delivered. Section 3.3.1 discusses the task delivery patterns. Section 3.3.2 presents
repetition patterns, i.e., when a task is assigned to the same actor for a given number of
repetitions. Section 3.3.3 discusses the case of managing a queue of tasks to be assigned to
an actor.

3.3.1 Task delivery patterns

The three colored-highlighted tasks of Figure 55, as the outcome of the allocation algorithm,
require different delivery mechanisms. A typical BPMS provides tasklist applications for
delivering tasks to humans, which have been modeled with the User Task type in BPMN. An
example of a tasklist application is shown in Figure 56.

88

%% Camunda Tasklist Keyboard Shoricuts ¢ Create task B Stari process | @ defauit £ DemoDemo # -

Create a fitter + { Createdv + <> 7 Add Comment +
~
My Tasks 7 ¢ M- Prepare Bank Transfer
My Group Tasks (7) # Invoice Receipt
Prepare Bank Transfer & Set follow-up &in 21 hours x i Accounting 2 Claim
Accounting Invoice Receipt
. Due in21 hours, Created 6 days ago 50 Form History Diagram Description
John's Tasks Invaice A... 200
Mary’s Tasks e Please prepare the bank transfer for the following invoice
Peter's Tasks Approve Invoice Invoice invoice pdr

Invoice Receipt Document

Due in 21 hours, Created 6 days ago 50

All Tasks

Invoice A... 20 Creditor

v
Amount

Prepare Bank Transfer
Invoice

Invoice Receipt Number
Due a day ago, Created & days ago 50
Invoice A... 900 Approved

Approve Invoice

Invoice Receipt
Due a day ago, Created 8 days ago 50

Invoice A... 30

v

Prenare BRank Transfer hd

Figure 56: Example of Tasklist application for User Tasks (addressed to humans).

For tasks addressed to machines and robots, or to a team which includes at least one
automated actor, tasklist applications are not appropriate. Therefore, different delivery
mechanisms must be designed.

A main concept of a modelled task, from an execution perspective, is the waiting state it
enters while it is being executed (worked on). A functional (and technical if feasible) split of
a task (an activity in general) results in three main phases, as illustrated in Figure 57. In the
starting phase, runtime actor allocation can be performed by specifying the actor(s) to which
it is delivered (in contrast to fixed allocation performed during modeling). Considering the
work item lifecycle of (Russell et al., 2006b), the states “offered” and “allocated”
encountered in the Starting phase. During the Executing phase, the actual work is performed.
The task can get in different states, e.g., started, in progress (elaborated in Chapter 6). In the
Ending phase, the task is wrapped-up, by considering its state as completed or failed, and
performing any actions that are triggered by the ending. For instance, a completion of a “Put
product on shelf” task, can trigger the execution of a script to update the stock level. This
often happens when small actions like in this example are not modelled explicitly (e.g., by a
Script task following a User Task), but can be incorporated in the Ending phase of the main
tasks that triggered them.

89

Starting Ending

Executing

Figure 57: Main phases of a task in BPMN.

Considering that tasks for automated actors should be seen, from a functional perspective, as
similar to the ones for human actors (establishing parity between the two types of actors), the
aforementioned functionality has to be followed/preserved. Three different patterns are
designed to achieve this, illustrated in Figure 58.

Requires
message
handling in
Starting and
Ending phases

Process Process

started completed
(a)
©
Task by
RobotB
Process Process
started completed

Asynchronous
call

(b)

1 —

Task by Robot C

Send task to
Robot C

Receive task
response from
Robot C

(
i
i
i

Process
completed

Process
started

pr—r———

Figure 58: Task patterns for tasks addressed to automated actors (or teams that include at least one
automated actor): (a) User Task, with embedded message handling in Starting and Ending phases, (b)
Service Call in asynchronous mode, (c) Send and Receive Tasks.

90

The first pattern (a) makes use of the User Task type offered by BPMN. This requires
message handling. To avoid confusion with tasks addressed for humans, a different task type
icon can be designed, like the robotic arm icon used in Figure 55. The second pattern (b) uses
a Service Task but requires an asynchronous call to keep the task in a waiting state. The third
pattern (c) is composed of the Send and Receive Tasks, which denote the sending and
receiving task information (e.g., task input parameters — task completion status) in a more
clear/distinct fashion, but both together preserving the desired waiting state. Note that
corresponding Message Throw and Catch Events can be used instead of the Send and Receive
Tasks. However, the task elements constitute a more intuitive way to represent the notion of
a “task” to be delivered to an agent. Moreover, boundary events (e.g., error events) can be
used on the Send and Receive Tasks, which might be useful in the scenarios.

While the above patterns are designed for automated actors, it is important to note that they
can be applied for tasks addressed to humans as well. This is useful when (desktop)
applications like the ones of Figure 56 are not possible or convenient for use (user-friendly)
on a shop floor. Specially designed Uls are often required, managed by an external module
(i.e., not part of a BPMS). Thus, when a process engine module of BPMS creates these tasks,
the external module can receive and present them to the Ul The delivery to the external
module can well be achieved with the above pattens.

The operationalization of these patterns (e.g., message handling, service call) is discussed in
Section 6.2.1.

3.3.2 Task repetition patterns

Often, in manufacturing processes, there are tasks that require some repetition. In case the
repetitive work shall be performed by the same agent, thus, no re-allocation mechanism is
required, the two patterns of Figure 59 are deigned.

91

a not-predetermined task output

_ _ Can be
Eequnes handling of determined by a
number of tems parameter

Nextitemto

handle?
Task by - /X\ No
RobotA "
Process
completed

Process
started

(a)

Multi-instance

Requires cardinality equals the
handling ofa number of items to be

predetermined handled
number of items .

Task by
Robot B

Process
started

Process
completed

(b)

Figure 59: Task patterns for iterative work: (a) non-predetermined number of repetitions, (b)
predetermined number of iterations.

The first pattern (a) is used for cases where the number of iterations is not known prior to the
initial assignment. A decision (XOR gateway) is taken upon each iteration is completed,
whether the task should be repeated or not. The decision is based on the outcome of each
iteration. For instance, filling a box with products where the remaining space cannot be
determined in advance, but only when the box is full. The second pattern (b) is used when
the number of iterations is known/determined a priori. A sequential multi-instance task is
used, with the cardinality to be equal with the number of iterations.

These patterns are useful when the outcome of each iteration is relevant/interesting at the
level of a BPMN process model. In case only a final outcome is required, the task can be
modelled as a single activity and the iterations can be handled by a component/controller
which handles the automated agent (defining as task input parameter the number of iterations,
if known). Considering the example above, a task “Fill in a box with X products” can be
modelled as a single task (no loops, no multi-instances), in case only the moment that the box
is full is interesting at the BPMN process model level. Such separation is discussed in Section
5.3. Briefly to mention here, it depends on the global/local level of control that process
management system shall have compared to a local orchestrator component (see Figure 93).

3.3.3 Task queue management construct

With respect to the level of control that a process management system shall have on the
granularity level of a task, it is often required by such a system to handle a task queue. This
is required when a local orchestrator component or a robot controller cannot handle

92

consecutive assignment of tasks if a previous task has not been completed. Of course, if task
queue management at BPMN process model level is not needed, then multiple assignment of
tasks to a robot can be modeled as either a single task (and then the created task instances
will be assigned) or a parallel multi-instance task.

In case task queue management is needed at the BPMN process model level, the pattern of
Figure 60 is designed. The pattern shows an example of an agent able to perform two different
types of tasks (type A, type B) (note that the tasks have been modeled as subprocesses, as
they might need to apply allocation mechanism, as shown in Figure 54). When the agent is
busy performing a task, a next request for a next task (either of the same or different type),
received through the non-interrupting event subprocess, is registered in a queue. When the
current (series of) task(s) is finished, the process returns back to check for available next
tasks. Depending on the implemented queue policy (e.g., FIFO, LIFO), the next task is
selected and assigned to the agent. The task is removed from the queue once it is completed
(deferred removal), to avoid new requests to be assigned when the agent is still busy.

Tasktype 8

Figure 60. Task queue management pattern at BPMN process model level.

The reason why task type B is shown in the example is because it consists of a series of tasks
which should be seen as one task entity. Let us consider the example of an AGV with a
robotic arm mounted on it for performing some grasping actions, composing a mobile robot.
If the task management queue refers to tasks addressed to AGV, an example of task type B
could be asking the mobile robot to fetch an item from a shelf. In that case, the task B is split
into a task B.1 for the AGV to move to the location where the shelf is and task B.2 for the
robotic arm to grasp the item. In this scenario, when the robotic arm is performing the
grasping part, the AGV should be still considered as busy, thus, unavailable to get a new task.

The pattern can be extended by introducing more task types, with corresponding non-

interrupting event subprocesses, or by grouping together tasks (i.e., shifting the deferred
removal of the task from the queue accordingly). Of course, the number of the non-

93

interrupting event subprocesses can be minimized into one when the registration per task type
can be achieved with a single script/function and no differentiation is required. For clear
illustration purposes, one subprocess per task type is added in the example.

3.4 Modeling constructs for human-robot collaboration (HRC)

Human-robot collaboration (HRC) receives increasing interest in Industry 4.0 era, especially
in “high mix-low” volume environments. Collaborative robots are employed to assist humans
in assembly tasks (Karaulova et al., 2019; Miqueo et al., 2020). While adoption barriers have
still to be addressed (Villani et al., 2018), with safety a major issue (Aaltonen & Salmi, 2019),
HRC worth support from a process modeling perspective.

Section 3.4.1 discusses related work on using BPMN for modeling collaborative processes.
Section 3.4.2 presents an approach to model collaborative process for assembly tasks. Section
3.4.3 presents modeling constructs to support deferred execution or parallel tasks.

3.4.1 Related work on BPMN for collaborative process

In the general interest on using BPMN for manufacturing processes (as discussed in Section
3.2.2), the notation has already been used to model collaborative processes. Schonberger et
al. (2018) use BPMN in a new approach, called Human Robot Time and Motion (HRTM)
for modeling collaborative tasks. HRTM combines the Methods Time Measurement (MTM)
approach, used for modeling of working steps of human workers, and Robot Time and
Motion (RTM) approach, used for modeling of working steps of robots. Froschauer &
Lindorfer (2019) extend HRTM by combining it with ADEPT (Lindorfer et al., 2018), a
universal modeling approach that allows a shift of programming complexity from the end
user to a modeling expert. Though, the modeled BPMN workflows do not include an
automatic trigger of robots to perform the corresponding command at the right time.
Moreover, in a recent work by Schmidbauer et al. (2021) a digital worker assistance system
is presented, based on the BPMN. The notation is used to enable non-professionals to create
adaptive task sharing processes between human workers and cobots. Engels et al. (2018)
extend BPMN in their language-based Adapt Case 4 BPM (AC4BPM) approach to model,
among other IToT processes, assembly tasks. However, execution support is only provided in
an experimental environment. Finally, Knoch et al. (2018, 2020) use BPMN to model
assembly tasks supported by AR, but no collaborative robot involved.

3.4.2 Modeling collaborative assembly processes

In collaborative assembly processes a robot and an operator receive instructions on
performing similar tasks, but obviously executed differently. A similar approach to the one
of Froschauer & Lindorfer (2019) is adopted to model such processes. However, the method
presented here has two fundamental differences: i) A single BPMN swim pool is used instead
of two swim pools. The single pool, with two swim lanes, one for the robot, one for the
operator, eases the execution of the process by avoiding the extra communication messages
between two pools. Moreover, in their approach it is not clear how a “Communicate” task is
linked to a gateway element (on their model of Fig.1); ii)) AND-split and merge gateways are
used to achieve synchronization as tasks, without the use of time delays as in Froschauer &
Lindorfer (2019). Introducing time delays for an actor until the other actor finishes his tasks
(especially without any deferred constructs as described in Section 3.4.3) requires
intelligence and precision of knowing the exact task duration values. Calculating these values
might be complicated or even pointless to perform.

94

Consequently, a collaborative assembly process model is simplified, as the example shown
in Figure 61. Modeling of collaborative processes in such a way supports also safety risk
analysis (Pantano et al., 2022).

GRPPER

N

MOTOR
HOLDER

Robot

assembly process.

Collaborative

Process
started

Operator

TRANSMISSION
GEAR

Figure 61: Process model for collaborative assembly processes.

3.43 Deferred task parallelism constructs

Task parallelism is a common construct encountered in collaborative processes, where
activities are first distributed to various actors and then can be merged. However, there can
be scenarios where a task shall be assigned once its parallel branch has started its actual
execution. This scenario is called here as deferred task parallelism, i.e., two parallel tasks (or
branches in general) in which the one has to be assigned when the other has started. Figure
62 illustrates the deferred task parallelism scenario (for simplicity reasons, the state
“assigned” is used instead of the “offered” and “allocated” stated from the work item lifecycle
of Russell et al. (2006b), as the relevant state is the “started”).

task status ¢

) 80%
Assigned Started completed

Task A A - A >
by Robot Y " Executing activity T 4

Sync point on
another process

instance

P

Assigned 'Y
Task B {}% cseeaseens T — >
by Operator Executing activity

v

time

Figure 62: Explanation of deferred execution of parallel tasks.

95

Two modeling constructs are designed to support the deferred task parallelism. The first,
shown in Figure 63, makes use of the non-interrupting boundary conditional event. Of course,
the information of the actual starting point of execution of a task is sent by an actor (e.g., a
robot through its controller software) and has to be caught by the right task instance.
Especially in the case of many running instances of the same task definition, a correlation
mechanism should be provided to trigger the right conditional event.

TaskA
by Robot

Robot

O—<p

Process
started

Process
completed

Human operator

by Operator

Figure 63: Modeling construct for supporting deferred execution of parallel task with non-interrupting
boundary conditional event.

The second construct, shown in Figure 64, uses an intermediate conditional event and a non-
interrupting event subprocess. The latter catches the information that task A has started and
updates accordingly the condition variable of the conditional event. As both the conditional
event and the subprocess are in the same process model (and thus in the same instance during
execution), the correlation mechanism is easier compared to the first construct.

96

TaskA
1 by Robot

Robot
y

Process

started completed

Task B
by Operator

TaskA
started

Updates the
condition
variable of
Conditional
event

Human operator

Release
\ Task B

Task B
ready to start

TaskA

Figure 64: Modeling construct for supporting deferred execution of parallel task with non-interrupting
event subprocess.

Deferred task parallelism can be also applied in any processes in which parallel activities of
different actors have to be synced with respect to their enabling moments. In other words, the
construct is not only applicable when two actors work collaboratively on the same task, but
also when two different actors perform different type of activities. For instance, consider a
task of a mobile robotic arm moving to a grasping position, while in parallel an item is
conveyed to a picking point, but the grasping should start only once the item is at the right
place. This is useful for activities optimization to reduce tact times. The construct can be also
applied on any relevant events happening during task execution, not only with respect to their
enabling moment (as illustrated in Figure 62 with the “80% completed” event of Task A). In
case the synchronization refers to activities present in different process model definitions, or
different instances of the same process definitions, a more advanced synchronization
mechanism is required, as elaborated in Section 3.5.

3.5 Synchronization points

BPMN has already been applied and extended for modeling manufacturing processes, as
discussed in Section 3.2.2. However, despite its maturity and recent interest, the notation has
inherent limitations. One of these is the fact that process models in BPMN are designed from

97

a single, isolated process instance perspective, disregarding possible interactions among in-
stances during execution (Leitner et al., 2012; van der Aalst et al., 2017) . Often, process
instances need to interact and collaborate based on information that is outside of the scope of
one single instance. This collaboration is more important in manufacturing processes, where
physical objects, and not only data information, are under consideration. Think of example
of buffering points, where inventory is kept at an intermediate stage of a process, or the
situation of bundling or batching products (multiple entities) for further processing as single
entity (e.g., placing a number of items in a box for transporting). There should be hence,
synchronization points where a process instance, representing the flow of activities of
entities, waits or sends information regarding the state from or to other instances, commonly
from different process definitions. BPMN provides basic synchronization with elements such
as Signals or Messages. But the former is a broadcast message without any payload while the
latter sends a payload message (with e.g., process instance identifiers or process definition
keys) to only one instance. There is a lack of dynamic synchronization expressibility and
functionality in the sense that the synchronization of the control flow of process instances
cannot currently be decided based upon runtime state and content information of other
process instances.

Buffering of entities and (un)bundling of entities and activities are constructs frequently
encountered in the physical world of manufacturing processes. Using BPMN for
manufacturing processes, entails explicit support for these constructs. This section designs
such support.

The content of the current section has been published in Traganos, Spijkers, et al. (2020).
Section 3.5.1 discusses related work on the synchronization shortcoming of BPMN. Section
3.5.2 analyzes the manufacturing constructs that require modeling support. Section 3.5.3
presents the design of a synchronization mechanism, called recipe system. The mechanism
is operationalized in Section 6.2.1.

3.5.1 Related work on BPMN on synchronization points

The shortcoming of the language to support synchronization points has already been studied,
but rather as a general problem, not targeting at the physical and manufacturing world. In
general, we see two different paradigms; activity-centric ones (e.g., what BPMN follows)
focusing on describing the ordering of activities, and artifact-centric ones focusing on
describing the objects that are manipulated by activities (Cohn & Hull, 2009; Lohmann &
Wolf, 2010; Meyer et al., 2013, 2015; Meyer & Weske, 2014). From a BPMN perspective,
artifact-centric modeling support is limited, though extension elements to support the artifact-
centric paradigm have been defined (Lohmann & Nyolt, 2011). Fahland (2019) approaches
the process synchronization from a dualistic point of view, both from the activity-centric and
the artifact-centric paradigm perspectives. The study argues that processes are active
elements that have actors (agents) that execute activities. These actors drive the processes
forward. Artifacts, on the other hands, are passive elements that are object to the activities.
The activities are performed on these objects. While Petri nets are used as a means of process
specification, Fahland argues that locality of transitions, which synchronize by “passing”
tokens, are at the core of industrial process modeling languages, just like BPMN. Steinau et
al. (2018) also consider many-to-many process interactions in their study, proposing a
relational process structure, realizing many-to-many relationship support in run-time and
design-time. Earlier work on process inter-actions by van der Aalst et al. (2001) (e.g.,
proclets), allowed for undesired behavior in many-to-many relations (Fahland et al., 2011).

98

Pufahl & Weske (2019) put forward the notion of a “batch activity”, which is an activity that
is batched over multiple process instances of the same process definition. The batch is
activated upon the triggering of an activation rule. The concept is similar to the approach
presented in this thesis, but the current research includes a strong focus on the correlation of
process instances of different process definitions, that typically contain different activities.
Finally, Marengo et al. (2018) study the interplay of process instances and propose a formal
language, inspired by DECLARE (Pesic et al., 2007), for process modeling in the
construction domain.

3.5.2 Manufacturing constructs

Erasmus et al. (2020) have created a catalog of process fragments to model manufacturing
processes in BPMN. The catalog is a result of rigorous research through a taxonomy of
manufacturing operations translated into flow elements for representation in BPMN. The
catalog has been evaluated for its completeness and suitability, and thus, is a solid and valid
starting point for providing modeling support on specific manufacturing constructs.

The catalog includes process fragments for the four main categories of operations, namely
production, quality, inventory and maintenance (Section 2.1.3). From the complete set, the
ones that require synchronization of activities are under concern here. These are the ones
referring to:

e Production operations
o Material removal
o Separating
o Permanent joining
o Mechanical fastening
e Inventory operations
o Individual packaging
o Unitizing
o Buffering
o Preservation
e Maintenance operations
o Replacing
o Scheduled replacing

The corresponding BPMN process model fragments are illustrated in Appendix C. As the
operations in this set have similar characteristics, they are grouped into two main categories,
namely, buffering and bundling/unbundling constructs (grouping shown in Appendix C).
They are elaborated in Section 3.5.2.1 and Section 3.5.2.2 respectively, while Section 3.5.2.3
discusses the inherent limitation of BPMN to provide execution support for these constructs.

3.5.2.1 Buffering

From an operations management perspective, buffering is considered as maintaining excess
resources to cover variation or fluctuation in supply or demand (Nahmias & Lennon Olsen,
2015). The concept is also referred to as decoupling inventory between process steps, as these
can be performed independently from each other (Cachon & Terwiesch, 2009). From Defense
Acquisition University DAU (2021), buffering can be defined as a form of (temporary)
storage with the intention to synchronize flow material between work centers or production

99

steps that may have unequal throughput. From the five types of inventories from de Groote
(1989), the focus of the current research in on the decoupling inventory/buffers.

In the BPM field, van der Aalst (1994) had already argued that places in Petri nets correlate
to physical storage locations, in his effort to use high-level Petri nets to describe business
processes. Thus, from a process management perspective the notion of a buffer can be
explained as follows. An instance enters the buffer and is kept in a holding state. Once a
condition is met (e.g., capacity becomes available in the downstream production step), one
or more entities are released. The selection of which entity to be released can be based on
multiple queuing policies, e.g., the First-In-First-Out (FIFO) policy. Once an entity is
released, control flow continues as normal.

The above explanation though, considers the buffering from a single process instance
perspective, leading to the process instance isolation issue described above. There is a need
to approach the construct from a process control perspective, as such that buffer-level
attributes and information from many process instances are captured and managed, as
illustrated in Figure 65.

Buffer _

manages
 E—
Buffer Process
controller — control

} I perspective
registers i | releases

v

Process Production Production
Instance step 1 step 2

perspective Buffer

Instance 1

Figure 65: Buffering construct from both process control and process instance perspective.

3.5.2.2 Bundling and unbundling

Manufacturing operations literature recognizes operations that bundle, merge, unitize and
package entities, as well as their inverse counterparts, but to the best of the researcher’s
knowledge no literature exists that describes how these entities are selected during
operations. This is assumed to be described by the modelers in another part of the models or
in different models. For the purposes of the current research, bundling is defined as the
synchronization of instances that are grouped in some way, either physically or virtually,
whose control flow shall continue or terminate simultaneously as a group. Note this is a
process-oriented definition and caution should be taken for generalization.

100

Examples of bundling are commonly encountered when physical entities need to be grouped
into some sorts of a container. Imagine for instance products being produced and put in a
packaging box. Once the capacity of the box is reached, the box can be transported as a single
entity. Upon arrival of the box to a distribution center, entities are unbundled again. The term
bundling is used, as a more generic term instead of batching, since the latter normally refers
to putting together entities of the same type, while in bundling entities of different types can
be merged. Bundling is often encountered together with buffering, as quite often, (sub-)
entities are buffered before the bundling operation can take place, to ensure all (sub-)entities
are present.

3.5.2.3 BPMN support limitations on manufacturing constructs

A buffering point between two activities (or process fragments), as shown with the triangle
element in Process Instance 1 in Figure 65, could be naively modeled in BPMN 2.0 with the
use of conditional or (intermediate) message catching events. These elements can offer the
“holding” state of the control flow. However, none approach is suitable. Conditional events
use local-instance variables, ignoring information of other process instances. Message events
are targeted to a specific, pre-defined in-stance, missing dynamic correlation information.

Bundling and unbundling constructs can be probably modeled with AND-gateways. But
these gateways (un)merge control flows that can be modelled on the same definition, which
is not always possible. In many scenarios, different processes have to be correlated and
gateways cannot perform this. Multi-instance activities can be also used for “unitizing”
entities (Erasmus et al., 2020). The spawning of repeated instances can serve (un)bundling
functionality. However, the isolation problem appears here as well. Each child process
instance is unaware of the information of the rest child instances.

3.5.3 Concept and functionality of a Recipe system

This section presents the design of a synchronization mechanism, called recipe system, to
address the dynamic synchronization issue described above. The approach uses standard
BPMN 2.0 elements to form a dynamic controller that works as a correlation mechanism for
synchronization points amongst independent process instances. Section 3.5.3.1 discusses
relevant concepts of the recipe system. Section 3.5.3.2 formalizes the description of these
concepts.

3.5.3.1 Recipe concepts

The central notion of the system is the recipe. It corresponds to a synchronization (or
integration) point, where (previously uncorrelated) control flows in independent process
instances may be synchronized. It consists of a set of input rules and output rules. A recipe
is fulfilled once all input rules are satisfied. Two important concepts are linked in a recipe.
The instance type and the selector attribute. The first is used to group process instances of
the same type in a pool. Think for example a car assembly process. It requires a number of
wheels, a number of doors and a chassis. Each of these elements are produced independently
according to their process model definitions. Thus, there can exist three pools, one with
“CarWheel” instance type, one with “CarDoor” type and one with “CarChassis” type. The
selector attribute is used for discriminating instances that are of the same type, yet of a
different variant. For example, the “CarDoor” instance type can have the color (e.g., blue/red)
as attribute. A pool is a virtual “container” to keep homogenous process instances;

101

homogeneous from an instance type perspective, as these can have different attributes. All
these concepts are illustrated in Figure 66. Process instances are denoted as shape figures.

'Y) =I=f= 'ﬂ
000 “I“I“1rs Y

Pool P, Pool P, Pool P,

instance type == “CarWheel” instance type == “CarDoor” instance type == “CarChassis”

4 x (any) CarWheel

Input
rules 2 x (red) CarDoor
1 x (red) CarChassis
Recipe R
Output 1 x (red) Car
rules
rell
instance type == “Car”

Figure 66: Illustration of the recipe concepts trough an example.

The configuration of each pool plays a crucial role for the fulfilment of a recipe. The
following options are considered:

e Genericity. A pool can be either generic or specific. In the first case, the pool does
not consider the selector attribute of the buffered process instances (e.g., in Pool P,
of Figure 66). In the latter case, recipe fulfillment candidates are nominated based on
the selector attribute (e.g., on the color attribute in pools P, and P3 of Figure 66).

e Availability mask. Pools can represent physical buffers but as such should account
for physical availability, i.e., how instances/objects are accessed. This research
considers three availability masks:

o ALL: All instances are available (e.g., in a virtual or physical pool that
physical layout is not relevant).

o FIRST: The instance that was first placed in the pool is considered as
available. Subsequent instances are marked as available if and only if they
share the selector attribute value of the first instance, in one sustained
sequence.

o LAST: The instance that was placed last in the pool is considered as
available. Subsequent instances are marked as available if and only if they
share the selector attribute value of the last instance, in one sustained
sequence.

102

o Release policy. The release policy ranks instances for recipe fulfillment (and thus
“release” from the pool). This research considers three policies:
o FIFO: instances that have been in the pool the longest are released first.
o LIFO: instances that have been in the pool the shortest are released first.
o ATTR: instances are released based on a selector attribute value.
e Fulfillment cardinality. The fulfillment cardinality determines how many
instances of a pool are needed to lead to recipe fulfillment. It can be a single value,
i.e., all instances are nominated for fulfillment, or it can take a minimum (n) and a
maximum (m) value, i.e., the pool needs at least n and less than m.

With the configuration options described above, a recipe can be specified with the following
notation, shown in Table 6 (based on the example of Figure 66). Upon a recipe fulfilment, a
process may continue its flow after the respective synchronization points or a new process
instance (mainly from a different process definition) can start.

Table 6: Specification of a recipe through an example.

Recipe name: Final car assembly

Selector attribute: | ordernumber

Input instance type min | max | gen relpol mask rel
CarWheel 4 4 ° FIFO LAST o
CarDoor 4 4 o LIFO ALL (o)
CarChassis 1 1 o LIFO ALL °

num Start process definition key (output)

1 Final Car_Assembly Process

Based on the proposed notation, recipes are constructed for the manufacturing constructs
under concern. Table 7 shows an illustrative example of a recipe representing the buffering
construct. The recipe represents a single buffer (physical or virtual) that keeps exactly 10
items (physical items or virtual entities).

Table 7: Example of a recipe representing buffering.

Recipe name: Buffer 10 items

Selector attribute: | None

Input instance type min | max | gen relpol mask rel
Item 10 10 ° FIFO FIRST [

The example shown in Table 6 represents a recipe for the bundling construct, i.e., various
parts are merged together. A more dynamic example of a bundling recipe is shown in Table
8. A worker stacks items in a cart for transportation in a storage zone. Once ten items are
placed in the cart, he can then transport them.

103

Table 8: Example of a recipe representing bundling.

Recipe name:

Transporting up to 10 items on a cart

Selector attribute: | None

Input instance type min | max | gen relpol mask rel
Item 1 10 [LIFO FIRST L4
Cart 1 1 L FIFO FIRST o

Table 9 shows the recipe for the counteractivities of the recipe of Table 8. Once the cart with
the items has been transported at the storage zone, item have been unloaded. To ensure that
the items from various carts are not mixed, a specific selector attribute (from the recipe of

Table 8) is defined.

Table 9: Example of a recipe representing unbundling.

Recipe name:

Final car assembly

Selector attribute:

Fulfillment identifier from recipe “Transporting up to 10 items on a cart”

Input instance type min | max | gen relpol mask rel
Item 1 10 o FIFO ALL ®
Cart 1 1 o FIFO ALL L

Regarding the recipe process notation, Figure 67 shows an example of how recipes can be
defined onto process models.

104

Car Wheel preduction process

One process instance
per car wheel

Produce
car wheel

Start

Car wheel
produced

Car_pool_Wheel: Pool

id = "Car_pool_Wheel"
instanceType = "carType"
selectorAttribute = "carType"
fulfiimentCardinalityMin = 4
fulfimentCardinalityMax = 4
releasePolicy = LIFO

availabilityMask = ALL

Car Door production process

One process instance
per car door

Produce

car door

Car door
produced

————

ipe Controller

Car_pool_Door: Pool

-» Car_pool_Chassis: Pool

Rei
2

id = "Car_pool_Wheel"
instanceType = "carType"
selectorAttribute = "carType"
fulfiimentCardinalityMin = 4
fulfiimentCardinalityMax = 4
releasePolicy = LIFO
availabilityMask = ALL

id = "Car_pool_Chassis"
instanceType = "carType"
selectorAftribute = "carType"
fulfilmentCardinalityMin = 4
fulfimentCardinalityMax = 4
releasePolicy = LIFO

availabilityMask = ALL

Car: Recipe

id ="Car"

selectorAftribute = "carType"

Car production process

One process instance
per car

Start

Initiates 4 instances of .-~
“Car Door production”
process

Produce

car chassis

Chassis
produced
(and stored)

A Car
"o be produced

Order
4xdoors

Requires as input:
4xCarWheels
4xCArDoors
1xCarChassis

Fetch chassis

[+]

Mount car doors

[+]

Mount car wheels

[+]

Car
produced

Figure 67. lllustrative example for the proposed recipe process notation.

105

The notation is a combination of BPMN elements and UML class diagrams. As the main goal
is to provide a way to depict recipes onto process models, i.e., the intended functionality, the
aesthetics are of less importance. While such notation can serve communication and
collaboration purposes, it should be also noted that the are no execution semantics. At the
current state, transformations from the models to digital entities are missing and recipes have
to be inserted as digital entities in a manual way through its technical operationalization
(discussed in Section 6.2.1).

3.53.2 Formalization of recipe concepts

Recipes (R) are treated as sequences that contain Pools (P) that are treated as sequences that
contain instances. The notation |P| is used to denote the number of instances currently in
pool P. The notation P (i), with i € {1, ..., |P|}, refers to the i-th instance in the pool. Not
to be confused with the powerset notation P (A4), referring to the powerset of set A. Note that
this instance indexing is based on the time at which an instance was added to the pool. In
other words, from a mathematical perspective, a pool is an array of instances that is sorted
on arrival timestamp. In general, the symbol i is used to either denote an array index (like in
the P (i) notation) or a process instance, like i € P. The latter should be read as instance i in
pool P. The mathematical model, which extends the content presented in the previous
section, uses the following symbols:
R arecipe.
P apool. Is a member of a recipe, i.c., P € R.
S the (abstract) set of possible selector attributes.
sp the selector attribute for pool P.
V, the (abstract) set of possible selector attribute values for selector attribute s € S.
v; the selector attribute value for instance i € P.
cp the minimum fulfilment cardinality for pool 2.
c# the maximum fulfilment cardinality for pool P.
ap(i) availability mask function for pool P. a»(i) € {0,1} Vi € P.
pp (i) release policy ranking function for pool P. p»(i) € {1, ..., |P|} Vi € P.
gp boolean whether pool P is generic (1) or specific (0). g» € {0,1}.
S(P) the set of selector attribute values for which at least c5 instances exist in pool P.

Formally defined as

S(P) =(ve{v,pePr{vypEPAY, =V} =cp} (1)

Note that, by definition, §(P) € Vy,, holds.
m(P) a map that maps an attribute value to a sequence of fulfilment candidate
instances (of the same attribute value) in pool 2.
m(@P)):v->1 (2)
with v € §(P) and set of instances | S P.

Later in the discussion, Figure 68 introduces an example of such a mapping.

3.5.3.2.1 Availability mask functions

Availability masking uses a boolean mask to indicate whether an instance is available for
recipe fulfilment. The mask ap(i) equals to 1 if and only if the instance argument i is
available for recipe fulfilment (otherwise 0). Consequently, an instance may only be
nominated for a fulfilment if ap (i) = 1 holds for instance i € P. There are three flavors of
availability masks. First, there is the ALL mask, which means that all instances are available.

106

Alternatively, there is the FIRST mask, which marks the first element as available.
Subsequent instances are available if and only if they share the selector attribute value of the
first instance, in one sustained sequence (as is often the case in physical stacks only accessible
from the stacking direction). Somewhat inversely, there is the LAST mask. As the name
suggests, this mask marks the last element as available. Preceding instances are available if
and only if they share the selector attribute of the /ast instance, in one sustained sequence.
All three masks are defined with the following equations:

adlL(P@) =1, vie{l,.,IPl} @)

1 ifi=1v (U:p(,:) = v?(i—l) =

aERST(P (1)) = { SUr@) gy e L. 1P}

0 otherwise

aSTp@) = {L TETIPIY G 2 e = =an) yie g, e (5)
0 otherwise

3.5.3.2.2 Release policy functions

Release policies use a ranking function to prioritize instances for fulfilment. A lower rank
means the instance is preferred. First off, there is the First-In-First-Out (FIFO) release policy,
which orders instances based on the timestamp t at which they were added to the recipe pool.

i1 <l et <t,

V(i i) EPXP (6)

Instance i, is preferred over i, for release, if and only if the time added to the pool of iy, t;,
is smaller than or equal to that of i5, t;,. In other words: the instances are ranked such that
their timestamps are non-decreasing. The ranking function, p5F© is therefore defined simply

as the instance index of the time-sorted sequence of instances in a pool:
pp O(PW) =i, vie{l, .., |P[} ™)

Secondly, there is the inverse of FIFO, Last-In-First-Out (LIFO), again based on timestamp
t.

h<i ©t, =t,, V(i i) EPXP (8)

Notice that Eq. (8) results in the reverse ranking of Eq. (6). The resulting ranking function,

P50 s therefore the inverse ranking of Eq. (7):

pEFO(P()) =1+ |P| -1, vie{l,..,|P} (9

Lastly, there is the attribute based policy (ATTR), which sorts instances based on some
attribute, denoted by #. As an instantiation example of this policy, one could think of a
priority based policy.

LW <i o# =2# V(i i) EPXP (10)

i

107

To define the ATTR release policy ranking function, we first define the sequence
sort'(4,#) C A to be the result of sorting sequence A on some attribute # in descending
order (i.e. the result is nonincreasing). Furthermore, we define index(i, 4) € {1, ..., |A|} to
return the index at which element i occurs in sequence A. Using these intermediate
definitions, we can arrive at the final definition:

p?TTR(:P(i)) = index(?(i), sortl({P, #})), vie{l, .., |PI} @11

where # refers to the priority attribute to be sorted.
Given the properties of these functions, the discussion above can be generalized to

i <y ©pp(iy) < pp(iz) V(i i) EPXP (12)

This generalized form is used in the subsequent implementation. The function definition
denoted by pp is to be replaced with an appropriate release policy function variant.

Note that, since output rules are released instantaneously once a recipe is fulfilled, the effect
of these release policies is only observable if there is a choice which instances should remain
in the pool. This choice is only there if there are more instances in the pool than the maximum
fulfilment cardinality, i.e., [m(v € S(P))| > cf. Otherwise, exactly min(c3, |P|) instances
are selected in the fulfilment and the ordering is irrelevant, as becomes apparent in the
following algorithmic discussion.

3.5.3.2.3 The Pool algorithm

As mentioned before, a pool can produce a mapping m:v € S(P) — I € P upon request.
This mapping maps an attribute value v to a sequence of fulfilment candidate instances I. A
visual example that explains how that mapping works, can be found in Figure 68. In this
figure, the “CarDoor” pool from Figure 66 is used as an example.

- _
Cp—cp—Z

“gl-ccn" G G

‘G = ...
|

- -

Pool P

instance type == “CarDoor”

S(P) = {"red","green"},
"blue" & S(P) =+ [m(P)("blue”)| =1 < ¢

Figure 68: Map generation m(P) example.

The pool’s mapping algorithm is listed in Figure 69.

108

Algorithm 1: Pool’s mapping algorithm, i.e. m(P).
Input: Pool P.
Output: Mapping of attribute values to sequence of fulfillment candidate
instances, m:v € S(P) =1 C P.
/* Map generation phase. */
my < ({} = {}): /* Initialize empty map mi. */
foreach i € {i € P: ap(i) = 1} do /* For every available instance ¢ in the pool. */
if my(v;) = @ then /* If value v; not in map m; yet. */
| my (Ul) — {} /* Add new value v; to map my. */
end
mq(v;) < mq(v;) U{i}; /* Add instance i to map my. */
end
/* Map pruning phase. */
me < ({} = {}): /* Initialize empty map ma. */
foreach v € m; do /* For every key value in map m;. */
if [m(v)| > c¢5 then /* At least ¢p instances exist for value v. */
my(v) < sortT(m(v), pp); /* Rank instances based on release policy. */
I+ {} /* Initialize empty candidate list. */
T 4 min (\73|7 c;); /* Determine how many instances to nominate. */
for (i+ 1;i<z;i+i+1)do /* For every nominated instance. */
| 1+ 1u{mi(v)(i)}; /* Add instance m1(v)(i) to list of candidates. */
end
ma(v) « /* Place list of candidates in pruned map ma. */
end
end
return mg; /* Return the pruned map ma. */

Figure 69: Pool’s mapping algorithm.

3.5.3.2.4 The Recipe algorithm

The recipe algorithm collects and analyses pool maps to determine fulfilment feasibility. If a
fulfilment can be achieved for a particular selector attribute value, the algorithm releases the
appropriate instances from the pools and returns them in a list. The algorithm is listed in
Figure 70.

109

Algorithm 2: Recipe’s fulfillment algorithm.

Output: Sequence of buffered instances that are part of the fulfillment. Empty
sequence if recipe cannot be fulfilled.

/* Map analysis phase. */
v I /* Initialize sequence of potential fulfillment values. */
foreach p € R do /* For each pool in recipe. */
myp + m(p); /* Query and store the pool’s map. */
if |keys(mp)| =0 A cp # 0 then /* If this pool cannot be fulfilled. */
vV 4+ & /* A global fulfillment is infeasible. */
break;
end
if v = @ then /* If this is the first pool to analyze. */
/* Take the first pool’s potential fulfillment values as starting point. */
if ¢, =0 then
| v+ {@} /* Add generic null value as potential fulfillment value. */
else
| v + keys(m,,); /* Add potential fulfillment values to sequence. */
end
end
ifgp=0Ac, # 0 A |p| # 0 then /* If this pool should be accounted for in
fulfillment feasibility. */
if v = {@} then /* If the previous pool was a generic pool (or was a satisfied
pool with 0 candidates), but this pool is not. */
| v+ keys(m,); /* Overwrite potential fulfillment values. */
else
| v + v Nkeys(m,); /* Prune potential fulfillment values. */
end
end
end
/* Fulfillment feasibility analysis phase. */
ifv=2V|v]=0 then /* If no fulfillment is feasible. */
‘ return {}; /* Return empty sequence. */
end
f+v(l); /* Pick the or a fulfillment value and store it in f. */
r+{} /* Initialize sequence of released instances. */
/* Note: f =@ can hold true by design, in case of a generic fulfillment. */
/* Data restructure phase. */
foreach p € R do /* For each pool. */
if —(c; =0 A |m(p)] =0) then /* Skip empty optional pools. */
foreach i € m(p)(f) do /* For every to-be-released instance. */
release(p, 1); /* Release instance from pool. */
r+rU{i}; /* Add instance i to sequence of released. */
end
end
end
return r; /* Return sequence of released instances. */

Figure 70: Recipe's fulfilment algorithm.

110

3.6 Chapter conclusion

High mix-low volume production environments and introduction of various heterogeneous
technologies to perform production operations result in a high degree of complexity in
production processes. Modeling support is necessary to both depict correctly the desired
operations but also to ease their enactment. This chapter provides such support by designing
modeling constructs and mechanisms that can be used to model manufacturing processes in
BPMN.

After studying literature for the use and suitability of the notation in (smart) manufacturing,
and its limitations, three artefacts are designed to support modelers: 1) constructs for task
assignment to heterogeneous agents, 2) constructs for modeling human-robot collaborative
processes, and 3) an activities synchronization mechanism to support manufacturing
constructs such as buffering and bundling/unbundling. The design of the artefacts considers
the need that the constructs should support the execution of the modeled processes. Their
operationalization is discussed in Chapter 6.

The most complex artefact, the synchronization mechanism, has been evaluated on its utility,
in the frames of a master thesis project (Spijkers, 2019), which the author of the current thesis
was guiding and supervising. Through a workshop in which the mechanism was explained,
eight practitioners were asked to give their opinion on perceived ease of use (PEoU) and
perceived usefulness (PU) (Davis, 1989). The evaluation panel perceived the method as
useful in modeling situations that require synchronization, which they find an interesting and
relevant topic. Moreover, insights were gained on further research and extension points
(discussed in Section 8.4). However, conclusions should be treated with caution as the
practitioners had rather limited experience with BPMN.

111

112

CHAPTER 4

Exception handling

The dynamicity of (market, business, and manufacturing) environments and the plethora of
technologies encountered in smart factories have given rise to exceptional situations, as
thoroughly discussed in Section 2.1.6.2. Such situations can be an order cancellation, a
machine breakdown or a system failure, which regardless if these can be expected or not,
they have negative impact on an organization’s performance and costs (Bruccoleri et al.,
2007).

The term exception has seen many definitions. Luo et al. (2000) view exceptions as facts or
situations that are not modeled by the information systems or deviations between what we
plan and what actually happens. The differences between the actual and the expected state
of a production system are considered as exceptions by Bruccoleri et al. (2003), as well.
Russell et al. (2006b) term the deviations from normal execution arising during a business
process as exceptions, while similarly, Andree et al. (2020) describe a discrepancy of a
business process between the planned flow and the reality as an exception. A bit differently,
Lohmeyer (2013) considers the success or the failure of the goal of a business process as the
differentiating point to consider a deviation as an exception or not. If a goal is ultimately
achieved, then any deviations from a “normal” sequence of steps is considered as an alternate
flow and not as exceptions. While the above definitions are heavily process/workflow-
oriented, exceptions can happen on a system or a single unit level, like for example an alert
that a temperature sensor raises. For the interest of this research, exceptions from individual
units are studied with respect to their underlying process(es). In other words, exceptions are
not studied as individual entities/objects, but as part of processes in concern.

Exceptions can be characterized along different dimensions. Luo et al. (2000) use an
orthogonal, three-dimensional space to analyze exceptions:

e Known dimension, that distinguishes between known and unknown, i.e., those that
the system has met before or not. A learning process can make the unknown
exceptions known. This dimension is also characterized in literature as the
distinction between expected (or anticipated) and unexpected (unanticipated)
exceptions (Reichert & Weber, 2012a).

e Detectable dimension, that distinguishes between detectable and undetectable
exceptions, depending on the capability of a system to notice the occurrence of an
exception or not. Detection can be achieved through supervision of the workflow
system’s external environment and comparison with its specified behavior.

e Resolvable dimension, that distinguishes between resolvable and irresolvable
exceptions, depending on whether the system can derive or not a solution with
exception handling mechanisms.

The current research aims to support the handling of exceptions, i.e., to make them
resolvable, either known or unknown ones. The detection dimension is not under concern

113

“Exception”
definition

and is rather taken as assumption that there are systems to detect any deviating behavior (e.g.,
a situation awareness system). Of course, unknown exceptions are usually undetectable, but
the system should cater for resolving the issues to avoid downtimes, extra costs, and/or
performance deterioration. The characteristics of the exceptions under concern are illustrated
in Figure 71, within the three-dimensional exception knowledge space of Luo et al. (2000).
Moreover, as the current research considers a process-oriented view on tackling complexity
on manufacturing operations, an exception is defined as “any event that disrupts the normal
behavior of the designed manufacturing operations”.

i)
Ke)
[= ©
Re) i3]
K] g
S)
o [a)
Q.)
3 /4
(Un)Known,
and towards F
/ Handling
Resolvable
& '
>
@
QO
o$
«©

Figure 71: Characteristics of exceptions that current research treats, in the three-dimensional space

of Luo et al. (2000).

Apart from the three dimensions that discussed above, other characteristics of exceptions are
useful to consider, especially when these should be treated by a BPM system (Kurz et al.,
2013): arbitrary time of occurrence (if any), response actions depend on the state of other
processes, and necessity for IT support. Especially for the third one, while automated way of
handling exceptions is usually preferred, the human involvement cannot be avoided and often
can be catalytic.

Regardless of where the exceptions originate from or what type they are, exception handling,
i.e., the process of reacting and taking corrective actions upon occurrence (Bruccoleri et al.,
2003), is essential for an organization to eliminate or reduce the negative impact on the
business (Milliken, 2011) and eventually remain competitive (Grauer et al., 2010). However,
the diversity of exceptions in dynamic environments is a challenge, especially on operational
level, where complexity of processes and strict time constraints demand for substantive and
fast reaction (Wang et al., 2020). Structured exception handing guidelines are necessary to
describe and connect the process from detection to correct resolution.

114

Thus, the purpose of this chapter is to provide an answer on how occurred exceptions can be
handled in dynamic manufacturing environments (RQ3) by designing exception handling
guidelines for identified types of exceptions. As the focus of this research is on MOM level
(Figure 7), the guidelines are scoped onto the operational level of decision, in the short-term
timeframes, leaving out of scope decisions on tactical or strategic level that mostly apply in
mid/long-term time frames.

4.1 Chapter outline

The answer to RQ2 is provided through design science research (similarly as for RQ1 in
Chapter 3), as illustrated in Figure 72 (which zooms-in the aspect under concern of the three-
aspects design and development of Figure 13). The academic rigor is safeguarded through a
systematic literature review (SLR) on categorizing the types of exceptions that (can) occur
in manufacturing environments. Scientific literature is also consulted for identifying the
strategy values and the KPIs that affect the exception handling guideline. The practical
relevance is secured by analyzing exceptions that occur in real-world operations
environments. More specifically, a data source with information on exceptions was provided
by the TRI pilot case of HORSE project and qualitative interviews were conducted with three
pilot cases of SHOP4CF project. The results of the analysis from the “environment” are
consolidated with the results from the SLR to generate (first design activity) a categorization
of exception types. The categorization is used as input for the second design activity, which
yields, as an artefact, a set of guidelines for operational exception handling.

. . . K led
Enwronment Design Science IS Research nog::e ge

Empirical

knowledge Sl e N N Applicable
: i :)) : :
(from) : (Un)Known, \\ Categorize exceptions ©teorization of : knowledge:
mamfhcturlng : ! Detectable i occurring in smart -~ RQ2-- exceB T .)
firms): . | exceptions /,/ production environments P . R Svsteman‘c
1| | ——— literature review

- Data source of (SLR) on exception
occurred types and handling
exceptions e b b

- Interviews for o
type of exceptions

strategies

Sections 4.2.1/4.3.1

Design and develop

and handiin [N — - :
strategies ¢ i Operation & . Design guidelines for Guidelines for .
Short-term actions - operational exception t--RQ2-| operational . .
Sections 4.2.2/43.2 [abhiioaliiSonaladl 4 _d - - . : - Literature on
handling exception handling . MOM KPls
—

Figure 72: DSR approach for RQO2 — Exception handling in dynamic manufacturing environments.

This chapter is organized according to the DSR approach shown in Figure 72. Section 4.2
presents the design of the categorization of exception types, through the SLR and the analysis
of inputs from practice. Section 4.3 presents the design of the exception handling guideline.
The chapter is concluded in Section 4.4.

4.2 Categorization of exception types

The way to interact on exceptions depends on the type of exception. Thus, it is important for
an organization to have a clear picture of the types of exceptions that might appear in their
environments. Accordingly, the strategies and methods to handle exceptions should be clear
as well. As this research aims to provide guidance on handling operational exceptions, it is

115

therefore essential to first categorize the exceptions. In this section, the first of the two
research activities of the DSR approach of Figure 72 (top blue box) is discussed. The
methodology that is followed to lead in a categorization of exceptions is illustrated in Figure
73 and summarized below.

Systematic Literature Review Input from Practice
-— — o
! oo %
Research Literature Literature Data Extraction & Empirical I|.1terviews Synthesis Categorization
Identification Search Selection Synthesis Data with Experts

Figure 73: Methodology for categorization of exception types (adapted from (Leitner & Rinderle-Ma,
2014)).

e A systematic literature review is performed to identify types of exceptions appearing
in the scientific knowledge base. A thorough, sophisticated literature review is the
foundation and inspiration for substantial and useful research*® (Boote & Beile,
2005). The SLR is discussed in Section 4.2.1.

e Moreover, input from practice is gathered to identify any exceptions that do not
appear in literature but are encountered in real-world scenarios. Two kinds of
practical inputs were gathered: i) empirical data that represent occurred exceptions
at one of the practical pilot cases (more specifically the TRI pilot), ii) discussion
through semi-structured interviews with practitioners from the pilots. The practical
inputs are discussed in Section 4.2.2.

e Both scientific and practical inputs are consolidated to lead into the categorization
of exceptions. The synthesis and design are elaborated in Section 4.2.3.

4.2.1 Systematic literature review (SLR) on “Exceptions”

The SRL is conducted through four main steps (as shown in Figure 73):
1. Research Identification

. Literature Search
iii. Literature Selection
iv. Data Extraction and Synthesis

i) Research identification

The objective is to identify types of exceptions that occur in manufacturing environments
and how they are categorized, so as the handling of those is more structured. Thus, the main
research question to be answered is the following:

How are exceptions categorized in manufacturing domain and what are the typical handling
methods?

48 «“4 researcher cannot perform significant research without first understanding the literature in the
field” (Boote & Beile, 2005, p.3).

116

ii), iii) Literature Search & Selection

Looking for existing work that have dealt with the above research question is performed on
databases/search engines that include a broad base of scientific studies. ScienceDirect*’ and
Scopus®® are considered adequate sources for the field under consideration. ScienceDirect
exclusively covers journal articles, while Scopus also covers conference proceedings.

Regarding the search term(s) that shall bring potentially relevant and interesting results,
synonyms and similar terms to the term “exception” should be considered. For instance, the
terms “deviation” or “error” are often encountered to describe disturbances in processes.
Similarly, as the exceptions (types) can be “classified” or “taxonomized”, extra terms have
been considered apart from the “categorization” term. Furthermore, an incremental
refinement is necessary to find a reasonable number of results. The iterative process of search
terms is listed on Table 10. Of course, as each search engine has its own search capabilities
and syntactical requirements, the search terms are adapted accordingly. The detailed search

terms with individual results are presented on Appendix D.1.

Table 10: Incremental refinement steps of the SLR search term(s).

Search term

Reasoning

Exception AND (type OR categor* OR

Exploratory search term including only the term

OR defect) AND (type OR categor* OR
classification OR taxonomy OR pattern OR
handling)

classification OR taxonomy OR pattern OR | “exception” (no synonyms or relevant
handling) alternatives).
(exception* OR failure OR error OR deviat* | Including other terms (i.e., failure, error,

deviation, defect) that often appear in literature
and practice to represent “disturbances” from on
objective.

((exception* OR failure OR error OR deviat*
OR defect) AND (type OR categor* OR
classification OR taxonomy OR pattern OR
handling)) AND NOT (medic* OR *coding OR
code OR programming OR neural OR optical
OR training)

Excluding specific terms that further limit down
irrelevant studies. For instance, excluding
studies on medicine/healthcare domain or studies
referring to neural networks.

((exception* OR failure OR error OR deviat*
OR defect) AND (type OR categor* OR
classification OR taxonomy OR pattern OR
handling)) AND (process OR *flow) AND NOT
(medic* OR *coding OR code OR
programming OR neural OR optical OR
training)

Scoping results towards

“workflow” domain.

“process” or

((exception* OR failure OR error OR deviat*
OR defect) AND (type OR categor* OR
classification OR taxonomy OR pattern OR
handling)) AND (manufacturing OR process
OR *flow) AND NOT (medic* OR *coding OR
code OR programming OR neural OR optical
OR training)

Adding also “manufacturing” domain for more
specific scoping.

((exception* OR failure OR error OR deviat*)
AND (type OR categor* OR classification OR
taxonomy OR pattern OR handling)) AND

From a quick scanning, the term “defect”
resulted in studies that have a narrow scope (e.g.,
on product quality) than the current research. So,

49 https://www.sciencedirect.com/
50 https://Www.scopus.com

117

https://www.sciencedirect.com/
https://www.scopus.com/

(process OR *flow) AND NOT (medic* OR
*coding OR code OR programming OR neural
OR optical OR training)

the term “defect*” was removed. Given that the
rest terms provide a lot of coverage, this
exclusion should not have great impact on rigor.

((exception* OR failure OR error OR deviat*)
AND (type OR categor* OR classification OR
taxonomy OR pattern OR handling)) AND
(process OR *flow) AND NOT (medic* OR
*coding OR code OR programming OR neural
OR optical OR training OR simulat* OR {type
I error} OR {type Il error})

Excluding studies focusing on simulation or
mathematical problems.

Inclusion/exclusion criteria are specified to further limit the search results:
e Fetch studies that are published only the last 15 years before the SLR is conducted
(i.e., excluding studies from 2005 and before). 15 years is considered a
representative period for state-of-the-art work on the topic. Of course, with the
“snowballing method (Wohlin, 2014), relevant work published before 2005 can be

obtained.

e Studies should be published in English language.
e Studies for which the full-text is accessible are considered.

The search and selection procedures are illustrated in Figure 74. The results from both Scopus
and ScienceDirect are first checked for duplicates. A first filtering is performed based on the
relevance of the title, leading in a “long list” of results. At the next step, the remaining results
are filtered on relevance based on both title and abstract, leading to a “short list”. With
“snowballing”, extra studies are retrieved through Google Scholar®! that are missing from
the results. The final short list of selected studies to be analyzed is available on Appendix

D.2.

51 https://scholar.google.com/

118

https://scholar.google.com/

Science
Direct
77777 -~

N Search term(s)
“| (Title — Abstract — Keywords)

| Accessible .~
s

}

Filter on relevance based on
Title

——F—
994 736 187 7 “long list T
studies studies studies [>T J

‘ Remove duplicates ‘

Filter on relevance based on |/ Scanning whole study |
. ifabstract is not clear
Title & Abstract I

N\, tojudge relevance
\

7 [
T T 1
1423 & < “short”list |
studies studies e

}/,/ Direct search for

relevant studies that
. are missing
-

Scholar

Google “Snowballing”

(> .
76 -7 “Short” list |
studies |

N, (final) 1
-

-

Figure 74: SLR search and selection procedure overview.

iv) Data Extraction and Synthesis

From the final short list of selected studies, 19 studies yielded types of exceptions. All those
types have been categorized under common groups (by logical reasoning) to obtain a
reasonable number of categories. Table 11 presents the results.

The categories are rather self-explanatory, so no more analysis is required. It is noteworthy
to mention though, that some studies study exceptions from a very general or high-level
perspective, e.g., machine-related or process-related exceptions by Keddis et al. (2016), while
others present more detailed categories, e.g., wear on tools by Qian et al. (2020). Moreover,
the study from Eder & Liebhart (1995) simply discusses the fact whether an exception is
expected or not. This “type” has been placed in the “Various” categories at this step. In the
synthesis phase (discussed in Section 4.2.3), it is revised whether it is included in the designed
categorization or not.

119

Table 11: Categorization of exception types through analysis of SLR.

Studies

Exception types categories

Dahl et al. (2021)

Chavez et al. (2020)

Qian et al. (2020)

IFarooqui et al. (2016)

Sahno et al. (2015)

IRitter & Sosulski (2014)

IReichert & Weber (2012)

|Antunes (2011)

de Snoo et al. (2010)

|Adams et al. (2007)

IBruccoleri et al. (2007)

IRussell et al. (2006a)

IMourdo & Antunes (2005)

ILuo et al. (2000)

Casati et al. (1999)

Eder & Liebhart (1995)

Strong & Miller (1995)

Resource General

> [Misic et al. (2010)

-related Machine- | General

>| [Keddis et al. (2016)

>

related Equipment malfunction

b

Machine/equipment breakdown

il

[

Limited operations/Deterioration

[

Task failure
(expected/unexpected)

Specification errors

Unavailable

Tool- Wear

related Disqualified

Occupied

Material/ | Unavailable

Product- | Delayed delivery

related Missing parts

Processability issues

Quality issues

Personnel-| Operator
related absenteeism/Unavailability

Disqualified

Improper operation

Delayed operations

Ll e B B E P P P E e e B

Training deficiency

Change in orders (requirements)

>

120

Order-
related

Cancellation

Priority change/Rush orders

Process-
related

General

Activity failure

Message-flow failure

Operation errors

Work item abort/failure

Time-
related

General

> [

Timeouts/Deadline expiration

Event-
related

General

Temporal events

Workflow events

External events

[<

X

Unspecified events

Data-
related

General

Application failures (unexpected
data)

Various

Software bugs

Constraint rules

Constraint violations

Communication failure

Basic failures

Infrastructure exception

Power outage

Management problem

Supplier/subcontractor problem

Design problem/error

il

Disqualified working conditions

Expected

Unexpected

121

4.2.2 Input from practice on exceptions

Two kinds of practical inputs were gathered: i) empirical data that represent occurred
exceptions at TRI pilot, discussed in Section 4.2.2.1, ii) discussion through semi-structured
interviews with industry practitioners from the pilots, discussed in Section 4.2.2.2.

4.2.2.1 Empirical data on exceptions from industry

TRI pilot is a representative example of manufacturers operating in high mix-low volume
production and dynamic environments. The pilot served as a good base to gather exceptions
as occur in practice. The company notes exceptions in a “Rejects Goods” report (shown in
Appendix E), which briefly describes information on detection of an exception, causes, risk
analysis, and actions to remedy the issues. Information from such reports is stored as data
entries in a database source. 1006 data entries were gathered, representing exceptions
occurred in a timeframe of two years (February 2017 — February 2019) (Verdonschot, 2020).

The categorization of exceptions resulting from the SLR (Table 11) served as a structured
starting point to categorize the exceptions occurred at TRI. Of course, new categories shall
be added if are not identified by literature. The analysis of the data is summarized in the
categorization of occurred exceptions in practice, shown in Table 12. As can be seen, all
occurred exceptions fit the six high-level categories from SLR: resource-related, order-
related, process-related, event-related, data-related and various exceptions. At the more
concrete levels, new categories have been added, like for instance the work item deviation,
referring to exceptions occurring on items that can be repaired, without hindering the
continuation of the process or compromising quality levels. Also, more detailed levels have
appeared, as for example in the equipment malfunction category in which more detailed types
have been identified (e.g., an equipment malfunction can be on the hardware itself, or the
software or the method used to operate it). The more detailed types of exceptions are
extremely useful for selecting and applying appropriate and efficient handling strategies.

At Table 12, the exceptions fitting under the categories from SLR are highlighted in light-
blue. The new added categories that appeared in practice but not in literature are highlighted
in light-green. Of course, the sample of 1000 exceptions at a single organization might not
be representative to generalize the results, but it gives good insights on how exceptions
appear in practice. Regarding the frequency of the exceptions at TRI, work-item deviations
appeared the most (29%) as symptoms, with work item failures (27%) and resource
malfunction (10%) following. Investigating more thoroughly the symptoms, to find the root
cause of an exception, it appeared that a resource malfunction was responsible for nearly half
of the occurred exceptions (48% including indirect causes). Given that the machines and
equipment at TRI are in general robust, this observation is rather in line with the assumption
that the high number of machines might cause issues at production. Moreover, the frequency
of exceptions which had an external trigger as a root cause (13%), indicates the dynamicity
of environments in which TRI operates, and also the poor integration with external parties.

122

Table 12: Categorization of (occurred) exception types at TRI pilot. Categories in light-blue match the ones from SLR (Table 11). Categories in light-green
appeared in practice but not in literature.

Exception types categories (occurred)

Description/Example

Resource- | Machine- Equipment Hardware Hardware malfunction of a machine during (automated) operation.
related related malfunction Software A software-related failure on a machine.
Method A malfunction of the method that is used during (automated) operation of a machine.
Indirect A malfunction on a machine caused by an indirect action.
Maintenance A malfunction caused by insufficient maintenance.
Machine/equipment
breakdown Exception caused when a machine/equipment stops operating.
Tool-related Malfunction A malfunction on a tool used by a machine or a human operator.
i\é[la;teeréal/Product— AR Unavailable parts that pause the continuation of a process (e.g., not in inventory).
Personnel-related | Human error Any mistake caused by a human action.
?e{gteg(; Dzl Gpiton Reaching a deadline for not sending an order to a customer on time.
Process- Work item abort/failure A deviation on work items that cannot be repaired and stop the process. For instance,
related damaged or deformed items.

Work item deviation Direct A deviation on a work item caused by the process(s) it is involved in. Though, the
deviation is repairable (e.g., lose layers that can be tightened) and does not impede the
continuation of a process (in contrast to work item abort/failure category).

Indirect A deviation on a work item caused by indirect actions outside the scope of the process(s)
the item is involved in.
External A deviation on a work item caused by an external party.
Work item unavailable Work item is missing/not available for further process.
el TlmequDeadllne Reaching a deadline/goal for completing an action/process.
expiration
Event- External event Supplier event Exception caused by a supplier, e.g., delivered items with missing burrs/screws.
related Customer event Exception caused by a customer.
Government event Exceptions caused by government’s and/or authorities’ changes on regulations and
policies.
Environment/market . . .
event Exceptions caused by environmental circumstances.
Data- Ambiguous data Data that can be interpreted with multiple ways and the selected way leads to errors.
related Incomplete data Data is not complete to continue a task/process.

Incorrect data

Data is incorrect that leads to errors.

123

Incorrect data

Data coming from external parties (e.g., supplier) is incorrect that leads to errors.

(external)
Qver-sp§c1ﬁed Too much (redundant) data that causes errors and hinders efficiency.
information
Unknown Exceptions on data that their type could not be determined.
Various Software bug A software-related error on applications.

Constraint violation

Direct Inconsistencies in the production process as deviations from the modeled process. For
example, non-executed actions that should have been executed according to
instructions.

Indirect Inconsistencies in an indirect process as deviations from the corresponding modeled
process.

Limitation The specifications of a product are not achievable/reachable with the specifications of

the process in which it is involved.

Performance analysis

Exceptions arising when delivery performances are not reached by the company or a
supplier.

Unknown

Exceptions whose (root) cause has not been identified.

124

4.2.2.2 Interviews with industry practitioners on exceptions

More insights on exceptions (and their handling) have been looked for through discussions
with industry practitioners. Semi-structured interviews (Adams, 2015) were chosen to allow
for better explanations and follow-up questions, compared to static questionnaires.
Practitioners from three pilots from the SHOP4CF project were contacted. The two were
available for interviews, while the third could only respond on paper. Due to the COVID-19
pandemic measures>?, the interviews were conducted in an online setting.

The structure of the discussion during the interviews has three main parts: questions on the
types of exceptions (the high-level categorization from a preliminary SRL was used as a good
base), questions on the frequency and criticality of occurred exceptions, and current handling
strategies. The structure of the questionnaire is available on Appendix F.1. Of course, as the
interviews were semi-structured, the questionnaire was not always followed exactly. Though,
important insights were gathered that respond to the main questions. The responses and full
transcripts of the discussion are also available in Appendix F.

The outcome of all three interviews is summarized in Table 13. The exceptions fitting under
the categories from SLR are highlighted in light-blue. The new added categories that appear
in practice but not in literature are highlighted in light-green.

Table 13: Categorization of exception types appearing at SHOP4CF pilots. Categories in light-blue
match the ones from SLR (Table 11). Categories in light-green appeared in practice but not in
literature.

Exception types categories Pilot A Pilot B Pilot C
Resource- Machine-related | Equipment malfunction Rarely Rarely Yes
related Machine/equipment Rarely No Yes
breakdown
Unavailable Rarely - -
Tool-related Malfunction Rarely No Yes
Material Unavailable - - Yes
/Product-related | Missing parts Yes No No
Personnel- Operator) _ Yes
related absenteeism/unavailability
Improper operation Rarely No No
Human error Yes - Yes
Order- Change in order
related (requ?remems) Rarely Yes Yes
Cancellation Yes Yes Yes
Priority change/Rush order Under Under Under
conditions conditions conditions
Process- Activity failure No No No
related Message-flow failure Rarely - Yes
Time-related Timeouts/Deadline expiration Rarely - -
Data- Connectivity issue Yes) Yes
related
Various Software bug Rarely Rarely Rarely
Constraint violation No - -

As can be seen, most of the main categories identified in literature (except the event-related
category which was not discussed thoroughly during the interviews) appear in practice,

52 https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response_en

125

https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response_en

without much frequency though. For example, two pilots indicated that equipment
malfunction are rare disrupting events, due to the proper maintenance taken. On the other
hand, the third pilot, indicated that while they might haven even daily machine
breakdowns/malfunctions, the impact is not very high due to additional/spare production
lines (this approach is also discussed in Section 4.3.1.2 as part of handling strategies).
Similarly, software bugs are not common issues due to the efficient testing before
implementation. However, pilot B mentioned that the first period of deployment of a new
system, software errors might appear. Activity failure was not recognized as a category, as
the reasons causing an activity to fail have already been identified on other categories.
Improper operation (e.g., a part that is fed in a wrong way onto a machine) is not an identified
type of exception, however human errors in general are recognized as common errors.
Regarding data related exceptions, two pilots indicated that connectivity issues are the culprit
for such exceptions.

4.2.3 Designed categorization of exception types

The input from literature (SLR), discussed in Section 4.2.1, and the input from practice,
discussed in Section 4.2.2, are synthesized to produce a final categorization of exception
types. Categories from SLR (Table 11) are re-structured/revised and combined with
outcomes from practice (Table 12 and Table 13) into a single categorization. Design
decisions are discussed below. To ease the discussion, the above three categorizations are
labeled as follows: C1 for Table 11, C2 for Table 12, and C3 for Table 13. The design
decisions are grouped under the self-explanatory categories of abstraction, omission,
inclusion (enrichment), merge, addition and move.

Abstraction

Design decision 1): The final categorization consists of four abstraction levels. The first three
are the ones originating from C1 (also appearing in C2 and C3), and the fourth one (the most
detailed) originating from C2.

Design _decision 2): “Equipment malfunction” and “machine/equipment breakdown”
categories from C1 are further detailed into a fourth abstraction level with values from C2.
More specifically, “Hardware exception”, “Software exception”, “Incorrect (use of)
method/operation” are added (renamed from C2 for clarity). Category “Indirect” from C2 is
not considered as the exception shall be attributed in one of the rest categories (also, that one
has very low occurrence frequency which does not justify its inclusion). “Maintenance” from
C2 is not considered either, as insufficient maintenance is seen as a root cause of a
malfunction or breakdown exception which has to be handled anyways as identified type.

Design decision 3): A material/product can face various defects (Tonnes, 2018), especially
when it is a complex one. All types of defects are impossible to consider and not relevant
when trying to categorize exception types. Therefore, “Processability issue” and “Quality
issue” on third abstraction level of “Material/Product-related” category from Cl1 is not further
detailed.

Design decision 4): “Improper operation” subcategory on third abstraction level under
“Personnel-related” category from C1 is renamed into the more generic “Human error”, in
accordance with C2 and C3. Human errors are common source of exceptions in industry,
affected by many factors (Franciosi et al., 2019) (even operator’s social life can affect his/her

126

performance (Reyes et al., 2015)). Bollhoff et al. (2016) provide a taxonomy on human
errors. However, as this research aims at helping in resolving an exception, it is not of interest
to identify the specific cause that led to the human error. It is the result (exception) that finally
matters, so actions should be taken based on it (and not on the origin that led to the exception).
Moreover, the origin/root cause that has led to a human error, might already have been
attributed to a different category of exception. For instance, erroneous or ambiguous
information that an operator receives (Calvo Olivares et al., 2018) might well be considered
as a data-related exception, which will require corresponding actions. Especially in
production scenarios where a task can well be executed both by a robot or an operator, from
a process perspective the exception should not be seen as a human error but as a different
type of error (e.g., data-related or activity failure).

Design decision 5): The “External events subcategory on third abstraction level under
“Event-related” category from C1 are further detailed into a fourth abstraction level with
values from C2. More specifically, “Supplier event”, “Customer event”, “Government event”
and “Environment/market event” subcategories are added.

Omission

Design decision 6): Categories labeled as “General” on the third abstraction level of C1 are
omitted as they do not provide detailed information that could help in their handling.

Design decision 7): “Task failure (expected/unexpected)” subcategory on third abstraction
level under “Machine-related” category from Cl1 is excluded, as a failure of a machine to
perform a task is more relevant from a process perspective (for instance for resource
allocation purposes). Consequently, a relevant category is instead placed under “Process-
related” category (see Design decision 26).

Design decision §): “Specification errors” subcategory on third abstraction level under
“Machine-related” category from C1 is omitted, assuming that the operating
machine/equipment has been selected properly. Moreover, if the specification errors refer to
issues using a machine, these are rather covered by the category “Incorrect (use of)
method/operation” (see Design decision 2).

Design decision 9): “Delayed delivery” subcategory on third abstraction level under
“Material/ Product-related” category from CI is excluded. The fact that a part has been
delivered late means that it was not available when needed. Thus, this type of exception is
rather incorporated under the “unavailable” material/product subcategory.

Design decision 10): “Disqualified” subcategory on third abstraction level under “Personnel-
related” category from Cl1 is excluded. The fact that an operator that causes an error is
disqualified, is a resource allocation deficiency at first place. In other words, when an error
occurs, it has to be solved regardless of being due to insufficient skills of an operator.
Similarly, the “training deficiency” subcategory is omitted.

Design decision 11): “Delayed operation” subcategory on third abstraction level under
“Personnel-related” category from C1 is excluded. The reason is that delays are covered by
time-related exception types from a process perspective, which are also ignorant whether it
was a human operator or an automated device that caused the delay.

127

Design decision 12): “Deadline expiration” subcategory on third abstraction level under
“Order-related” category of C2 is not included in the final categorization. Missing a customer
delivery deadline means that either delivery activities take longer (which is out of the
production scope that this research considers) or production activities has taken longer (which
can be due to time-related exceptions from a process perspective).

Design decision 13): “Workflow event” subcategory on third abstraction level under “Event-
related” category from C1 are excluded as they rather refer to the general “Process-related”
category.

Design decision 14): The “Unspecified events” subcategory on third abstraction level under
“Event-related” category from C1 is excluded as it is vague. Also, any event should fit under
the rest categories.

Design decision 15): The “Application failure (unexpected data)” subcategory on third
abstraction level under “Data-related” category from C1 is excluded as it is not considered
purely data-related issue. Application failures are treated as software issues under resource-
related categories. Though, the data (any information in general) used during execution of
activities, either through a (software) application or verbally is relevant. Issues there can be
due to ambiguous data, missing/incomplete or incorrect data, as identified from C2. “Over-
specified information” on third abstraction level under “Data-related” category from C2 is
not included as an exception type. If an error occurs due to redundant information, it is rather
a design issue to help this solved. “Unknown” subcategory on third abstraction level under
“Data-related” category is excluded as it is vague.

Design decision 16): “Basic failure” subcategory on third abstraction level under “Various”
category from C1 excluded as it is vague.

Design decision 17): “Management problem” subcategory on third abstraction level under
“Various” category from C1 is removed as it is rather a general issue on tactical or strategic
level and not on operation level that this research considers.

Design decision 18): “Supplier/subcontractor problem” subcategory on third abstraction
level under “Various” category from Cl1 is removed as it is covered by the “Supplier event”
subcategory on fourth abstraction level under “External event” category under “Event-
related” category (see Design decision 5).

Design decision 19): “Design problem/error” subcategory on third abstraction level under
“Various” category from Cl1 is removed as it typically cannot be resolved within reasonable
time frames during production operations.

Design decision 20): “Disqualified working conditions” subcategory on third abstraction
level under “Various” category from Cl is removed as this typically refers to continuous
situations that lead to such conditions, and not to current disrupting events during production
operations.

128

Design decision 21): “Expected” and “Unexpected” subcategories on third abstraction level
under “Various” category from C1 are removed as they do not refer to what is the exception
under consideration but on its characteristic whether it is expected or not.

Design decision 22): “Performance analysis” subcategory on third abstraction level under
“Various” category from C2 is not included as it is mostly refers to exceptions on tactical or
strategic level and not on operation level that this research considers. For example, if a KPI
of a process is not achieved, redesign actions are required. Moreover, if it refers to
performance on operational level, such issues are mostly covered by the “Quality issue”
subcategory.

Design decision 23): “Unknown” subcategory on third abstraction level under “Various”
category from C2 is not included as it is vague.

Inclusion (enrichment)

Design decision 24): “Limited operations/Deterioration” subcategory on third abstraction
level under “Machine-related” category from Cl1 is kept in the final categorization to denote
exceptions that might not hinder the continuation of the usage/operation of a machine, but
actions are needed (e.g., repair, maintenance, change of machine).

Design decision 25): The “Tool-related” category from Cl1 is enriched with the
“Malfunction” subcategory on the third abstraction level, originating from both C2 and C3.
The rest three subcategories on the third abstraction level from C1 remain, renaming though
the “Occupied” subcategory into “Occupied/unavailable” as the main point is to denote that
the tool is not available for use.

Merge

Design decision 26): Process consist of activities (subprocesses or tasks). To avoid ambiguity
and duplicates, the “activity” is selected to cover also the terms “operation” and “work item”.
Thus, the subcategories “Activity failure”, “Operation errors”, “Work item abort/failure” on
third abstraction level of “Process-related” category from Cl, together with subcategory
“Work item deviation” on third abstraction level of “Process-related” category from C2 are
incorporated into the subcategories “Activity abort/failure” and “Activity deviation”. The
former describes the exceptions that lead to a termination of the activity and alternative paths
have to be selected, while the latter describes exceptions where reties are possible to recover
the state of the activity and allow for its continuation. Note that the scope of an exception is
relevant, i.e., whether it refers to a single task, a subprocess or an entire process. Though,
there is no need to further detail the subcategories. Moreover, the term “work item” on the
third abstraction level of C2 rather refers to material/product as “items” under work/process.
In that respect, their “deviation” and “unavailability” are treated under the “material/product”
category. The deviation can be seen either as a processability issue or a quality issue.

Addition

Design decision 27): An “Internal event” subcategory on third abstraction level under
“Event-related” category is added to distinguish events happening within the boundaries
(physical or functional) of an organization, compared to the external events happening

129

outside the organization. A subcategory “Emergency event” is added on fourth abstraction
level under the new “Internal event” subcategory.

Design decision 28): “Connectivity issues” subcategory on third abstraction level under
“Data-related” category from C3 rather refers to infrastructure issues. Though, a connection
issue typically causes lack of data or wrong data or duplicate data due to synchronization
issues. Thus, a subcategory “Data synchronization issues” on third abstraction level under
“Data-related” category is added.

Design decision 29): “Software bug” subcategory under “Various” category from Cl is
considered an issue on any running software application (e.g., an information system). A
software application is deployed on infrastructure (either on premise or on “cloud”), which
is seen as resource. Therefore, an “Infrastructure-related” category on second abstraction
level is added under “Resource-related” category from C1. Then, an “Application issue”
subcategory is added on third abstraction level under that “Infrastructure-related” category.
Consequently, the software bug (or any issue) is added on fourth abstraction level under that
“Application issue” subcategory.

Design decision 30): “Infrastructure exception” and ‘“Power outage” subcategories on third
abstraction level under “Various” category from Cl are both covered under a new
subcategory named “Asset issue” on third abstraction level under “Infrastructure-related”
category (new category resulted from Design decision 29).

Move

Design decision 31): “Temporal event” subcategory on third abstraction level under “Event-
related” category from C1 are moved on third abstraction level of “Time-related” subcategory
of “Process-related” category as it refers to time events on activities.

Design decision 32): “Constraint rule” and “Constraint violation” subcategories on third
abstraction level under “Various” category from C1 are moved on third abstraction level
under “Process-related” category as they refer on constraints on activities. The subcategories
“Direct”, “Indirect” and “Limitation” on fourth abstraction level under “Constraint violation”
subcategory under “Various” category from C2 are not included as they are deemed as not
relevant and sufficient to be generalized.

Design decision 33): “Communication failure” subcategory on third abstraction level under
“Various” category from C1 is moved on third abstraction level under “Infrastructure-
related” category (new category resulted from Design decision 29).

Based on the above design decisions, the final categorization of exception types is presented
in Table 14.

130

Table 14: Designed categorization of exception types.

Exception types categories

Resource- | Machine-
related related

Equipment malfunction

Hardware exception

Software exception

Incorrect (use of)
method/operation

Machine/equipment
breakdown

Hardware exception

Software exception

Incorrect (use of)
method/operation

Limited
operations/Deterioration

Unavailable

Tool-related

Malfunction

Wear

Disqualified

Occupied/Unavailable

Material/

Unavailable

Product-

Missing part

related

Processability issue

Quality issue

Personnel-
related

Operator
absenteeism/Unavailability

Human error

Infrastructure

Application issue

(Software bug/issue)

-related

Communication failure

Asset issue

Order-
related

Change in order
(requirements)

Cancellation

Priority change/Rush order

Process-

Activity abort/failure

related

Activity deviation

Message-flow failure

Constraint rule

Constraint violation

Time-
related

Timeout/Deadline
expiration

Temporal event

Event-

Internal event

(Emergency event)

related

External event

Supplier event

Customer event

Government event

Environment/market event

Data-

Ambiguous data

related

Missing/incomplete data

Incorrect data

Incorrect data (external)

Data synchronization issues

131

4.3 Operational exception handling

Upon occurrence of an exception, handling mechanisms take place to resolve any issues.
Corrective actions typically have the form of handling patterns or strategies, especially for
expected exceptions, while for unanticipated exceptions they rely on performing ad hoc
interventions during runtime (Marrella et al., 2018). Various strategies and patterns have been
identified in literature. However, each strategy is suitable for specific type(s) of exceptions.
This research aims to design guidelines on selecting the right strategy/pattern based on the
type of exception occurring during operations. The determination of a suitable handling
approach also depends on how well the organization is performing or desires to perform. Any
KPIs that the organization deploys to measure performance on operation level might affect
the selection of handling strategies. For instance, if KPIs on quality are of highest priority for
a manufacturer, retaining quality while compromising delivery time is an important factor to
select corrective actions when exceptions occur.

This section presents the design of operational exception handling guidelines. First, exception
handling strategies/patterns are studied in Section 4.3.1. KPIs for MOM operations are
considered in Section 4.3.2. The design of the guidelines is described in Section 4.3.3.

4.3.1 Existing exception handling approaches

This section identifies existing exception handling approaches. Literature is the main source
of knowledge, as discussed in Section. 4.3.1.1. Practice has also been consulted to check
whether missing or non-identified strategies/patterns exist, as discussed in Section 4.3.1.2.

4.3.1.1 Exception handling approaches from literature

The SLR presented in Section 4.2.1 covers, apart from exception types, handling approaches
as well. This has been taken into consideration in the search terms. The resulting short list of
studies provided a solid base to look for exception handling strategies or patterns. Table 15
lists the most prominent approaches to handle exceptions. The approaches are named in a
rather straight-forward way (further explanation is given later when needed). Obviously,
common approaches (with same or similar labeling) have been identified by many
researchers. The list is revised in Section 4.3.3.1 to avoid duplicates/overlaps and to create a
final list of exception handling approaches.

Keddis et al. (2016) present only a few options, but with an explicit focus on manufacturing.
De Snoo et al. (2010) mostly focus on production planning approaches. A process perspective
is considered in many studies (e.g., Reichert & Weber (2012b), Russell et al., (2006a) or the
work of Mourfo & Antunes (2005), Reichert & Weber (2012a) on unexpected exceptions),
without, though, (clear) reference to manufacturing. While their identified approaches are
relevant and valid, their applicability in the physical world of manufacturing needs
investigation, especially for exception types refereeing to physical objects (e.g., machine
breakdown). It is important, thus, to provide some guidance on which handling approach to
select based on the type of occurred exception.

132

Table 15: Exception handling strategies/patterns as appear in literature.

Exception handling strategies/patterns

Study

e Retry assembly
e Discard workpiece
e Replace order

Keddis et al. (2016)

Compensation activity

Retry activity

Continue process

End process and propagate exception
Terminate process

Ritter & Sosulski (2014)

Adding or deleting process fragments
o Insert process fragment
o Delete process fragment
e Moving or replacing process fragments
o Move process fragment
o Replace process fragment
o Swap process fragment
o Copy process fragment
* Adding or removing process levels
o Extract subprocess
o Inline subprocess
e Adapting control dependencies
o Embed process fragment in loop
o Parallelize process fragments
o Embed process fragment in conditional branch
o Add control dependency
e Change transition conditions
o Update condition

Reichert & Weber (2012a)

e Trying alternatives

o Ordered alternatives

o Unordered alternatives
e Adding behavior

o Immediate fixing

o Deferred fixing

o Retry
o Rework

e Cancelling behavior
o Reject

o Compensate
e Resource-related handling patterns
o Delegation
o Escalation
o Reallocation (stateful/stateless)
o Deallocation
e Flexible handling
o Suspension/Resumption

o Skipping
o Redo

o Pre-do

o Cancel

Reichert & Weber (2012b)

Allocate damage

Repair (production) plan

Replan

Improve plan

Refer upwards or start lateral coordination
Do nothing

De Snoo et al. (2010)

Trying alternatives
o Ordered alternatives

Lerner et al. (2010)

133

o Unordered alternatives
Adding behavior

o Immediate fixing

o Deferred fixing

o Retry

o Rework
Cancelling behavior

o Reject

o Compensates

Taking no measures
Rollback operation
Skipping exception node
Compensation operation

Wu (2009)

Remove work item
Remove case
Remove all cases
Suspend work item
Suspend case
Suspend all cases
Continue work item
Continue case
Continue all cases
Restart work item
Force complete work item
Force fail work item
Compensate

Adams et al. (2007)

Work item level handling

o Continue offer
Reoffer
Force-fail-offer
Force-complete-offer
Continue-allocation
Reallocate
Reoffer-allocation
Force-fail-allocation
Force-complete-allocation
Continue execution
Restart
Reallocate-start
Reoffer-start
Force-fail
Force-complete
Case level handling

o Continue workflow case

o Remove current case

o Remove all cases
Recovery action

o No action

OO0 O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOo

Russel et al. (2006a)

o Rollback
o Compensate

e Abort Mourdo & Antunes (2005)
o Hard

o Compensate some tasks
o Compensate all tasks

Decrease completion time to meet deadline
Recover from a system failure condition and replace the system in

automatic mode

Recover from a task failure and place the system back in automatic

mode

134

e Recover to achieve the lowest penalty possible, i.e., to minimize the
impact
e Jump forward to a task in the work model
e Repeat a previous task that was not executed in the desired way
e Jump backwards in the work model and compensate some already
executed tasks
e Delay this task
e React to environmental changes
Masking Luo et al. (2000)
o Hierarchical
o Group
e Workflow recovery
o Ignore
Warning
Retry
Suspend/Stop/Resume
Backward recovery
o Forward recovery
e Workflow changes
o Moditying Justified Event-Condition-Action (JECA) rules
o Inserting JECA rules
o Removing JECA rules
o Commutative change
o Combination of the above
e (Case-based reasoning
o Retrieval of the most similar cases to the identified exceptional
situation
o Analysis of the solution from the most similar cases
Adaptation of the most similar cases
o Updating of the system by adding the verified solution to the case
repository

O O O O

[¢]

4.3.1.2 Exception handling approaches from practice

With the list of exception handling approaches from literature as a solid base, input from
practice is considered to check whether other approaches are applied. The empirical data of
TRI pilot used for exception types (Section 4.2.2.1) is a good source. Moreover, the
discussion with industry practitioners (introduced in 4.2.2.2) is additional useful input.

Analyzing the TRI datasource, with around 1000 data entries, many of the literature
approaches are encountered in practice, as shown in Table 16. Extra categories have been

identified, which are not relevant for further analysis (“Not operation related”, “Unknown”).

Table 16: Exception handling actions taken at TRI pilot.

Exception handling actions Frequency | Supported by literature
e Abort 453 Keddis et al. (2016)
Reichert & Weber (2012)

Adams et al. (2007)
Russel et al. (2006a)
Mourdo & Antunes (2005)

e Meet deadline 2 Mourdo & Antunes (2005)
e Recover from system failure 1 Mourdo & Antunes (2005)
e Minimize impact 1 Mourdo & Antunes (2005)

135

e Repeat previous task 20 Keddis et al. (2016)

Ritter & Sosulski (2014)
Reichert & Weber (2012)
Adams et al. (2007)
Russel et al. (2006a)
Mourdo & Antunes (2005)

e Jump backward 68 Mourdo & Antunes (2005)

e Delay task 37 Mourdo & Antunes (2005)

e Compensate some tasks 59 Ritter & Sosulski (2014)
Reichert & Weber (2012)
Wu (2009)

Adams et al. (2007)
Russel et al. (2006a)
Mourdo & Antunes (2005)

¢ Contact internally 15 Ritter & Sosulski (2014)
Reichert & Weber (2012)
De Snoo et al. (2010)

e React to environmental changes 12 Mourdo & Antunes (2005)

e No action 48 Ritter & Sosulski (2014)
Reichert & Weber (2012)
De Snoo et al. (2010)
Wu (2009)
Russel et al. (2006a)

e Not operation related 138 -

e Unclear 120 -

The discussion with practitioners (transcripts available in Appendix F) did not reveal any
new handling approaches. All three pilots apply regular approaches as appear in literature.
Pilot C raised an interesting point with respect to handling equipment-related exceptions.
They mentioned that in a few places in their production facilities they have additional
production lines that take over production. While this is definitely an approach to avoid
downtimes, it requires in advance design/configuration of facilities. From an operational
point of view (scope of this research on exceptions), that approach cannot be generalized
given that not every manufacturer can provide/support this alternative. It will be included,
though, as an option in the selected list of exception handling approaches (revised in Section
4.3.3.1).

43.2 MOM KPIs

Key Performance Indicators (KPIs) represent a set of critical measures of organizational
performance for current and future success (Parmenter, 2010). KPIs quantitatively evaluate
the performance of organizations and are driving forces towards their strategic objectives
(Wang & He, 2012). KPIs are implemented at multiple levels in an organization, but the
focus of the current research is on the ones at MOM level. Typical performance metrics on
operational level are Overall Equipment Effectiveness (OEE), as a multiplier of Availability
x Performance x Quality of equipment, and First Time Yield (FTY) (also labeled as First
Pass Yield), as percentage of products that are manufactured correctly (according to
specifications) the first time through the manufacturing process without scrap or rework.

Developing performance metrics vary per industry and organization (Muhammad et al.,
2018). Furthermore, manufacturing enterprises might implement just a few of a long list of

136

available measurements. The implemented KPIs can have their own criticality based on
organizations strategies, which means priorities on getting/keeping high values on some
metrics over others is often the case. When exceptions occur, the values of the implemented
KPIs have to be taken into account for choosing optimal corrective actions. For instance, in
case of a product defect, a low score on a KPI measuring quality (which is deemed with high
priority) will guide operators on retaining/achieving quality targets instead of meeting
delivery deadlines.

In order for this research to use well-defined and widely accepted KPIs in the operational
exception handling guidelines, literature is consulted. The MESA organization performed a
survey among manufacturers and associations to help identify the most important
performance metrics. The survey resulted in 28 metrics (MESA, 2014) being used the most
by manufacturers. These are grouped in eight categories based on the associated top-level
area of improvement®*:

Improving customer experience and responsiveness,
Improving quality,

Improving efficiency,

Reducing inventory,

Ensuring compliance,

Reducing maintenance,

Increasing flexibility and innovation,

Reducing costs and Increasing profitability.

As can be seen from the categories, there are KPIs covering a broader spectrum than
production, like for example the “Net Operating Profit” (measuring the financial profitability
for all investors/sharcholders/debt holders for a manufacturing plant or business unit) under
last category.

ISO created the 22400 standard “Automation systems and integration — Key performance
indicators (KPIs) for manufacturing operations management”, consisting of two parts: “ISO
22400-1: Overview, concepts and terminology” (International Standards Organization,
2014a) and “ISO 22400-2: Definitions and descriptions” (International Standards
Organization, 2014b). The standard includes a list of 34 KPIs with a clear focus on MOM
level. Apart from being a standard to be used in industry, it has also received academic
interest (Kang et al., 2016; Muhammad et al., 2018; Zhu et al., 2018). Of course, the list of
the 34 metrics cannot be directly applicable in all manufacturing scenarios, but improvements
and corrections are needed (Zhu et al., 2018). To give some structure and refinement in the
34 1SO 22400 KPIs, Kang et al. (2016) provide a categorization, illustrated in Figure 75.
They define metrics as “Supporting elements”, “Basic’KPIs” and “Comprehensive KPIs”.

33 «28 Manufacturing Metrics that Actually Matter (The Ones We Rely On)” (Mark Davidson) -

https://blog.Insresearch.com/blog/bid/188295/28-manufacturing-metrics-that-actually-matter-the-
ones-we-rely-on

137

https://blog.lnsresearch.com/blog/bid/188295/28-manufacturing-metrics-that-actually-matter-the-ones-we-rely-on
https://blog.lnsresearch.com/blog/bid/188295/28-manufacturing-metrics-that-actually-matter-the-ones-we-rely-on

Comprehensive KPIs

P

-+——»| Productivity |-«———{ Maintenance

Basic

KPIs

Quality

Supporting

Elelments

Production ~ Maintenance Production Quality

Machine Order Worker

Figure 75: Categorization of MOM KPIs (Kang et al., 2016).

For the purposes of this research, it is not needed to provide detailed definitions of either the
28 MESA or 34 ISO 22400 standard KPIs. Especially when each organization can modify
these metrics per need. It is the general categories that give an indication for which KPI to
consider during the exception handling process. Given also that the scope is on operational
processes, the following categories of KPIs are further considered:

Customer experience/Delivery time
(Product) Quality
Efficiency/Productivity
(Production) Costs

bl

4.3.3 Designed operational exception handling guidelines

This section presents the artefact of the operation exception handing guidelines and their
design. First, the long list of exception handling strategies/patterns identified in Section 4.3.1
is revised to keep a compact and unique list to be used in the design. Section 4.3.3.2 discusses
the steps that lead to the designed guidelines.

4.3.3.1 Selected exception handling approaches

Taking the process perspective as the leading one, instead of resources or data for example,
the main approaches to handle an exception on operation level can be grouped in eight
categories:

1. Retry, i.e., repeating an activity.

2. Try alternatives, i.e., perform different actions and/or using different equipment to
achieve the objective.

3. Compensate, i.e., perform some activities to bring the system back to same state
before the exception occurred.

4. Rollback, i.e., undo some activities to bring the system in a previous state.

138

5. Suspend/Resume, i.e., pause an activity until exception is resolved and resume it
afterwards.

6. Continue process, i.e., move to the next activities.

7. Terminate, i.e., stop an activity/process.

8. Escalate, i.e., look for support at different resources.

These eight categories consolidate the approaches of literature and practice. Each of the
category represents a direction towards corrective solutions, including a few more detailed
approaches. The final list of the selected exception handling approaches is summarized in
Table 17.

Table 17: Identified exception handling approaches after literature and practice consolidation.

Exception handling strategies/patterns
1. Retry a. Restart

Rework

Immediate fixing

Deferred fixing

2. Try alternatives Replace order

Change/Move to new settings

. Compensate Add/Insert tasks
4. Rollback Jump backwards
5. Suspend/Resume Delay the activity

Suspend/Resume case

Suspend/Resume all cases
Skip
Jump forward

6. Continue process

Ignore

Do nothing

7. Terminate Force complete activity

Force complete case/process

Force fail activity

Force fail case/process

Discard workpiece

8. Escalate Reallocate

Terminate process (7) and propagate

Clo|P|oo TP |oR|o|od R IoD a0 o

Contact/Coordinate

Of course, the approaches above are not always applied exclusively to each other but can be
combined in a stepwise fashion.

4.3.3.2 Design of operational exception handling guidelines

The main objective is to determine a suitable exception handling approach when an exception
occurs on operational level. It is assumed that the type of exception has already been
determined (note that the detection of an exception is out of scope as has already been
discussed) and it is not relevant for the purposes of this research weather the issue is
considered a symptom or the root cause. Moreover, at a conceptual level, it is not relevant if

139

the guidelines are performed by a human operator (manually) or by a software system
(automatically). The operationalization of the guidelines, discussed in Chapter 6, further
details who can perform the step/decisions.

The operational exception handling guidelines consist of a set of decision trees, each of which
leads, through logical steps, to the determination of a suitable exception handling approach.
For each of the exception types categories, considering also the MOM KPIs categories, a
corresponding decision tree is designed. Considering the 9 categories on first/second
abstraction level of Table 14 and the selected 4 KPIs categories, 36 decision trees can be
designed. However, as for some exception types the determination of a handling approach
can be similar, some decision trees are identical, i.e., the same guidance is applied for two or
more exception types categories. Similarly, for some exception types the importance of a
KPIs is not relevant - in other words, the selected handling approach is not affected by a
critical KPI. Thus, the set of identical decision trees is smaller than the maximum product of
exception type x KPI category.

More specifically, the KPI category does not differentiate the exception handling selection
process (questions/steps in the decision trees) between machine-related and tool-related
exception types, as both machines and tools are of same nature or general usability in a
production process. This is not the case for material/product related exceptions.
Material/products are more consumable (different life cycle) than machines/tools and exist
in larger quantities. Regarding the effect of the KPI category on material/product exceptions,
think of the following example: when there is a material processability issue, a quality KPI
that is of higher priority compared to a time KPI will probably lead to a “retry” or “discard
item” handling approach instead of a “continue process to not waste time” approach. On the
contrary, the KPI category does not affect the exception handling selection process for
infrastructure or data related exceptions. Infrastructure is rudimental whatever the main
objectives of an organization are. This also holds true for data issues, which have to be solved
as soon as possible, especially in smart and digital manufacturing environments where data
is dominant. Regarding order-related exceptions, as they mostly relate to time aspects or
requirements, quality KPIs do not have any influence, assuming that the quality has to be
preserved the same. Thus, no decision tree is required in that combination.

Consequently, there have been designed 25 unique decision trees based on exception types
categories and MOM KPIs categories, labeled in the matrix of Table 18.

140

Table 18: Matrix of designed decision trees (coded) per exception type category and MOM KPIs

category
MPM KPIs categories
Exception types categories Time | Quality Efficiency Costs
Resource-related | Machine-related TMT QMT EMT CMT
Tool-related
Material/
Product-related T™MP QMP EMP CMP
Personnel-related TPE QPE EPE CPE
Infrastructure-related INF
Order-related TOR - EOR COR
Process-related TPR QPR EPR CPR
Event-related TEV QEV EEV CEV
Data-related DAT

For the interest of brevity, only two decision threes are shown here, with the rest available in
Appendix G. Namely, the ones corresponding to process-related exceptions for (delivery)
time and (product) quality KPIs, TPR and QPR accordingly. The legend used in the decision

(move to)
Decision tree

Figure 76.: Legend for symbols used in decision trees for selecting suitable exception handling

trees is explained in Figure 76.

(determined)
Exception
type

Decision point

approach.

TPR and QPR are shown in Figure 77 and Figure 78 respectively. As can be seen, there are
of course common decision points/paths between the two decision trees but the leading KPIs
provide differences. For instance, in case time is more crucial that quality, deferred fixing of

a work item is not an option.

141

(resulting)
Exception
handling

approach

Exception types category: Process-related

Leading MOM KPIs: (Delivery) Time (Customer experience)

Constraint
Activity Timeout/
o e) devation i
failure expiration

Can the message be

fas b (0 n Is it vioation on s an activity taken Could the temporal
e G Contheactity e Naves executed in wrong No— executed whike it No— been executed while process—< product specifications onger than —No event affect on time
the activity? e way? shouldn't be? it should be? Q process defintion expected? delvery?
No Yes No Product ves Yes
Yes Yes Yes
s the mossnge Ao - W forcecompletiod A
failed due to data et quality of the No———————— affect continuation of et
issues? s product? the process?
v
Yes Yes
v N
e Yes N N
an the workpiece b
Can the missing
immediately fixed/ Yes
activity be executed? I
v o
7c. Force fail . Force
« Force fai 6c. gnore complete activty
. & o nothing complete case/
casefprocess
I I process
T N
— |

Figure 77: Decision tree for Process-related exception types categories with (Delivery) Time as the leading MOM KPIs.

142

Exception types category: Process-related

Code: QPR

Leading MOM KPIs: (Product) Quality

Message
flow failure.

Can the message be
resent by restarting
the activity?

Activity
abort/

failure

restarted?

Can the activity be

n the activity b

skipped without

affecting product
quality?

Yes ©
Has the message -
Can the activity be
failed due to data e
issues?
v v
v
7. Force fail
activity 4a. Jump
L. Restart | 4= 7d. Force fail backwards 6a.Skp
case/process

Activity
deviation

executed in wrong
way?

No

there a discrepan
between expected
data outcome and
reality?

Has an activity been

Has an activity been

executed while it
shouldn’t be?

Has an activity not
been executed while
itshould be?

Process:

Constraint Timeout/
i z Temporal
: Deadline
Constraint expiration event
violation i

Is it violation on
product specifications
Qr process definition;

Product

Could this affect the

Can the missing
activity be executed?

8c. Contact/.

Coordinate

quality of the

.

product?

an the workpiece b

fixed/
repaired?

No

Yes Can the workpiece be s
fixed/repaired later? “
No
: 7e. Discard 1d. Deferred 1c.Immediate O senore
Compensate workpiece fixing fixing iy

Figure 78: Decision tree for Process-related exception types categories with (Product) Quality as the leading MOM KPIs.

143

4.4 Chapter conclusion

Given the rise of exceptions in dynamic manufacturing environments, with a clear effect on
complexity, it is essential to provide guidance on handling those, with a scope on operational
level. Thus, this chapter tackles the topic of exception handling in smart manufacturing, by
designing two artefacts: 1) a categorization of exception types, 2) a set of guidelines, in the
form of decision trees, to select a suitable exception handling approach.

The categorization of exception types is a result of a DSR design process, in which exception
types from literature, through an SLR, are consolidated with exceptions occurring in practice,
through interviews with practitioners. Apart from the exception types, MOM KPIs play a role
in selecting the right approach to handle any deviation behavior. These two inputs, the
categories of exception types and the categories of MOM KPlIs, lead to a set of decision trees
that through logical paths result in suitable handling approaches.

A preliminary version of the two artefacts had been evaluated with practitioners from three
manufacturing companies to get an impression on their utility. The evaluations had been
performed in the frames of a master thesis project (Verdonschot, 2020), which the author of
the current thesis was guiding and supervising. The operational exception handling
guidelines were applied in specific scenarios encountered in the companies. Practitioners
were asked to give their opinion on perceived ease of use (PEoU) and perceived usefulness
(PU) (Davis, 1989). The positivity on intention to use gave confidence that the design is on
the right direction. A main conclusion was that the methodology requires specialization per
scenario to be applicable, which was rather expected as its goal is to provide a generic
approach. Another interesting insight is that the type of organizational structure (Lunenburg,
2012) might affect its applicability. For instance, in environments with less structure, where
operators have a lot of flexibility and freedom to perform actions, the guidelines might be
less efficient to use than exploiting operators’ expertise and experience.

The conceptual artefacts of the current chapter are operationalized through the advanced
MPMS, presented in Chapter 6.

144

CHAPTER 5

Process automation and integration

Automation of production tasks has well been achieved since the previous industrial
revolutions. All recent technological developments in robotics, though, pose challenges in
how these fit into existing automation approaches (Monostori, 2014). Robotic solutions are
often employed in disparate work cells, following a vertical orientation in their robot control
processes. Given also that different technologies are controlled by different systems, it is
challenging to provide horizontal, cross-functional process integration that Industry 4.0
demands (Brettel et al., 2011; Kagermann et al., 2013). Existing infrastructures are not ready
to support such integration (da Xu et al., 2018).

A demand chain manufacturing setting requires real-time process integration in the entire
chain of activities, i.e., from order reception till delivery. While poor process integration can
be attributed to many reasons (as discussed in Section 2.1.6.3), in the context of enterprise
information processing the integration is essential to guarantee that the right business and
manufacturing activities are performed at the right time by the right actors with the right
information. This is the technological domain of a business process management system,
which is often employed to achieve or improve enterprise integration (van der Aalst, 2013).
Such a system can orchestrate manufacturing processes within the scope of a shop floor, or
within the entire enterprise by including also business processes, or even at the manufacturing
network level across several enterprises (Mehandjiev & Grefen, 2010). A BPMS that is used
in manufacturing is also referred to as Manufacturing Process Management System (MPMS).

Thus, the purpose of this chapter is to provide an answer on how end-to-end process

integration can be enabled (RQ3) by designing a process management information system
for manufacturing operations.

5.1 Chapter outline

As this research advocates the use of BPM theories and technologies in smart manufacturing,
it is prudent to first justify why a single process management system for manufacturing
operations is of interest (as Gregor & Hevner (2013) argue that any research following the
DSR paradigm should be inferesting and non-trivial). This is discussed in Section 5.2. Then,
Section 5.3 presents the conceptual design of MPMS, following a well-defined design
process and based on design principles. As the system is based on BPM technologies, its
design is inspired by existing reference architectures for BPMS and their origin workflow
management systems (WFMS). Section 5.4 views MPMS in the context of a CPS, by
specifying the required interfaces to other information systems for achieving integration. The
conceptual design of the internal functionality of MPMS, enhanced with the interfacing
capabilities compose the specification of the process management system to enable process
automation and integration. The above structure of the presented contents is illustrated in
Figure 79, following the DSR approach (which zooms-in the aspect under concern of the
three-aspects design and development of Figure 13). The chapter concludes in Section 5.5.

145

. . . Knowledge
Envi ronment Design Science IS Research Base g

Justify the use of unified
process management in
smart manufacturing

Applicable
knowledge:

-1Sin
manufacturing

Empirical

requirementsto el
solve practical
needs

knowledge N
E (f . ‘ Organization '\ - Software
B o . ! ' engineering
H manufacturing : Data ™\, Design PLees
3 firms): | Process 4 e £ MPMS | nowledge
= g | Software /./ opicalview o (Kruchten 4+1,
©
s - Design Limimim s 4 Updated Truyens)
B

Secﬁons 531
L. Specification of - WFMS/BPMS
MPMS reference
architectures

(WFRM/Mercurius/
BPMS-RA)

Section 5.3.2

Figure 79: DSR approach for RQ3 - Design of a Manufacturing Process Management System for
end-to-end process management.

= e
Platform '\
_/—\ | (MPMS as part N
| of CPS) ~”
L -

Design interfaces of
MPMS to other systems

5.2 Process management support by information systems in
manufacturing

As has already been explored in Section 2.1.4, various information systems exist to support
the functions of the top levels of the functional hierarchy control (Figure 21). An ERP system
covers Level 4 functions, an MES covers Level 3 functions, and a PLC system covers Level
2 functions. Each of these systems offers process management functionality but the support
is isolated within their respective functional boundaries (as discussed in Section 2.1.6.3). An
ERP system can coordinate business activities but does not have an overview picture of
manufacturing operations, which is typically provided by an MES. Of course, this separation
is important but, as Industry 4.0 demands for horizontal and vertical integration, cross-
functional process management is necessary.

The orchestration of activities across different functional levels requires well-integrated and
interoperable systems. The integration of traditional enterprise information systems is
ongoing research (Avvaru et al., 2020; Boiko et al., 2020), while interoperability issues
(mostly on data aspects) still exist (Pereira et al., 2020). Moreover, cross-functional process
management is often hindered by the different modeling approaches and notations to
represent processes in different levels (for instance, BPMN used for Level 4 processes and
VSM for Level 3). While there exist approaches to use common modeling languages (e.g.,
use of BPMN for both Level 4 and Level 3 processes by Prades et al. (2013)), or to enable
transformation of one modeling style to another (e.g., transformation of Level 4 BPMN
models into Level 3 functional charts by Gerber et al. (2014)), a more holistic approach for
process management is needed that covers not only process modeling but also execution
support.

This research proposes a single process management system to model and enact business and

manufacturing activities. This system can unify all the different process management
functionality offered by traditional systems across Levels 4 and 3 of the functional hierarchy

146

and interface directly with systems in Level 2. To do so, such a system is positioned as an
infrastructure component that supports the functionality of various information systems. The
case of a centralized manufacturing process management system has been proposed in
(Erasmus, Vanderfeesten, Traganos, & Grefen, 2018) and illustrated in Figure 80. A typical
communication flow is the following: MPMS receives order information from an ERP
system and detailed production scheduling from an MES. It then initiates the execution of
activities by sending work instructions to operators through human interfaces and/or to
automated agents through their control systems. Accordingly, MPMS receives progress
status on the activities and the state of the agents, informing back also the ERP system on
order updates. The communication across systems is typically realized through middleware
systems, which are omitted in Figure 80 for sake of simplicity.

<t Other

§ ERP system information

QL systems

~ a |

™ WHMS QMms

% MPMS ¥

— MES CMMS

~ |

< Human Auto agent Auto agent

a PLC agent control control

~ interface system system
| [—
| | | I | '

Sl o O

: onC o E

s Y ,

~ ovol—

Figure 80: MPMS as an orchestration hub for process management across various information systems
on level 2, 3, and 4 of the functional hierarchy. The blue-highlighted (front) horizontal layer represents
the application layer, while the pink-highlighted (back) layer represents the infrastructure layer
(Erasmus, Vanderfeesten, Traganos, & Grefen, 2018).

It should be noted that MPMS does not replace existing systems, especially those in Level 3,
but rather shows the essence of a central process management hub to integrate functions
across levels. Especially for SMEs that do not obtain an MES system, MPMS can play the
integrative and orchestrating role. For those enterprises that do use an MES system, MES can
still interact with factory floor systems (as shown with the direct interface of MES and PLC
in Figure 80), but MPMS can take over the process management functionality. This of course
depends on the level of process support that commercial MES systems offer and the level of
control that each of MES and MPMS should have (Kandasamy, 2021).

147

5.3 Architecture of MPMS

This section presents the design of the MPMS, by specifying what components and
functionality the single process management system proposed in Section 5.2 should entail.
The architecture of the system follows a well-defined design process and design principles,
discussed in Section 5.3.1. The design is inspired by existing WFMS/BPMS reference
architectures, which are briefly introduced in Section 5.3.2. The design is then described in
Section 5.3.3.

5.3.1 Design process and design principles

The design of an information system can be a complex process. Proper separation of concerns
is required to be able to limit attention of this process in the right context to the right elements
and aspects (Garcia et al., 2004; Moreira et al., 2005). In other words, separation of concerns
avoids taking everything into consideration at every step of the way.

Kruchten (1995) has defined an architecture framework (abbreviated in this thesis as K4+1)
that has become one of the most important standards in thinking about structuring software
architectures and guiding their design processes. The main idea of the framework is to have
a separation of concerns with respect to phases of the architecture specification and software
realization process. The framework organizes the description of an architecture around four
main views with their respective main stakeholders:

1. The logical view is concerned with the functionality of the system, by specifying
the logical structure of the application with abstract components and their
relationships. The prime stakeholders are the end-users of the designed system.

2. The development view deals with the software development management. It
specifies the software realization of the system, based on its logical view. Software
engineers (programmers) are the main stakeholders.

3. The process view is concerned with the behavior aspects of the system design, i.c.,
how the components or modules in the logical view collaborate concurrently.
Typically, integrators of the system are related with this view.

4. The physical view specifies the hardware on which the software is deployed. System
engineers are responsible for the system installation and maintenance.

The differences in the above four views, both in their prime concerns and the main
stakeholders involved, may result in a divergence of understanding how the system should
be designed and work. To avoid this, a fifth element needs to converge, content-wise, the
four views:

5. The scenarios illustrate the four basic views in the form of use cases. They give
concreteness and a clear description of the system’s functionality, so the associated
stakeholders of the four views have a common understanding during the design
process.

The five elements lead to the K4+1 model, shown in Figure 81.

148

End-user Programmers

Functionality Software management
Logical Development
View View
: Scenarios)
Process Physical
. ﬁ y.

View View
Integrators System engineers
Performance Topology
Scalability Communications

Figure 81: Kruchten (K4+1) framework (Kruchten, 1995) to sequence the development process of
MPMS.

The development process starts with the logical architecture, i.e., the specification of the
functional structure in abstract terms (no specific implementation or deployment details
provided), discussed in Section 5.3.2. The inputs for the conceptual design are the
requirements listed in Section 2.3 and the scenarios presented in Section 2.2. The actual
software implementation of the logical architecture is covered in the development view. For
the scientific interest of this research, not all technical details are presented in this thesis, but
only the main developments that realize the conceptual developments (e.g., realization of the
activities synchronization mechanism presented in Section 3.5). The software deployment
takes places within the physical view of the framework. As the focus of the current chapter
is the conceptual design of the system, only the logical view is discussed in the rest of the
chapter, while the development and physical views are discussed in Chapters 6 and 7. The
process view, which covers the operational integration of the developed system (e.g.,
software testing, performance improvements, etc.), is of less importance from a scientific
perspective (it mostly relates to good software engineering practices) and left out of
discussion.

The K4+1 framework provides a separation of concerns in terms of software development
phases but does not separate various aspects of the description of a complex software or
information system. Therefore, K4+1 is complemented with an updated version of the 5-
aspect framework of Truijens (abbreviated in this thesis as UTS5). That framework was
originally developed for information system development in the ‘90s (Truijens, 1990) and
thereafter updated for information system development in a modern, networked context
(Grefen, 2016). The UTS framework consists of five interconnected architecture aspects,
illustrated in Figure 82 and described below (Grefen, 2016).

149

AN
\wz

Figure 82: Updated 5-aspect Truijens framework (UTS) (from (Grefen, 2016)) for separating the
specification of the architecture of MPMS.

The software aspect describes the structure of the software under development; it
can take the form of UML>* component diagrams.

The process aspect describes the structure of business/manufacturing processes that
the system supports; it is described for instance in UML activity diagrams or BPMN
models.

The data aspect describes the structure of data manipulated by the system, as well
as the structure of the concepts that underlie data definitions (concept model); it is
described for instance in UML class diagrams.

The organization aspect describes the structure of stakeholders in the system’s
context, such as developers or end-users; it is described by organigrams and/or actor
models.

The platform aspect describes the structure of the technology (both hardware and
software) that is required to run the system under design in an operational form.

General information systems and software design approaches are important when developing
a system like MPMS, but as the system is meant to support Industry 4.0 endeavors, it should
also adhere to contemporary paradigm’s principles. The RAMI 4.0 framework (shown in
Figure 23) is selected as a relevant and generally accepted one to derive such principles.

With respect to the life cycle & value stream dimension, there should be a clear distinction
between the type and instance of a product and its processes (DIN/DKE, 2016). A product
(any physical part in general) is being designed/specified once and is typically produced in
multiple instances (unless it is a unique product, which even in that case there is a clear
distinction between design and production). Similarly, processes and activities required to
manufacture products are designed/modeled/specified and then multiple instances of those
are enacted.

54 https://www.andrew.cmu.edu/course/90-754/umlucdfaq.html

150

https://www.andrew.cmu.edu/course/90-754/umlucdfaq.html

With respect to the hierarchy levels dimension, there should be a clear distinction on the
scope of control that MPMS provides. RAMI 4.0 references the physical hierarchy of
IEC62264-1 standard (shown in Figure 18) to establish a naming convention for sections and
location of manufacturing enterprises and their factories. In that hierarchy, MPMS should
provide global control of process in the context of a production area or production line (across
multiple work cells), while local control within the context of individual work cells should
be responsibility of other systems.

The two aforementioned design principles lead to separation of concerns into two
dimensions, illustrated in Figure 83.

Design Execution

Global

Local

Figure 83: Separation of concerns with respect to life cycle & value stream and hierarchy levels
dimensions of RAMI 4.0 framework.

With respect to the layers dimension of the RAMI 4.0 framework, there should be a
distinction on representation of entities and assets from various architecture perspectives. For
instance, a production line can be viewed from a business perspective (e.g., goals to achieve),
functional perspective (e.g., workflow of activities), or asset perspective (e.g., set of
machines). Apart from the levels of the physical hierarchy, the architecture axis of the
framework can be applied on entities such as processes, activities and actors. These entities
should be separated between their physical substance (e.g., location of executing an activity,
size of materials involved, etc.) and their functional perspective (e.g., purpose of executing
an activity). The various distinctions shall be considered in the representation (e.g., data,
models, diagrams) of the concepts in concern.

The architecture of MPMS, whose final result is presented in this thesis, is designed in an
iterative fashion, following the design cycle of Wieringa (2009). More specifically, the initial
version has been designed to fit the HORSE framework, which is a reference architecture for
cyber-physical systems in smart manufacturing (Traganos et al., 2021). Since the HORSE
architecture has undergone various iterations (documented in the project’s deliverables and

151

summarized in Grefen & Boultadakis (2021)), the MPMS architecture has been reviewed as
well to stay in synch with the former. The logical architecture has also been applied in the
OEDIPUS project with different realization systems (as presented in Section 7.1.2),
enhancing in that way its generalizability. Finally, the MPMS architecture has been refined
to fit the SHOP4CF architecture (Zimniewicz, 2020), which is an adaptation and extension
of the HORSE architecture. Apart from the design iterations with respect to CPS reference
architectures, extra design iterations have also been applied for the logical software
architecture, as further elaborated in Section 5.3.3.4.

5.3.2 WFMS/BPMS reference architectures

As this research advocates the application of BPM theories and technologies in smart
manufacturing, a BPMS should be the basis for designing a system for operations process
management. Thus, the design of MPMS shall not start from scratch, but instead, it should
be based on existing (reference) architectures. Three of these reference architectures (RAs)
have been studied and are briefly introduced in the following three subsections.

5.3.2.1 Workflow Reference Model (WfRM)

The Workflow Reference Model (WfRM) (Hollingsworth, 1995), defined by the Workflow
Management Coalition (WfMC) (Palmer, 2009), is a long-established reference architecture
for WFMS. The model is often used as a basis for designing a BPMS (Pourmirza et al., 2017).
It is a high-level system aspect model, describing the main components of a WFMS and the
interfaces among those. The WfRM is illustrated in Figure 84.

Administration &

Monitoring
Tools
To)
=
Workflow API &
Interchange formats
Workflow Enactment Other Workflow
Service Enactment Service(s)
— —
Process
" Workflow Workflow
Definition IF1 > . IF4 .
Tools Engine(s) Engine(s)
N ™
w w
Workflow Invoked
S Applications
Applications pp

Figure 84 Workflow Reference Model (WfRM) (Hollingsworth, 1995).

The heart of WfRM is the workflow enactment service, where one or more workflow engines
execute specified workflows. The workflow enactment service is wrapped in an interface
layer, which connects the workflow engine(s) to other modules through interfaces (IF) 1 to

152

5. The process definitions tools are used to specify workflows (business processes). The
workflow client applications are software modules to allocate tasks to human actors.
Comparably, other invoked applications are used to automatically perform tasks in a
workflow. A workflow engine can interact with other workflow engines in distributed
workflow management environments. Finally, administration and monitoring tools provide
support for the operational management of the enactment service.

5.3.2.2 Mercurius reference architecture

Another reference architecture for WFMS is that developed in the Mercurius research project
(Grefen & Remmerts De Vries, 1998). The high-level model is shown in Figure 85. This is
also a system aspect model, but with explicit link to data aspect architecture (by showing
how data stores are linked to system modules).

The high-level model consists of three main modules (highlighted in grey) providing support
for workflow design (Workflow Design), workflow enactment (Workflow Server) and end
user functionality (Workflow Clients). The design data are stored in a database and are used
by the workflow server. The workflow server interacts through communications systems(s)
(CS) with other workflow servers. It also interacts with applications systems (AS) or
operating systems (OS). The user interface systems (UIS) provide interactive functionality
for end users. The three main modules often run in different environments and platforms, the
boundaries of which are indicated by the dotted lines.

5
> N
stores

Y Y

Work.flow Workflow » As/OS/DBMS
Design Clients
A
Workflow Workflow
> Cs < >
Server Server

DBMS AS/OS

5
data
stores
Figure 85: Mercurius Reference Architecture for WEMS, high level (Grefen & Remmerts De Vries,
1998).

153

The high-level model of Figure 85 is further elaborated in various aggregations levels per
main module. For sake of brevity, the refinements are not shown here but they are taken into
account in the design of MPMS per need (i.e., are referred and discussed when appropriate).

5.3.2.3 BPMS Reference Architecture (BPMS-RA)

A recent reference architecture for BPMS, called BPMS-RA, has been proposed by
(Pourmirza et al., 2019) to cover latest developments on software and system engineering,
such as the service-oriented paradigm and the data analytics. BPMS-RA has been designed
based on analysis of literature on reference architectures (such as the WfRM and the
Mercurius architecture) and of existing commercial implementations. In a high-abstraction
level, it consists of three main components:

1. SOA-WIMS (Service-Oriented Architecture — Workflow Management System)
component, offering functions such as business process modeling and execution;
ii. BPI&BPA (Business Process Intelligence & Business Process Analytics)
component, monitoring and controlling BPMS-RA-compliant systems
iil. AAA (Authorization-Authentication-Accounting) component, providing security
functions.

Figure 86 presenets an overview of the BPMS-RA, decomposing each of the main
components into classes of subcomponents to procide specific functionality. Adjustanecy of
components (shared borders) represent interfaces amone them (whose illustration is
ommitted for sake of brevity).

—
<<sub-system>> @ <<sub-system>> G
BPI&BPA SOA-WEMS
<<Component>> <<Component>>
> Data Analysis ServiceManager -
2
3 Tools S
+ C (@)
= <<. omponent>> @ 8
=] Business Process 3N
4/3 % <<Component>> . . U (A)
5 Execution Engine & 9
g g Data Management B3
5’5 TOOIS <<Component>>| <<Component>> E" 5
v g 8] g S
v E BP BP o
o 5
E <<Component>> @™ Client Resource 8_
. w2
E] Data Ingestion Manager | Manager
Tools Tools [f]
_—
<<sub-system>>
Authorization Authentication Accounting
(ARA)

Figure 86: Novel BPMS Reference Architecture (BPMS-RA) (at aggregation level 2) (Pourmirza et al.,
2019).

154

5.3.3 Logical view of MPMS

The logical architecture of MPMS is viewed from the five aspects of UTS5 (Figure 82). Four
of the aspects are discussed individually in the following four subsections. The fifth one, the
platform aspect, is discussed in Section 5.4, after MPMS has been positioned in the context
of a CPS.

5.3.3.1 Organization aspect

MPMS, as a centralized process orchestration system, shall provide global control of
processes, either business or manufacturing ones. A manufacturing enterprise, which is
typically organized according to the physical hierarchy of the IEC62264-1 standard (Figure
18), requires different types of control at different levels (in respect to the global-local
dichotomy design principle). At enterprise, site, area and work center levels, global control
is needed. On the other hand, at work unit level, local control is adopted. An illustrative
physical hierarchy of an enterprise, indicating the difference on the types of control per level,
is shown in Figure 87.

Enterprise Global

Enterprise

[
Site 1 Site 2

Areal.l Area 1.2
- f I 1
Work Production Production Storage zone Process cell Process cell
center line1.1.1 line 1.1.2 1.1.3 1.2.2 1.2.1
Work Local
unit Work cell Work cell Storage unit .)

1121 1122 1131 Unit1.2.2.1 Unit 1.2.2.2

Figure 87: Example of a physical hierarchy of a manufacturing enterprise (based on IEC62264-1
standard), depicting the distinction on the global-local control regimes.

Consequently, MPMS shall provide process support across all work centers (i.e., production
lines, process cells and storage zones) in a factory. The support has various forms:

e Selecting the right work center to produce a product (possibly through an MES).
The “right” can be based on resource availability, product and equipment
specification, maintenance schedules, etc. That means information from MES,
CMMS or other relevant systems might be needed.

e Assigning the right resources to the right locations to perform activities. This also
involves transferring resources from on work center or work unit to another (e.g.,
an operator or a mobile robot that can be shared between two work cells in the same
or even different production lines).

155

e Having a clear overview of the production status across all work centers (and their
work units). The status can refer to either normal/expected outcomes, or exceptional
events/situations.

MPMS, through global control, is enabler for horizontal process integration.

5.3.3.2 Process aspect

Advocating that a centralized process management system can orchestrate both business and
manufacturing processes demands for a clear process architecture. Given that a holistic view
is required across various functional and physical levels, the process architecture gets fairly
complex. A top-down design approach is followed to deal with this complexity. The design
starts at the level of end-to-end, enterprise business processes. With stepwise refinements, it
moves to the levels of manufacturing processes, manufacturing tasks and steps.

The end-to-end process model includes activities for designing a product, designing the
production process, selling the product, purchasing the material to produce it, manufacturing
it according to the design specifications, and delivering it to customers. Of course, the
sequence of activities varies, depending on the engineering and production strategies. In
standardized production, products are manufactured based on fixed product designs. Thus, a
typical lifecycle of activities starts with one-time product and process design, setting up the
production, and then, in a recurring way, selling the product, buying required material
(making the assumption of zero-stock manufacturing for sake of simplicity), actual
production and delivery. Such an example is illustrated in Figure 88. The process design and
manufacturing activities are highlighted in blue, as the main focus of process management.

156

Q

wv
a
j =
a
E %
[1]
o
L}
2 N
2 Design Sell Buy Deliver
=
o
° Product X>9(Product Material Product
\ J - VAN /‘ -
|
o v
E Design Manufacturing Process and Tasks
2 g O
o k]
E c
E E = " Design Design Design
8 E S Manuf. Manuf. Manuf.
2| _ Process Task 1 Task 2
e [= 3
E| S
[=T1]
£
g
o Make Product
3
=
o e \n
£ 8 CJ 9
=
8 v .
< Exec. Exec.
Manuf. Manuf.
Task 1 \ Task 2

Figure 88: Illustrative high-level enterprise process for standardized production (the blue-highlighted
subprocess are the main focus of MPMS) (Grefen & Boultadakis, 2021).

In customized production, a product is designed or adapted based on customer’s
specifications. Of course, selling the product or establishing a contract precedes the design.
The actual manufacturing follows the design. An illustrative example is shown in Figure 89
(for reasons of brevity, the design and make product subprocesses are placed within the single
manufacturing department and not split into design office and shop floor, like in Figure 88).

Other type of production strategies or a mix of them can be adopted by manufacturing
enterprises. High-level process models can be drawn accordingly. What is most important to
note here, is the separation of activities between design and execution phases (according to
the design-execution dichotomy design principle) and the refinement of processes into tasks.
This refinement has already been included in the examples of Figure 88 and Figure 89, and
further refined below.

157

B
] Sell Product
5 s ™
Design
ANe Make Prodlﬁct
2 N Offer N
3 \ Buy Deliver
@ % Tamt\ kMaterlaI/ Productj
sl ® Establish Product
2 Contract __Specs.)
1]
g ~
5
51
=
=3
= =
2| §
£l E . . ™
E Design Manufacturing Process and Tasks Make Product
o -
@ AN
=
5 e N N
B Design Design Design " Exec. | [Exec.
< Manuf. Manuf. }% Manuf. Manuf. —> Manuf.
E Process Task1) Task2) \ Task1l , | Task2

Figure 89: Illustrative high-level enterprise process for customized production (the blue-highlighted
subprocess are the main focus of MPMS) (Grefen & Boultadakis, 2021).

The high-level enterprise process models of both Figure 88 and Figure 89 contain activities
within the manufacturing department, which constitute the manufacturing process model. In
standardized production, the design activities and those related to the execution of the
modeled process for actual manufacturing are decoupled. They take place independently, in
different phases and in different frequencies. The design is typically performed once, while
the product based on it is instantiated multiple times. An example is illustrated in Figure 90
(with the “loop” marker in execution activities denoting the multiplicity). In customized
production, design and execution activities are organized in a sequential fashion, as shown
in Figure 91.

Figure 90 and Figure 91 show the further refinement of manufacturing tasks design and
execution steps respectively. Designing a process requires determining the right sequence of
tasks, performed by eligible resources at the right place, including any business rules.
Designing a manufacturing task requires determining its input and output parameters, the
location it takes places, the needed roles of resources to perform it with the right skills,
abilities, authorizations, etc. Tasks are further refined into steps for more detailed elaboration.
In both Figure 90 and Figure 91, the design of manufacturing tasks and steps is performed in
a sequential way, but parallel activities are possible as well.

158

/ Design Manufacturing Process and Tasks \
Design
Manuf.
Process
Design Manuf. Task 1 Design Manuf. Task 2
E Design Design Design Demgn Des|gn
é Manuf. Manuf. Manuf. Manuf. Manuf.
s Step 1.1 Step 1.2 Step 1.3 Step 2.1 Step2.2
AN /)
=
5]
m
‘S
5 Make Product
E
Exec. Manuf. Task 1 Exec. Manuf Task 2
Exec Exec. Exec. Exec
Manuf. Manuf. Manuf. Manuf. Manuf
Step 1.1 Step 1. 2 Step 1.3 Step 2.1 Step 2.2)

Figure 90: Illustrative manufacturing process for standardized production, with refined tasks and steps

(Grefen & Boultadakis, 2021).

159

(o .)

Design Manufacturing Process and Tasks

oS L AN N (e

Design Design
Manuf. Manuf. Manuf.
= _ Process Task 1) Task 2
Q
£ . J
©
[= 5
Q
o
e / Make Prod \
= a roduct
- O 0
3 v
£
3
G Exec. Manuf. Task 1 \ / Exec. Manuf. Task 2
E O
? A
(" Exec. Exec. Exec Exec. " Exec.
Manuf. Manuf Manuf Manuf. Manuf.
x Step1.1 Step 1.2 Step 1. 3 \ Step 2.1 _Step2.2

Figure 91: Illustrative manufacturing process for customized production, with refined task and steps
(Grefen & Boultadakis, 2021).

Steps can also be refined in sub-steps, for the lowest level of elaboration, as shown in Figure
92. Note that the design and execution of steps and sub-steps is not responsibility of MPMS,
however it is discussed for sake of completeness. Other systems play the role of orchestrating
activities on step level, following the global-local separation principle.

160

g

Exec. Manuf. Task 1

-

?

\\ 1331) | 1332 //

/ Exec. Manuf. Step 1.1 \ f/ Exec. Manuf. Step 1.3

~
~

]
00 ”
" Exec.) [Exec. Exec. Exec.
Manuf. Manuf. Manuf. Manuf.
Step Step Step Step
= 111 1.1.2 1.3.1 1.3.4
£
RN J
o
[=3
@ —
o=
[=T1]
£
5 —
E Exec. :
2 Manuf. >
g _Step 1.2) , \
|/ Exec. Manuf. Step 1.3.3 \
I/W
E/
Exec. Exec.
Manuf. Manuf.
Step Step

~/

Figure 92: Illustrative manufacturing task with refined steps and substeps (Grefen & Boultadakis,
2021).

An example of a task refinement into steps and sub-steps (taken from the CPP pilot case) is
shown in Figure 93. The activity of unloading paper from the high-capacity stacker (HCS)
of a printer onto a work-in-progress (WIP) tray, performed by a mobile robot with a robotic
arm mounted on it, is modeled as a single task. The only input parameter of the task is the
signal from the HCS that paper is ready for unloading, and the only output parameter is the
confirmation that the paper has been deposited on the tray. On a step level, the task is refined
into a sequence of actions. The mobile robot has to first go in front of the HCS, then the
robotic arm with a gripper mounted has to grasp the paper and deposit it onto the tray. The
grasping part, is further detailed into lowering the gripper, closing it, and raising it back onto
a position suitable for the next step. Note that the (sub-)steps are illustrated differently than
the task activity to highlight that their modeling is typical done in a different notation (than
the ones used for tasks).

161

Unload paper

Task rom e
printer HCS control

level \
N

Ste Move to Gras Deposit paper
p posit pa
printer HCS paper on WIP tray
I eve / Paperon Paper deposited
printer HCS on WIP tray
Step Orchestrator
V,’ control
b -
- 3
Sub-step ,
O—» aoper |~ Close gripper > Raise gripp 40
level W
ready ready

Figure 93.: Example illustrating the refinement of a task into steps.

The process aspect architecture highlights the following points for process support by
MPMS:

e Separation of business and manufacturing activities within a manufacturing
enterprise.

Separation between design and execution activities.

Hierarchical and layered design/modeling.

Distinction on task-step level for clear separation between global/local control.
Support on processes/activities with different lifecycles/time horizons and different
cardinality.

5.3.3.3 Data aspect

The data aspect architecture is extremely relevant, as it is used to represent both the physical
and the functional entities in a way that these are usable by MPMS and other (information)
systems. The well-established formal approach by West, (2011), summarized in Figure 94,
is followed. The design starts with data requirements, which, here, take the form of context
information on smart manufacturing. Based on these inputs, concept data models are
designed in order to define entities and their relationships. The technical representation of a
concept data model depends on specific technical constraints (e.g., a selected middleware
technology can dictate the technical format of data). As this chapter views MPMS from a
logical perspective, concept data models are designed here, leaving discussion on technical
details for Section 6.2.3 (in which the development view is discussed).

162

External inputs: Outcomes:

Data requirements

Concept data model
Definitions of entities,
relationships, attributes

Technical constraints v

Technical

representation
The concept model entities
in a specific technical format

Figure 94: Data modeling approach, with the focus on concept data models in this section (from (West,
2011)).

As MPMS covers many aspects of smart manufacturing, a set of partial concept models that
each covers an important aspect is designed at first. The individual concept models are then
integrated into an overall concept model that relates all important aspects to each other. The
individual concept models are:

e an activity concept model, which specifies the concepts and their relations related
to activities performed in smart manufacturing context;

e an agent concept model, which specifies the concepts and their relations related to
agents (actors) that perform activities in smart manufacturing context;

e aresource concept model, which specifies the concepts and their relations related
to any type of resource appearing in smart manufacturing environments;

e an event concept model, which specifies the concepts and their relations related to
events occurring in smart manufacturing context that require reactions;

e alocation concept model, which specifies the concepts and their relations related to
the physical environment in which activities are executed.

The concept data models are discussed below and represented in UML class diagrams. Note
that the presented models are the consolidation of the ones applied in HORSE, OEDIPUS
and SHOP4CF project following the iterative design process as mentioned in Section 5.3.1.

5.3.3.3.1 Activity concept model

The process aspect architecture makes clear what the hierarchy of the activities in a
manufacturing enterprise is. The high-level activity data model is illustrated in Figure 95 and
explained below.

163

E2E

Process
1..n 1? rl 1..n !
| |
Admin. Manuf. 2.n
Process Process
1
1..n
Manuf.
Task
1
1..n
2.n | Manuf. % Human
Step Step
1
Autom.
Step

Figure 95: Activity concept model.

At enterprise level, an end-to-end (E2E) process (i.e., from order reception until delivery or
after-sales services) consists of both administrative (e.g., sales, invoicing) and manufacturing
(i.e., production, warehousing) processes. Considering that an E2E process is instantiated for
each individual customer order, there is at least one administrative process and at least one
manufacturing process. More than one manufacturing processes exist in an E2E process in
case a customer order is not fulfilled in one production run or the order consists of different
product types.

A manufacturing process can be layered, i.e., it can exist of two or more sub-processes
(indicated with the self-relation). A bottom-level manufacturing process consists of a number
of tasks. The concept of manufacturing task refers to the action(s) performed to complete a
production goal (according to Luck (1995), an action is defined as a discrete event that
changes the state of the environment). Tasks cannot be layered, i.c., only a single layer exists.
This leads to a clear control and actor allocation mechanisms, with MPMS having a clear
responsibility on task level (as also illustrated in the example of Figure 93). A manufacturing
task consists of a number of steps, as the single actions to be performed by a (team of)
agent(s). As the agents (actors) can be either humans or automated devices (as discussed later
in the agent concept model), steps are further specialized in human steps and automated steps.
This is necessary since these two types of steps are designed and performed differently (a
human operator is instructed differently than a robot). Steps may consist of sub-steps, i.e.,
they may be hierarchically organized in more detailed activities (as also illustrated in the
example of Figure 93).

164

Considering the design-execution dichotomy design principle, each of the above entities
should account for both design and execution phases. Focusing on the three main entities —
processes, tasks, steps —, the activity concept model results in the one shown in Figure 96.
During actual execution of activities, an instance of a process, task, or step is created
according to its corresponding definition.

Design Execution
1 1
2..n Process 1 isdefined by 1..n b 2..n
. rocess
Definition
1 1
1..n 7 1..n
Task 1 is defined by 1..n
. Task
Definition
1 1
1..n 7 1..n
2.n Step 1 is defined by 1..n 2.n
. Step
Definition
1 1

Figure 96: Activity concept model with respect to design-execution design principle.

5.3.3.3.2 Agent concept model

Activities are performed by agents. An agent is defined as an instantiation of an object
together with an associate goal or set of goals (Luck, 1995). Simply, an agent is an actor that
performs a step (work) in a manufacturing process. The agent concept model is presented in
Figure 97 and explained below.

165

0..n located at 1
Agent Location
— Human Autom. Configur. . 0.n
1 K <— -
Agent Agent AutAgent Multibot Cobot
0..n 0..n JoN 1
1.n
Team Static
0..m 0..m Robot
Mobile Mobile
Robot Cobot
NonConf.
AutAgent Sensor AGV
Conveyor
Turn-
table

associated with

Figure 97: Agent concept model.

The agent is further specialized into human or automated agents, with each of these two types
having specific characteristics that the general type does not have. Agents form team(s) and
the concept of teams might have specific composition requirements. For instance, the team
shall consist of at least one human operator. Thus, the team concept is linked to the agent
subclasses and not to the superclass.

An automated agent is any kind of equipment/device that can autonomously perform an
action. The concept is further specialized into configurable automated agents (e.g., a
programmable robot) and non-configurable automated agents (non-programmable active
manufacturing equipment, e.g., a conveyor belt). A configurable automated agent is further
specialized into static robots (i.e., placed at a fixed position in a work cell), mobile robots
(i.e., capable of moving around at the shop floor), with AGV a specialized form of mobile
robot, and sensors, as devices that can sense the environment. Combining static robots into
one entity, form the concept of multibot. A cobot is a kind of configurable robot, either static
or mobile, that collaborates or works together with a human operator and thus, is linked to
the human agent. A human can be associated with more than one robot.

Any agent, either static or moveable, is linked to the concept of location, as its position is
relevant for various reasons. For instance, the location is a criterion during the allocation of
an agent on a task, especially given the dynamicity of changes on a shop floor.

5.3.3.3.3 Resource concept model

Agents, humans and robots, are the “active” resources of an enterprise. Other types of
resources, though, are relevant in smart manufacturing context and need to be represented.

166

For example, a gripper, as a physical asset, combined with a robotic arm, compose a set of
resources that are eligible for performing various tasks. Accordingly, the information
regarding a tool, is relevant when instructing an operator on how to perform a manufacturing
step. The resource concept is an abstract entity, i.e., it does not exist directly, generalized as
one of its concrete subtypes. These are: agent, material, and (physical) asset, as shown in
Figure 98.

linked to
0..n
1
Resource Resource 0% 21| ocation
specification 1 isspecifiedby 1.n
JAN
Agent Material Asset
| |
Human Autom.
Agent Agent

Figure 98: Resource concept model.

The agent type of resource has already been discussed. The material concept refers to a
product (final or intermediate) or an ingredient used in a manufacturing process. Its attributes
may consist of physical states, e.g., dimensions, or process-related information, e.g., the
result of an inspection. The asset concept refers to tangible objects that are neither agents nor
material. Typical types of assets are the tools or elements of some equipment. All types of
resources are linked to the location entity.

A resource can reference other resources that are physical linked to. For instance, a robotic
arm mounted on a mobile robot can be modeled as two separate resources but are linked to
each other. This information is useful during allocation mechanisms, e.g., when the robotic
arm is operating an action, the mobile robot on which it is mounted should also be considered
as busy and not available for a new operation.

The resource entity is specified by a resource specification entity. The latter is needed in the
design phase in which resources are specified as abstract classes. The classes are then
instantiated with detailed information during execution. For instance, a resource “Operator
John” is an instantiation of the resource specification “Operator”.

5.3.3.3.4 Event concept model

The event concept model is shown in Figure 99. An event is linked to its use, in which it is
processed, e.g., to make a decision or to store data in a log. The event is specialized into
alerts, measurements and notifications. An alert is an event generated in an exceptional
situation. A measurement is a planned, periodic event. A notification is a general event about
something happening. A notification about an order or an external event fall under that

167

category. Alerts should not be confused with the exceptions, as discussed in Chapter 4. Even
a measurement, when exceeds a threshold, is considered as an exception. The discussion here
is about the event concept, as a type of important information to be represented in a smart
manufacturing context. Section 6.2 elaborates on the data model on exceptions.

0..n linkedto 1.m

Decision Use Event
]—D ZF
| | |

Log
Alert Measure Nopﬁ-
ment cation
Activity Resource Safety Activity Resource Order External
Alert Alert Alert Measur. Measur. notificat. notificat.
Process | | Global | | | | Process
Alert Saft.Alrt Measur.
Task | | Local | | | | Task
Alert Saft.Alrt Measur.
Step || | | Step
Alert Measur.

Figure 99: Event concept model.

Alerts are specialized as activity, resource and safety alerts. An activity alert is generated
when an activity is being executed. This happens at process, task, or step level, following the
hierarchy of the activity concept model. An example of a step alert is a timeout on its
predefined execution time.

A resource alert is generated by any type of resource of the resource concept model. These
alerts should be independent to the activity the resource is performing at that moment. For
example, a low battery level alert generated by an AGV is a resource-related alert,
irrespective of whether the AGV is moving or not.

A safety alert is generated by an observed safety breach, either at a global level (i.e., site,
area, or work center) or local level (i.e., work unit). A typical example of a safety alert can
be a fire at a production area.

Regarding the measurement concept, it is further specialized into activity and resource
measurements. A performance measurement is typical example of an activity measurement.
A resource measurement refers to state of a resource at a given time. Typical values can be
available, busy, under maintenance, etc.

5.3.3.3.5 Location concept model

The location concept is used to represent the data related to the organization aspect
architecture. It represents a specific place in a factory, or it can also represent structures of
the enterprise as entities, following the physical hierarchy of the IEC62264-1 standard. The
location concept model is shown in Figure 100.

168

refers to

Enterprise

refers to

1 1..n
1.n . refers to
Location Area
LR
L.n | | |
refers to Work Production Process Storage
center line cell zone
¢ 1 1 1 1
1.n 1..n 1..n 1..n
refers to Work Work . Storage
. Unit .
unit cell unit

Figure 100: Location concept model.

The location has an important function: it can either be source or target. This is useful when
tasks are linked to a location. For example, a transportation task for an AGV to move to a
storage zone, requires setting the location of the storage zone as a target. Accordingly, when
the AGV leaves the storage zone for a next target, that storage zone is considered as source
from the AGV’s task point of view.

5.3.3.3.6 Integrated concept model

Combining the five partial concept models results in an integrated concept model. A high-
level overview of this integrated concept model is shown in Figure 101. The partial concept
models have been simplified to not make the overview diagram overly complex. It is the links
between the partial concept models that is important to discuss.

169

linkedto 1.n
1 1 .m Use
1 1.n 2.n ‘ ‘
Location Process Event
1 1.n 1.n
1

1

linked to

happens at 0..n ’7“17
[ﬂ Task

Fiocations ﬁ[0.n involves
1

i _function |

Autom. |1.m
Agent
0..n 0..n

performed by

performed by

located at

Figure 101: High-level overview of integrated concept model.

The link between the activity concept model and the agent concept model is established in
two ways. Firstly, a task is performed by a team of agents. Secondly, a step, as an individual
activity, is performed by a specific agent. Linking the activity concept model and the resource
concept model is established at the task level with the “involves” relationship. Each task
involves a number of resources to be performed. For reasons of brevity, only the agent type
of resources is shown, but apparently the task might involve material or physical assets. It
should also be noted that the linking between the task and resource concepts is kept simple
here. A more enhanced linking includes the concepts of role and additional attributes, as
shown in Figure 102, relevant for advanced agent allocation mechanism (Erasmus, 2019).

requires 1..n Additional 1..n possesses
attributes
assigned to has
Role
1..n 1.n

0.m 0..m 0..m 0..m
Task Resource

0..n involves 1..m

Figure 102: Enhanced relationships between Task and Resource concepts (lefi out of scope in the
integrated concept model for simplicity reasons) (Erasmus, 2019).

170

The link between the activity concept model and the location concept model is established at
the task level with the “happens at” relationship. The location’s function (i.e., source, target)
is important to orientate activities (as has been discussed in partial location concept model).

The link between the activity concept model and the event concept model is relatively simple.
Events, be it alerts or measurements, are linked to any level of activities. Events are also
linked to resources, referring to either alerts or measurements.

Finally, the link between the resource concept model and the location concept model is
established with the “located at” relationship.

5.3.3.3.7 Mapping to the IEC62264-1 standard

The concept models presented above have been designed based on information needed to
represent the physical and functional entities in a smart manufacturing context. To safeguard
the rigor of the designed models and enhance their interoperability with existing approaches
and standards, the concepts are confronted with the ones defined by the IEC62264-1 standard.
The standard describes concepts in a manufacturing context, though without focus on smart
manufacturing. Table 19 provides an overview of the mapping between the concepts.

Table 19: Mapping of designed concept models to concepts from IEC62264-1 standard.

Designed concepts

TEC62264-1 concepts

Process definition

Process segment

Task definition

Step definition

Process Operations definition
Task Operations segment

Resource specification

Equipment/Personnel/Material/Physical Asset specification

Human agent

Personnel

Automated agent Equipment

Material Material

Asset Physical asset

Alert Work alert

Location Equipment hierarchy

5.3.3.4 Software aspect

As already mentioned, the design of MPMS is based on existing reference architectures of
BPMS. The WfRM and the Mercurius reference architecture have been used as starting points
to design the logical software architecture of MPMS. In an iterative design fashion (Wieringa,
2009), the design has been adapted to take into account the BPMS-RA, as a contemporary
novel reference architecture for BPMS that has emerged recently.

MPMS shall satisfy specific requirements for process management in smart manufacturing.
Therefore, it should be checked whether the reference architectures, used as basis for
designing the MPMS, satisfy those requirements. Table 20 checks the coverage of the
requirements listed in Section 2.3, grouped as general system functions, by the three selected
reference architectures, with the purpose to identify existing, missing or limited functionality
that shall be enhanced for application in smart manufacturing.

171

Table 20: MPMS requirements coverage by BPMS reference architectures.

q System Coverage by Coverage by | Coverage by
Ri# | Requirement function WRM Mercurius BPMS-RA
Design
ROI | The MPMS shall | Process Limited — Limited — Limited —
provide modeling | definition
support of complex Process Workflow Process
processes that Definition Design Definition
involve Tools cover | module > | Tools >
synchronization of (business) Workflow Business
activities by process Design Engine | Process
various actors modeling but | > Global | Modeling
(including human- no explicit | Design and | covers
robot collaboration support for | Detail Design | (business)
scenarios) physical modules cover | process
manufacturing | (business) modeling but
processes. process no explicit
modeling but | support for
no explicit | physical
support for | manufacturing
physical processes.
manufacturing
processes.
RO2 | The MPMS shall | Resource Missing — Limited — Limited —
be able to define | definition
manufacturing No explicit | Workflow BP Resource
resources, such that module to | Design Managers
it can determine define module > | Tools are used
during execution resources. Workflow to specify
which resource Design Engine | resources that
should perform an > can perform
activity (linked to Organization activities in
R06). Design can be | business
used to define | processes.
resources. Though, as
Though, as the | these refer
module mostly to
specifies human
mostly human | resources,
resources, extra coverage
extra coverage | for automated
for automated | resources is
resources is | needed.
needed.
RO3 | The MPMS shall | Task definition | Missing — Limited — Missing —
be able to define
tasks, such that No explicit [No explicit | No explicit
clear control of module to | module to | module to
activities is define tasks. define tasks. | define tasks.
provided in both Workflow
modeling and Design
execution phases. module >

172

Workflow

Design Engine
> Detail
Design could
be used but
without
explicit
definition on
task level.
R04 | The MPMS shall | Location Missing — Limited — Missing —
be able to represent | definition
the physical No explicit | Workflow No explicit
equipment module to | Design module to
hierarchy, such that define module > | define
functional locations. Workflow locations.
processes are Design Engine
mapped to their >
respective physical Organization
environment. Design can be
used to define
the
organization
structure, but
extra support
for defining
(physical)
locations is
needed.
Execution
RO5 | The MPMS shall | Process engine | Existing — Existing — Existing —
be able to enact the
modeled processes Workflow Workflow Business
in an automated Engine Server > | Process
way. Workflow Execution
Server Engine | Engine
RO6 | The MPMS shall | Agent Limited — Limited — Limited —
be able to | allocation
dynamically select Resource Resource Resource
and allocate the allocation is | allocation is | allocation is
most suitable typically typically typically
resource(s) to performed performed performed
tasks, based on task through the | through the | through the
requirements and Workflow Workflow Business
resource Process Server Process
capabilities. Engine, but no | Engine, but no | Execution
explicit explicit Engine, but no
module exists | module exists | explicit

for advanced
allocation
mechanisms
during
runtime.

for advanced
allocation
mechanisms
during
runtime.

module exists
for advanced
allocation
mechanisms
during
runtime.

173

RO7 | The MPMS shall | Task delivery | Limited — Limited — Limited —

be able to send a

list of tasks to be Through IF2, | Workflow Through

performed by each tasks can be | enactment Business

actor in the delivered to | client delivers | Process Client

production Workflow tasks to | Tools, tasks

environment, for a Client (office) can be

specific production Applications workers. delivered to

order. (so tasks can | No support for | actors.
be executed by | task However, only
actors). assignment to | tasks to human
However, only | automated actors or to
tasks to human | agents or | services are
actors or to | heterogeneous | covered,
services are | team of | without
covered, agents. explicit
without support for
explicit task
support for assignment to
task automated
assignment to agents or
automated heterogeneous
agents or team of
heterogeneous agents.
team of agents.

RO8 | The MPMS shall | Event handling | Limited — Limited — Limited —

be able to accept

notifications from The Workflow | The Workflow | The Business

actors in the Process Engine | Server > | Process Client

production is able to | Workflow Tools can

environment receive events | Server Engine | receive events

regarding a change regarding > Event | from

of manufacturing

(human) tasks

receptor is

resources, but

system status, (through IF2) | able to receive | no explicit
including actors’ and other | events support for
availability and information regarding events from
status. (through 1IF3), | (human) automated
but there is no | resources and | resources.
explicit services, but
support for | there is no | The
manufacturing | explicit BPI&BPA >
entities (e.g., | support for | Data Analysis
notifications manufacturing | Tools and the
from physical | entities (e.g., | SOA-W{MS >
devices). notifications Business
from physical [Process
devices). Execution
Engine are
able to receive
and process
events, but
there is no
explicit
support for

174

manufacturing

entities (e.g.,
notifications
from physical
devices).
RO9 | The MPMS shall | Event handling | Limited — Limited — Limited —
be able to receive
events regarding The Workflow | The Workflow | The
changes of the Process Engine | Server > | BPI&BPA >
manufacturing is able to | Workflow Data Analysis
system status. receive events | Server Engine | Tools and the
regarding > Event | SOA-WIMS >
(human) receptor is | Business
resources able to receive | Process
(through IF2) | events Execution
and other | regarding Engine are
information (human) able to receive
(through 1IF3), | resources and | and process
but there is no | services, but | events, but
explicit there is no | there is no
support for | explicit explicit
events from | support for | support for
the events from | events from
manufacturing | the the
environment manufacturing | manufacturing
(e.g., events | environment environment
from physical | (e.g., events | (e.g., events
devices). from physical | from physical
devices). devices).
R10 | The MPMS shall | Exception Missing — Limited — Limited —
be able to react on | handling
exceptional events No explicit | Exceptions The Business
that change the support for | can be | Process
status of the exception designed in [Execution
manufacturing handling the Workflow | Engine >
system (exceptions are | Design Exception
implicitly module, but | Handling
handled by the | no explicit | component
Workflow support for [handles
Enactment runtime exceptions.
Service). handling. Support is
needed for
The Software | exceptions
bus manager > | occurring in
Protocol manufacturing
manager can | environments.
handle only
specific type
of exceptions.
R11 | The MPMS shall | Monitoring Existing — Limited — Existing —
be able to monitor
the status of the Monitoring Implicit BPI&BPA
manufacturing Tools. monitoring components.
system during However, functionality

175

execution of monitoring of | through However,
processes. manufacturing | Workflow monitoring of
resources shall | Client > | manufacturing
be considered. | Extension resources shall
Module. be considered.
Monitoring of
manufacturing
resources shall
be considered
General
R12 | The MPMS shall | Administration | Existing — Existing — Existing —
be able to provide
administration of Administration | Implicit AAA
processes. Tools administration | component
functionality
through
Workflow
Server >
Extension
Module.
R13 | The MPMS shall | Interfacing Existing — Existing — Existing —
be able to integrate
to other EIS, Interfacing AS Interfaces. | Service
including through IF3 to Manager.
ERP/MES. invoked
applications.
However, no
explicit
support is
provided for
specific types
of systems.

The coverage information, as briefly explained in Table 20, and the following design
decisions yield the logical software architecture of MPMS, shown in Figure 103. New
modules or modules that require extensions for application in smart manufacturing are
highlighted in green, compared to the gray ones which require no adaptations (from a
functionality point of view).

Design decision 1): The functionality of MPMS is grouped in two main classes: i) Definition
Tools, covering R01-R04, ii) Process Enactment Service, covering R05-R10. The distinction
respects design-execution design principle.

Design decision 2): Components for providing analysis functionality (as per BPMS-RA) are
not included as no identified relevant requirement exists. Note that R11 for process
monitoring mainly refers to static status provisioning during runtime, without explicit
functionality for analysis. In that respect, a component Monitoring Tools (labeled per WfRM)
is considered as an auxiliary component and not as an analysis component.

Design decision 3): Definition Tools include: i) Process definition, covering RO1 (per all
three RAs), ii) Resource definition, covering R02 (per Mercurius and BPMS-RA), iii) Task

176

definition, covering R03 (new module), iv) Location Definition, covering R04 (partially per
Mercurius).

Design decision 4): A Process Engine module covers RO5 (per all three RAs).

Design decision 5): An Agent allocation module is added for explicit support for advanced
allocation mechanisms by selecting the right agents to perform activities, covering R06 (in
comparison to all three RAs which do not provide explicit support).

Design decision 6): A Task delivery module is added for explicit delivery of the right task
information to the selected agents, covering R07. The module delivers tasks to either humans
or auto agents (in comparison to all three RAs which deliver tasks to human operators or to
call services to perform activities).

Design decision 7): The Agent allocation and the Task delivery modules are considered as
part of Agent Tools. The term “agent” is selected over the term “client” of all three RAs for
keeping consistency per agent and resource concept models.

Design decision 8): Interfaces between main classes and to external systems are highlighted
keep the labeling of the WfRM.

Design decision 9): The Auto agent control system (outside the boundaries of MPMS) is not
considered as an Invoked Application (per WfRM), but as an agent application (client
application per all three RAs), and thus, is interfacing through IF2 and not IF3. This design
decision is based on the fact that MPMS views automated agents as the counterpart of human
agents, both of which perform activities in a manufacturing process.

Design decision 10): A Service/Integration layer is added to cover functionality of interfacing
to agents (IF2) and other systems (IF3) (discussed in Section 5.4).

Design decision 11): Notifications from agents are received by the Agent Tools through IF2,
covering ROS.

Design decision 12): Events regarding agents are received by the Agent Tools through IF2.
Events from other systems are received by the Process Engine through IF3. Both ways cover
RO09.

Design decision 13): An Exception handling module is added to provide functionality for
reacting to exceptional events (R10) (per Mercurius and BPMS-RA). It is considered as an
extension module of the workflow enactment server architecture of Mercurius (see Fig.7 of
(Grefen & Remmerts De Vries, 1998))

Design decision 14): Monitoring tools (R11) are enhanced to satisfy the requirements of
manufacturing environments compared to business environments.

Design decision 15): Administration Tools (per all three RAs) is added, covering R12.

Design decision 16): EIS and other (information systems) (outside the boundaries of MPMS)
interface through IF3, covering R13 (seen as Invoked applications per WfRM).

177

Design decision 17): Data stores are omitted to keep the focus of the architecture on the

functionality modules (per WfRM and BPMS-RA).

Definition Tools Process Enactment Service
Process Task Process 3 Administration
definition definition Engine Tools
L __|
TFL
9 . "
E Resource Location Agent Tools T M°_I':"t(|’”"g
L I ools
S definition definition Agent Task Exception ||,
allocation delivery handling
A2 P2\
\% \Z .
Service/Integration layer [}
i

—TF:

Auto agent
control
system

EIS
Other systems

Human agent
IF

Figure 103: Logical software architecture of MPMS, with enhanced logical modules (highlighted
green) and new logical modules (highlighted blue) for process management in smart manufacturing.

5.4 MPMS as part of a CPS

The architecture of MPMS has been discussed so far with a focus on the system’s internal
functionality. Main interfaces to other systems have been identified but have not been
elaborated. To complete its specification, the system has to be placed in the context of a
cyber-physical system architecture that provides horizontal and vertical integration in a smart
manufacturing context. The logical software architecture of a CPS is first presented in Section
5.4.1. MPMS, as part of that architecture, interfaces to other systems. Integration to those
systems through middleware technologies is elaborated in Section 5.4.2. Finally, Section
5.4.3 completes the specification of MPMS with the discussion of the platform aspect of the
UTS framework.

5.4.1

The HORSE project resulted in a framework, as a reference architecture for cyber-physical
systems that integrate smart technologies and provide manufacturing operations management
in hybrid actors settings. The framework is a modular architecture with clear subsystems and
interfaces at several levels of aggregation, resulting from a structured, hierarchical system
design, based on theoretical principles and guidelines (Grefen & Boultadakis, 2021).

Logical software architecture of a CPS

The HORSE system follows the two design principles of Figure 83, with clear separation
between design and execution activities, for both global and local levels. The high-level
logical software architecture is shown in Figure 104, labeled as aggregation Level 3 (Level
0 represents the HORSE system as a monolith, i.e., without internal structure, Level 1 the
system after decomposition across Global/Local levels, and Level 2 after further
decomposition across Design/Execution phases). The functional modules are briefly
described below (Traganos et al., 2021):

178

HORSE Design Global HORSE Architecture [Software Aspect Level 3]

Process Design HORSE Exec Global
Process /
Agent Agent / Global Global
Design Shop Floor Execution Awareness
Data
Shop Floor ‘ Exec Global Abstraction Layer ‘
Design

HORSE Design Local
‘ Exec Local Abstraction Layer
Task $ (I;
Design
/ Local Local Local
Task / Step <> > Configura-
Human Execution Awareness on' gura
. / Cell Data tion
Step Design
Automated T
Step Design
Workeell ‘ Hardware Abstraction Layer ‘
Design
HORSE Exec Local

Figure 104: HORSE system high-level logical software architecture (at aggregation level 3) for cyber-
physical systems in hybrid smart manufacturing (Grefen & Boultadakis, 2021).

HORSE Design Global

The HORSE Design Global subsystem covers functionality to design smart manufacturing
processes at the global level, i.e., at the site, area and production line levels. There are three
modules:

e process design, covering functionality to specify manufacturing processes in terms
of process models, i.e., what is the sequence of activities and which agents are
involved (specifications of roles);

e agent design, containing the functionality to specify the characteristics of agents.
Agents can be humans, e.g., operators, or automated agents like robots;

e shop floor design, containing the functionality to specify the entire production
area/site, both in terms of physical layout and safety aspects of all production
lines/work cells and their inter-connections.

179

HORSE Exec Global

The HORSE Exec Global subsystem contains functionality to execute manufacturing
activities across work units, i.e., at the site, area and production line levels. This includes two
main modules:

e global execution, responsible to execute manufacturing processes. It retrieves
process definitions from the process/agent/shop floor database that have been
created by the design modules and automatically executes them in runtime;

e global awareness, monitoring the global state of the environment to guarantee the
overall safety. It observes what is happening during the execution of the processes
and in case of safety hazards communicates with the global execution module to
interrupt them.

To make the implementation decisions regarding the HORSE Exec Global subsystem
independent to the HORSE Exec Local subsystem, an abstraction layer (Exec Global
Abstraction layer) that eases the communication of these two subsystems is included.

HORSE Design Local
The HORSE Design Local subsystem covers functionality to design manufacturing tasks at
the local level, i.e., at the work cell level. The subsystem involves four main modules:
e taskdesign, containing the functionality to design a manufacturing activity spanning
a work cell, which can consist of multiple steps and which require agent(s) (human,
automated, or a hybrid team of them) to execute them;
e human step design, covering the functionality to design and specify manufacturing
steps that are performed by a human agent;
e automated step design, covering functionality to design and specify manufacturing
steps that are performed by an automated agent;
e work cell design, containing functionality to support the physical design of a work
cell

HORSE Exec Local
The HORSE Exec Local subsystem contains functionality to support the execution of
manufacturing activities within individual work cells, i.e., at the work cell level. It includes
three main modules:

e Jocal execution, responsible to control the actual execution of manufacturing tasks
and steps performed by (a team of) agents;

e Jocal awareness, covering functionality to observe the physical status of a work cell,
by receiving signals from sensors, cameras and human interface devices, analyzing
them and notifying either the local execution module or the global awareness
module;

e Jocal configuration, containing functionality to configure resources on the physical
shop floor, i.e., in the execution environment (as opposed to the functionality in the
HORSE Design Local which typically happens in a design office). The
configuration typically involves setting parameters that are very closely linked to
the physical execution environment (such as teaching a robot by demonstration).

Similarly to HORSE Exec Global, an abstraction layer in the interface to the HORSE Exec
Global subsystem is included. An explicit Hardware Abstraction Layer is also included to
shield design choices for the functionality in the Local Execution. Local Awareness and

180

Local Configuration modules from technical specifications of connected devices, such as
robots and AR devices.

The design and execution modules at both the global and local levels are linked via datastores
at the respective levels. At the global level, process/agent/shopfloor datastore contains:
e definitions of manufacturing processes, in the form of process models (sequencing
of tasks)
agent models (including capabilities)
allocation models (role models)
shop floor models (e.g., 3D models)
process execution and performance data

At the local level, task/step/cell datastore contains:
o task and step model definitions
e contents of tasks, in the form of work instructions/scripts
o task and step execution and performance data

Note that the conceptual data stores containing the above information can be realized with
various forms. Physical databases are the most common way to store data, but files
(repositories) are also possible (e.g., a BPMN process model is persisted as an XML file).

Part of the functionality of HORSE Design Global and HORSE Exec Global are covered by
a process management system. The designed MPMS, as presented in the current chapter,
provides most of the functionality of such a process management system. More specifically,
the modules of MPMS are mapped to the HORSE system modules. For reasons of clarity,
the mapping has been split into two parts, one covering the HORE Design Global (Figure
105) and one covering the HORSE Exec Global (Figure 106) (for a clear and equal mapping,
the relevant parts of HORSE Design Global and HORSE Exec Global are considered at the
aggregation Level 4). To increase readability, the mapping is also shown in Table 21.

181

Definition Tools Process Enactment Service
) §
A g
Process Task Process = Administration
definition definition Engine Tools
T
ﬁ . Agent Tools Monitoring
= Res‘osn;ce L0§apfxn E
S definition definition Agent Task Exception ||,
allocation delivery handling
Nir2 2 /N
\2 V.
Service/Integration layer
AI ?
1
J
Auti t
Human agent uto agen EIS
control
IF Other systems
system
MRMS
HORSE[Design Global o
— — | “Process/ |
Product Agent/Shop
Defs. Floor Data
o (O P)
Process Design) Agent Design Shop Floor§Design
—-+ Process Flow Modelling
Syntax Sho Sho
-y . Process Task Agent Human Autom. P P
Violation) X Class Floor Floor
Identi- Agent Agent
Detec- . I Allo- . . Safety Layout
. lation fication) Design Design . .
tion cation Design Design

L |

Fiask/ Stegi

L/ Cell Data J

Figure 105: Mapping of MPMS modules to HORSE Design Global modules.

182

Definition Tools Process Enactment Service
&
L 4
Process Task Process = Administration
definition definition Engine Tools
|
7
Q Agent Tool itori
QE_ Resource Location gent 1005 TS Mo;\ltz:rlng
St e ools
N definition definition Agent Task Exception ||,
allocation delivery handling
uls
1=
|
Human agent Ai?nlfjm EIS
IF systhm Othgr systems
MPMS
HORSE Exef Global
Process/
Agent/Shop
Floorw
S~
Global fxecution Global Awarends
Production Executi
nd Production Execution Control > roduc °T‘)fecu on Slobal Safety | (€
Monitoring Guard
¢ $ ¢ $ ¢
Structur Global
Next Task Agent Worklist S Perfor- Event
. X . =9 Excep-tion —> X —
Selection Selection Delivery - mance Processing
Handling X
Tracking
[l
Exec Global
‘'——————> Abstraction €«————-
Layer
Figure 106: Mapping of MPMS modules to HORSE Exec Global modules.
Table 21: Mapping of MPMS modules to HORSE system modules.
MPMS modules
1]
= = B0 S
= 2 S = - =)
S =) =] 2 | = (=2 | F
= = = = S = e =
= S = = 2 S| £ 2| 8
= = = = = Z = = = =
g | = 2 2 | 3| 8| =| o &
5] = a a = 4 S 2 &
a L= N =) o= = g o= -
) 151 = — 7]
@« S] L5} < = ° o=
@ a] o= I = = S =
9] = p=) = [=9) = o=
133 =< S < 5] = S [} = g
=] [Z] 7] <9 = [Z] 4 < o
& e | &2 |3 S I - < I
HORSE system modules
Process Flow
. X
- Modeling
[= = »n £
SE| § .5 | Syntax
w o 8 172] . .
o S S o | Violation
AUl ~A R
Detection

183

Process
Simulation
Task
Identification
Agent Class
Allocation

Agent Design

Human Agent
Design
Autom. Agent
Design

Shop Floor Design

Shop Floor
Safety Design
Shop Floor
Layout Design

Partially

Exec Global
Global Execution

Production
Execution X
Control
Next Task
Selection
Agent
Selection
Worklist
Delivery
Production
Execution X
Monitoring
Structur.
Exception X
Handling
Global
Performance X
Tracking

As can be seen, there are modules of the HORSE system that are not (fully) covered by
MPMS modules. This, however, does not void the argument that the designed MPMS fits in
a CPS architecture for the following reasons:

Syntax Violation Detection had low priority and was not implemented in the
HORSE project. Moreover, the functionality can be supported by an advanced
process modeler (conforming to the Process Definition Tools > Validation &
Verification module of BPMS-RA) and is considered extra quality feature,
without affecting proper process modeling (no design requirement exists for
syntax violation per Table 20).

Process Simulation had low priority and was not implemented in the HORSE
project. Moreover, the functionality, while important to ease process modeling
and avoid costs, does not hinder proper process modeling and execution (A
module for process simulation would conform to the Process Definition Tools
> Simulation & Optimization module of BPMS-RA).

184

e Shop Floor Safety Design is out of scope of MPMS. It is a module to be
provided/used by safety engineers.

e Shop Floor Layout Design mostly includes the physical design, but it is the data
representation of locations at the shop floor that are relevant for MPMS.

It should also be noted that the HORSE Design Global Task Identification module, which
interfaces to Task/Step/Cell data store, contains all the information for defining a task (e.g.,
input/output parameters, rules, etc.). That means that this module provides the same
functionality as the MPMS Task definition module. The information in Task/Step/Cell data
store is provided by the HORSE Design Local Task Design module. The naming task design
should not be confused with the task definition, as the HORSE module refers to the physical
setup/configuration of a task, while the MPMS module refers to the relevant data information.

Regarding interfaces, Table 22 explains how MPMS interfaces provide the desired
connections within the HORSE system.

Table 22: Mapping of MPMS interfaces to HORSE system interfaces.

MPMS HORSE system interfaces
interfaces
IF1 Process/Agent/Shop Floor data store is the linking point between design

(definition) modules and execution modules.

Task/Step/Cell data store does not have a direct link to Global Execution, as
MPMS Task definition has with Process Enactment Service (through IF1). This
is achieved indirectly through the Task Identification and Process Flow Modeling
modules. However, it should not be an issue for Process Enactment Service to
communicate with a Task data store.

IF2 All communication with agents is achieved through the Exec Global Abstraction
Layer. Section 5.4.2 elaborates more on that aspect.
IF3 HORSE system does not provide explicit integration to other EIS. Connection to

a Product Defs. Data store is possible (in which a PLM system typically stores
product information) but is left out of scope. Integration through the Exec Global
Abstraction Layer can be possible. Section 5.4.2 elaborates more on that aspect.
IF5 Direct interfacing between Production Execution Control and Production
Execution Monitor (regarding Monitoring Tools).

This can be achieved either through service calls or through querying internal
databases in which (execution) data is persisted.

5.4.2 Integration to other systems through middleware technologies

Placing MPMS in the context of a CPS architecture, as the one defined by the HORSE
framework, reinforces the proposition of having a central process orchestration system to
enable horizontal and vertical integration. Integration requires clear interfacing to other
systems. From the designed logical software architecture (Figure 103), IF1 and IF5 are
internal interfaces among MPMS modules and, thus, not interesting from systems’
integration point of view. IF2 and IF3 are the ones under concern in this section.

MPMS is realized based on existing BPM tooling, as thoroughly discussed in Section 6.3.
BPM systems offer various integration options, with the most common:

185

e REST API*, to provide access to all relevant interfaces of the engine, e.g., to query
for running task instances.

e Connectors, to invoke (business) services on other systems, often based on HTTP
and SOAP protocols.

e Data connectors, to push or pull information from data providers such as business
intelligence (BI) systems, data lakes or data warehouses.

However, instead of studying such options, a more integrative approach based on middleware
technologies is discussed. Middleware is a type of software designed to facilitate the
interconnection of a set of software modules (Grefen, 2016). Middleware technologies reduce
the number of required interfaces to the number of modules, as module-to-module interfaces
are not necessary.

A commonly used type of middleware is a message bus, which relies on the asynchronous
exchange of messages between the modules. A message bus middleware has been developed
in the HORSE project, as a realization of the abstraction layers, discussed in Section 5.4.2.1.

Another solution of “exchanging” data/information among software modules is with the use
of a context broker. A context broker manages context information in a decentralized way>®.
Context information is considered the current state of the surrounding real world, understood
as the state of both physical and virtual entities (e.g., a manufacturing task can be considered
as a virtual entity). The use of context information helps to develop what is referred to as a
“smart factory”. Orion Context Broker>’ was the first context broker implementation and is
the core and mandatory component of the FIWARE Smart Industry reference architecture®®
(architecture diagram available in Appendix H). The FIWARE platform, with the Orion
Context Broker, is selected as a middleware platform in the SHOP4CF project. Integration
of MPMS to other systems through a context broker is discussed in Section 5.4.2.2.

Note that from a functional perspective, the message bus and the context broker approaches
are different. The former is mainly for delivering information from a sender to one or more
recipients, while the latter is to manage information of the current status of the system, which
every interested system can access and/or change.

5.4.2.1 Message bus middleware

A message bus-based middleware is designed to deliver messages across clients, using a
common message syntax and a central unit that distributes the messages to the receivers. The
terms “clients” refers to the senders/receivers of the messages, while the term “broker” is
used for the centralized unit processing the messages and performing their forwarding. Figure
107 shows a typical topology of software components based on message bus approach.
Clients can be organized into domains, based on functional or physical requirements. For
instance, a set of components dedicated for a work cell compose a domain. A dispatcher

35 REST API (also known as RESTful API) is an application programming interface that conforms to
the constraints of REST architectural style and allows for interaction with RESTful web services. REST
stands for representational state transfer and was created by computer scientist Roy Fielding -
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest _arch_style.htm

36 https://ec.europa.eu/digital-building-blocks/wikis/pages/viewpage.action?pageld=82773700

57 https://fiware-orion.readthedocs.io/en/mastet/

38 https://www.fiware.org/community/smart-industry/

186

https://www.ics.uci.edu/%7Efielding/pubs/dissertation/rest_arch_style.htm
https://ec.europa.eu/digital-building-blocks/wikis/pages/viewpage.action?pageId=82773700
https://fiware-orion.readthedocs.io/en/master/
https://www.fiware.org/community/smart-industry/

component is used as a mediator among brokers. Per decision, the dispatcher is included
within the global components since there is typically only one dispatcher in an entire system.

Client A_2

| Client A_1 Client A_.. |

Domain A

MessageiBus Broker A

|
Dispatcher

Domain B

ClientB_1 ClientB_.. Client N_1 Client N_..
Client B_2 Client N_2

Figure 107: Components topology in a message bus-based middleware approach (from (Arnaudov,
2018b)).

MPMS registers as a client (in a global domain), able to exchange data with other systems.
For instance, when a robot control system has registered as a (local) client, MPMS can send
task assignment messages. Accordingly, MPMS can receive task status update messages
from the robot controller (covering IF2 interface with such communication). Similarly, any
other information system can register as a client and, thus, be able to communicate with
MPMS (covering IF3 interface).

54.2.2 Context Broker

A context broker enables managing the entire lifecycle of context information including
updates, queries, registrations, and subscriptions. Various context broker implementations
exist (e.g., Orion, Scorpio) and many solutions are based on these (with European
Commission supporting these efforts>). Regardless the implementation technologies and the
data format specifications, context brokers rely on the consumer/producer paradigm.

Figure 108 shows the communication options between context broker and context
consumer/producers. A context producer publishes updates of the context information as
entities to the Context Broker (IFp). The update can be a change on an attribute value of an
entity or a new created entity. For instance, MPMS publishes a new task entity, as an instance
of the task concept of the data model. The task entity includes information on involved
resources, task input parameters, location, etc. A context consumer works in two modes: 1)

9 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Context+Broker+conformant+solutions

187

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/Context+Broker+conformant+solutions

in subscription mode, the consumer first subscribes to certain context changes (IFs). When
the context broker makes an update available, the consumer receives a notification about it.
In the example above, if a robot control system has subscribed to changes on task entities, it
will receive the new task entity created by MPMS. This is the preferred mode of consuming
context. 2) in query mode, the consumer queries context broker for specific context
information. This mode is not encountered frequently, as it requires active polling to get
changes. Instead, with the subscription mode, notifications are received when changes
happen. The query mode can be useful when the consumer requires information in a certain
situation.

context update IFc

1| context update P £ . subscribe |
> —(O<€--------
Context producer Context Broker < Context consumer

IFp ’ IFs

query for context

)
N\

IFq

Figure 108: Communication options between Context Broker and Context consumer/producer.

Historical-context consumers exist that query the historical context store that a context broker
offers (e.g., for analysis purposes). For reasons of brevity, they are omitted in Figure 108.

Obviously, MPMS can act as either context producer or context consumer. Through context
broker, both MPMS IF2 and IF3 are implemented. It is a matter of specifying the right entities
(with the right information) that the context broker can manage.

5.4.3 Platform aspect

As integration between MPMS and other systems is important for enabling horizontal and
vertical integration, the logical platform aspect of MPMS is discussed in the context of the
CPS in which it is part of. Considering the two main integration approaches discussed in
Section 5.4.2 (i.e., message bus, context broker), two individual logical platform
architectures are presented below. Section 5.4.3.1 discusses the logical platform architecture
with message middleware, as developed in the HORSE project. Section 5.4.3.2 discusses the
logical platform architecture with context broker, as developed in the SHOP4CF project.

5.4.3.1 Logical platform architecture with message middleware

The HORSE system is first positioned in an enterprise technology landscape, as illustrated in
Figure 109. HORSE software components (MPMS one of those) use a cyber-physical
middleware to communicate with each other and the hardware components. A database
management system (DBMS) is used to manage data in the system. Outside the HORSE
system, enterprise information systems communicate through enterprise middleware
technology.

188

EIS (ERP, MES) v
©
2
el el el I £
! . 3
I HORSE Software System : Enter- | 1
I 1| prise
| DBMS 'l Middle-
| Cyber-Physical Middleware 1| Wware
|
| I B
| ()]
1| Configurable Non-Config. Cyber- ! . 5
: Automated Automated Physical Eréte(-:;:/;;l:sse 2
I Agents Agents Workstations | _(CLU

Figure 109: Positioning of HORSE CPS system (red dotted box) in enterprise technology landscape
(adapted from (Grefen & Boultadakis, 2021)).

Focusing on the technologies that implement the HORSE system functionality (as designed
in the logical software architecture), the technology stack of Figure 110 is designed. The
cyber-physical middleware is a websocket-based message bus based on the Open Services
Gateway initiative (OSGi) (Pauls et al., 2011) specification. OSGi is a modular system
architecture and a service platform that implements a complete and dynamic component
model for general module interconnection. It also provides a universal publish-subscribe
messaging bus for communication among system modules. The Message Bus is part of
proprietary solutions of a technical HORSE project partner, adapted for the needs of the
HORSE project. Furthermore, tailored-made OSGi Applications can be used, as software
packages that offer powerful and sophisticated component management and interoperability,
as well as context-aware assistance of agents (workers, robots) on the production floor in the
execution of their tasks. The Hybrid Task Supervisor (part of the Local Execution module of
Figure 104) is a type of software to design and synchronize execution steps by agents.
Typically, state machines can offer the detailed execution of robotic steps. Robot Operating
System (ROS®) is a commonly used, open-source, meta-operating system for robots and
provides functionality such as hardware abstraction, low-level device control,
implementation of commonly used functionality, message-passing between processes, and
package management. Open Platform Communications-Unified Architecture (OPC-UA)
(Rinaldi, 2016) is used as the interface to advertise and invoke robotic services.

60 http://wiki.ros.org/ROS/Introduction

189

http://wiki.ros.org/ROS/Introduction

Global
HORSE HORSE

Manufacturing Process Management System Global Awareness

HORSE Cyber-physical Middleware
Local

HORSE Hybrid Task Supervisor

. HORSE ROS HORSE .
HORSE OSGi - HORSE Technology- HORSE
L applications oo . OtherTech
applications . OPC-UA specific robotics bridges
bridge interface 8
(New) Plugins
H'uman-rf)bot Teaching-by- Augmented Work cell
interaction . . -
demonstration reality monitoring
technology

RIRORNGYIE N |

Figure 110: HORSE CPS technology stack.

A more elaborate technology stack of the local technologies is given in Traganos et al.
(2021)(omitted here as not the main focus of this thesis).

5.4.3.2 Logical platform architecture with context broker

The high-level logical platform architecture of SHOP4CF system is shown in Figure 111.
Vertical adjacency depicts connections between platform components. SHOP4CF
components connect to the middleware (including the context broker), but direct connection
to IoT devices might be possible. MPMS connects to middleware for better interoperability.
Containerization of both SHOP4CF components and middleware is used for easier
deployment and control.

190

£
SHOPA4CF components ‘O:i
s
£
L
Middleware ;
] Containers -
Cyber-physical systems
and loT devices
Servers

Figure 111: High-level logical platform architecture of SHOP4CF system (Zimniewicz, 2020).

software

hardware

Decomposing the high-level logical platform architecture, a more elaborate view is taken,
shown in Figure 112, with the focus on the SHOP4CF components and the middleware
layers. As has already been mentioned, the Context Broker is the core component of the
FIWARE middleware platform. As it only persists the current state of the environment under
concern, historical context store is also provided. Through systems adapters, other enterprise
information systems communicate with the Context Broker.

Regarding the SHOP4CF components, five different interoperability classes have been
identified to classify them. Each class has different characteristics with different connection
points to other systems. A component (e.g., MPMS) can be assigned in more than one class,
considering that it provides the essential interfaces.

SHOPA4CF components

Cyber-physical
systems
and loT devices

Context Broker

'

A

loT agents

Context Context Historical-context
loT agents System adapters
producers consumers consumers
A
Y
FIWARE middleware
Historical

context store

Systems adapters

3rd-party
information
systems

Figure 112: Logical platform architecture of SHOP4CF system, with elaborate view on SHOP4CF
components and middleware (Zimniewicz, 2020).

191

5.5 Chapter conclusion

Given the complexity of processes and the technology heterogeneity in manufacturing
environments, a single process management system is proposed for business and
manufacturing process orchestration. The system enables horizontal integration with a global
control of processes. It also facilitates vertical integration through automated execution of
production activities by heterogeneous agents.

This chapter presents the specification of a manufacturing processes management system
(MPMS) for process automation and integration in a smart manufacturing context. The
specification starts with a logical architecture of the functionality that the system should
provide. The architecture is elaborated according to the updated 5-aspect Truijens framework
(Grefen, 2016) and is a result of an iterative design cycle process (Wieringa, 2009). As it is
based on existing BPM systems, which are typically applied in administrative domains,
functionality to be enhanced or completely missing for a smart manufacturing context has
been identified and included in the design. New and enhanced functionalities cover the gaps
of the studied BPMS reference architectures with respect to application in smart
manufacturing. The architecture is complemented with positioning the MPMS in a well-
defined architecture of a cyber-physical system for integration of various Industry 4.0
technologies.

The design of MPMS provides guidance on the realization of a unified process management
system for operations management. A realization of the system design is presented in Chapter
6, once the operationalization of the conceptual developments of Chapter 3 and Chapter 4
have been included as well. The realization is demonstrated in practical settings and
evaluated, discussed in Chapter 7.

192

CHAPTER 6

Advanced MPMS

The previous chapters have presented conceptual designs that each addresses a specific aspect
of the general process complexity issue that this thesis studies. The conceptual designs have
to be operationalized to be applicable in specific solutions. Thus, the current chapter first
discusses the operationalization of the conceptual designs. The ensemble of the individual
operationalizations form an architecture model of an advanced manufacturing process
management system. The designed architecture model, combining individual designs,
represents the artefact that answers RQ4, i.e., how to support the tackling of the general
process complexity issue in smart manufacturing.

Furthermore, a realization of the advanced MPMS architecture model is presented as a proof
that design is viable, i.e., the architecture can be realized as an operational system. On
purpose, it is referred to as “a” realization and not “the”, as there can exist many operational
systems that adhere to the architecture model, based on the selected concrete technologies.

6.1 Chapter outline

The chapter is structured in two main sections based on its two main goals.

Section 6.2 presents the integrated solution for the answering RQ4, once the individual
conceptual designs have been operationalized. The operationalization of modeling constructs
(designed in Chapter 3) and the operationalization of exception handling (designed in Chapter
4) are executed in the context of BPM theories and technologies (e.g., using the BPMN 2.0
specification). These are discussed in Section 6.2.1 and Section 6.2.2 respectively. Section
6.2.3 presents the development view (of K4+1 framework) of the MPMS specification,
whose logical view has been presented in Chapter 5. The resulting artefact for RQ4 is
presented in Section 6.2.4, with a focus on the software architecture.

Section 6.3 presents an operational system as a realization of the designed artefact. The
realization is based on selected concrete technologies. As MPMS builds on existing BPM
tooling, an available BPMS platform is first presented in Section 6.3.1. Section 6.3.2
showcases the application components that realized the software functional components of
the architecture. Section 6.3.3 presents a deployment diagram of the system.

The chapter outline is illustrated in Figure 113, following the DSR approach (i.e., it is an

elaboration of the high-level DSR diagram of Figure 13 with respect to the part referring to
the design of the overall solution). The chapter concludes in Section 6.4.

193

) . . Knowledge
Enwronment Design Science IS Research Base g

Empirical
knowledge : Modeling Exception handling Specification of
constructs strategies MPMS Applicable
- HORSE & SHOPACF knowledge:
data models : :

-BPMN2.0

- Existing BPM - b
. N - Literature on

vy vy exception handling
with BPMN
Operationalize modeling Operationalize exception Design development view
: constructs handling J of MPMS. J
: - WFMS/BPMS
-Deployment | | - Sectmn 62.1 Secnon 622 Secuon 62.3 reference
technologies 2l S
I : architectures
F S N A (WFRM/Mercurius/
- : BPMS-RA)

Design and develop

Software | Design architecture model] p[Architecture model -
—_—— of advanced MPMS of advanced MPMS
<D

AdvancedMPMS | | |
software | Softwarel i .
packages H | Platform advanced MPMS

Figure 113: DSR approach for RQ4 - Design of an advanced Manufacturing Process Management
System for tackling process complexity. A system realization is developed as well.

6.2 Integrated solution

The integrated solution, i.e., the ensemble of individual designed artefacts, constitutes an
architecture model that acts as a blueprint for realizing a process management system for
manufacturing operations. The specification of such a system has been conceptually designed
(i.e., from a logical point of view) in Chapter 5. It remains to discuss the development view.
To claim the “advanced” characterization, it shall include the functionality that has been
conceptually designed in Chapter 3 (modeling patterns) and Chapter 4 (exception handling).
These designs shall also be operationalized first. Thus, this section presents the
operationalization of the modeling constructs in Section 6.2.1, the operationalization of
exception handling in Section 6.2.2, and the development view of MPM in Section 6.2.3.
Then, Section 6.2.4 presents the final designed artefact.

Similarly to the design of MPMS specification (Chapter 5), the operationalizations of the
individual conceptual designs have been performed in design cycles (Wieringa, 2009). For
instance, the BPMN process model for the synchronization mechanism has seen various
iterations to reach its final form, presented in Section 6.2.1.2. Initially, before the recipe
notion had been introduced, a controller to buffer process instances was implemented. That
controller, though, was not taking into account the multi-instance perspective and thus had
to be revised, leading to the idea of recipes. Accordingly, the exception handling mechanisms
had to be revised to cover the final designed list of the exception handling strategies.

194

6.2.1 Operationalization of modeling constructs

Chapter 3 presents the design of a few modeling constructs to represent concepts encountered
in manufacturing processes, and with the goal to ease their executability. Some of those can
be directly applied/configured during process modeling, according to the BPMN 2.0
specification®!. More specifically, the task repetitions patterns (Section 3.3.2), the task queue
management construct (Section 3.3.3), the modeling of collaborative assembly process
(Section 3.4.2), and the deferred task parallelism constructs (Section 3.4.3). Process modelers
have to adapt those constructs per need (e.g., create as many branches as the number of the
task types on the task queue management construct), or configure the relevant parameters
(e.g., update the condition variables on the deferred task parallelism construct).
Consequently, these constructs do not require specific operationalization (at a generic level).
On the other hand, the task delivery patterns (Section 3.3.1) and the synchronization
mechanism (Section 3.5) require more elaboration to be operationalized by a realized system.
These are discussed in the following two subsections respectively.

6.2.1.1 Operationalization of task delivery patterns

Delivering a task directly to an automated agent, or in a module that handles tasks for agents
(be it a robot controller or a module to present human tasks in a custom U]I) is split into three
main phases, namely starting, executing, and ending (as has been shown in Figure 57). The
“delivery” concept should not be confused with the starting phase, as the focus here is not
only to send task instructions to an agent, but also wait for task’s completion. That means
that all patterns should achieve the “waiting” state, i.e., while the agent actually performs the
work.

The “Send and Receive Tasks” pattern (see Figure 57) achieves the waiting state in a
straightforward way. The Send Task is configured to send any information regarding the task
(e.g., task input parameters), through a service call. The process engine that handles the
automation of the process models advances the workflow to the Receive Task. An external
call (from the auto agent/external module), when the work is completed, triggers the Receive
Task and the process instance can move to the next element.

For the other two patterns, this decoupling of “sending — waiting — receiving” is not that
straightforward. Let us consider first the Service Task pattern (see Figure 57) to explain a
few concepts. Figure 114 illustrates the sequence of messages of a synchronous service call,
as typically configured by a Service Task. The synchronous service call follows the well-
known request/response design pattern®. The process engine performs a service call and
waits for a response by blocking the transaction thread. Once the response is received, the
thread is unblocked.

61 https://www.omg.org/spec/BPMN/2.0/
2 http://www.servicedesignpatterns.com/ClientServicelnteractions/RequestResponse

195

https://www.omg.org/spec/BPMN/2.0/
http://www.servicedesignpatterns.com/ClientServiceInteractions/RequestResponse

Process
engine

T

External
module

: Send task request

(a)

T

2. Execute task

Process Engine

Sta

External module ----

rting
Executing

Transaction Tx

Ending

thread blocked

Executing

(b)

Figure 114: Synchronous service call through a Service Task, as (a) UML sequence diagram, (b)
graphical representation.

The asynchronous service call follows the request/acknowledge/callback pattern®®. Figure
115 illustrates an example of the desired task delivery with asynchronous service call. Once
the external module receives a task request, it puts it in a queue (assuming that it can handle
the queue). Then, two options are available. Either the queue handler forwards it to the agent
(service processor), or the agent requests it (e.g., through a polling mechanism). The agent
performs the work and finally sends a callback message to the process engine. The callback
itself can be sent either synchronously or asynchronously. The important point here is that
the transaction thread is not blocked.

93 http://www.servicedesignpatterns.com/ClientServicelnteractions/RequestAcknowledge

196

http://www.servicedesignpatterns.com/ClientServiceInteractions/RequestAcknowledge

Starting Ending
Process External

N Agent i
engine module Executing
1: Send task request
2. Store request—»|
3a. Deliver request
-1.1 Acknowledgement--- 3a.1 Acknowledgement:
Tx1 T2
3b. Get Request
3b.1 Deliver request > p Engi
rocess Engine - =—b--- ppt------
ol / h
Req} fAck /1 callback [\
| / \
! I
4 txecute task External module |+ b1 e—pa b 2 8
| Executing
H j<
l 5. Task completed (Callback message) \

thread not
blocked

(a) (b)

Figure 115: Asynchronous service call, desired for task delivery, as (a) UML sequence diagram, (b)
graphical representation.

The same functionality shall be achieved through the use of the User Task (or any new task
type defined as an extension to the BPMN specification). Some kind of delegate code shall
be sent to an external module upon creation of the task (starting phase). Upon task
completion, the callback message shall be received by the process engine.

Regarding the reception of the callback message, three main options are possible:

e The process engine provides a REST API endpoint which can be directly invoked
to complete a task. This option gives control to the external module to handle the
completion of tasks.

e An application module embedded to the process engine provides a controller
mechanism (e.g., endpoint) to receive callback messages. Handling those messages
means that the application can interact with the task instances, e.g., calling process
engine’s internal API to complete a task instance.

e The process engine receives messages through a non-interrupting event subprocess.
Handling those messages can be easier as the correlation to the running task
instances is more explicit.

The second option is discussed in Section 6.2.3, which elaborates on the integration options
to other systems. The third option, essentially, provides the same functionality as the second
option, but it is a more explicit option from a process modeling perspective. The third option
is illustrated in Figure 116. Note that the entire process represents the called subprocess of
Figure 54. It is a simplified extension of Figure 55, from which the allocation paths have
been excluded for sake of simplicity. The pattern of Figure 116 is not only relevant for
receiving final task status message (e.g., “task completed” or “task failed”), but it can be
applied for handling any task messages. For instance, it can be used for handling messages
of the actual initiation of the task, linking to the pattern of Figure 64.

197

Retry

Check

status
X\ Succeeded ()

Task
completed

Task to be
delivered
Failed

| O

Task failed

Complete, fail,
or update a task

Task delivery pattern

©

LN
’ Reactto
\lz/]) task event » ()

Task event Task event
arrived handled

Figure 116: Pattern for receiving task events.

6.2.1.2 Operationalization of synchronization mechanism
The operationalization of the recipe system (Section 3.5.3) consists of three main parts:

1. A data model to represent the formal entities.
ii. A software package to represent the data entities as objects and to operationalize the
formal algorithms.
iii. A BPMN 2.0 model to represent the Recipe Controller.

The data model provides all details on attributes of classes and relationships between classes.
It is available in Appendix I. The software package follows the object-oriented programming
paradigm, written in the Java programming language. It contains classes to represent the data
entities, to handle the messages, and to evaluate recipes according to the mapping and pool
algorithms. Details of accessing the source code can be found on Appendix J.

The process model of the Recipe Controller is shown in Figure 117. Two main process
models are also illustrated in Figure 117 to ease the elaboration of the controller’s
functionality. Four types of messages are included in the recipe system:

e Submit. Used by a process model to submit a process instance to a pool.

e Cancel. Used by a process model to remove a process instance from a pool before
release through fulfilment.

e Release. Used by the recipe controller to indicate that the process instance(s) of the
pool(s) that fulfil the recipe shall continue their flow (currently waiting at a Release
Receive message event).

198

e Start. Used by the recipe system in a similar way as the Release message type, but
to start a new process instance (according to the recipe), instead of continued the
flow of a running instance.

In short, process models that include synchronization points and are part of a recipe submit
(accordingly cancel) their process instances in the recipe controller (persisted in the
corresponding pool(s) according to the recipe definition). The recipe controller evaluates the
recipes and upon fulfilment of a recipe releases the continuation of the flow of the relevant
process instances (or starts a new process instance).

Submit

Submit Release

Production

task A2

Production Process A

Peocess A

Production
task A1
Start of

-6

End of
Process A

Production Process B

Start of
Peocess B

Production
task B1
O
|

|
1
VA

S

|
v

@

Start controller

Recipe Controller

List of recipe ids

Initialize

Buffering }
database

- Connect to database, load and verify all recipes
- Initialize runtime variables

Kill all other running recipe controller instances

Arecipe was
fulfiled

Releasing
from a

Evaluate recipes

Evaluate recipes

No recipe fulfilled

S

recipe may
resultin another
fulfillment

Recipe
fulfiled?

Handle Submit
message

Evaluate recipes

Handle Cancel
message

-®

Evaluate recipes }

Figure 117: The Recipe Controller implemented as BPMN 2.0 process model.

6.2.2

A list of exception handling strategies/patterns (Table 17) is identified in Section 4.3.3.1 for
dealing with deviating behaviors during manufacturing operations. Based on the type of
occurred exceptions and considering also the critical MOM KPI(s), a set of guidelines in the
form of decision trees are designed to select a suitable strategy/pattern (Section 4.3.3.2).
Regardless, though, of how an exception handling strategy/pattern is selected, there should
be support by a process management system, both from a modeling and an execution
perspective. Thus, this section presents BPMN 2.0 modeling constructs to support the
selected exception handling strategies/patterns.

Operationalization of exception handling

Table 23 discusses how support is provided for the exception handling strategies/patterns of
Table 17 through the BPMN constructs of Figure 118 and Figure 119, shown below. Figure
118 presents a construct for task delivery and exception management. The construct shall be
used as a subprocess to be called by main (production) processes. The construct is an
extension of Figure 116, which has been used as a simplified version to illustrate the task

199

delivery to agents. It is also an extension of Figure 55 — that figure focuses on the allocation
mechanism, without exception handling. For reasons of brevity, allocation is simplified in
Figure 118, by using only a single task (type). This does not affect the exception handling as
exceptions raised/indicated by either a human agent or an auto agent are covered, as discussed
in Table 23. Figure 119 presents two auxiliary processes to handle exceptions at a process
level. It should be noted that functionality to register an exception (e.g., through a Service
Task) is omitted for reasons of brevity.

Existing work has inspired the design of the BPMN 2.0 modeling constructs. For instance,
constructs for immediate or deferred fixing have been proposed by Lerner et al. (2010) and
Reichert & Weber (2012b). Ritter & Sosulski (2014, 2016) have also designed BPMN
constructs for exception handling. However, those works do not cover the entire set of
handling strategies that the current research has rigorously identified. Moreover, the
constructs presented in this research form a compact and more comprehensive way to
encapsulate exception handling functionality. This is achieved through: i) one subprocess
that can be called from any activity of a main process (Figure 118), compared to patterns that
have to be iterated over any task in a process model and thus leading to expanded process
models that can affect readability and understandability, ii) two auxiliary processes (Figure
119) for centrally managing exceptions at process level, modeled outside the scope of the
main processes in concern instead of modeling them inside the processes in concern.

Table 23: BPMN support of exception handling strategies/patterns (per Table 17).

Exception handling strategies/patterns BPMN support explanation

1. Retry a. Restart A human agent gets the option to select “Retry” in a
current (User) task. An automated agent sends a
message, caught with the “Task event arrived”
message event of the “Task Events Listener” event-
subprocess, with the “Retry” value passed. Upon
receiving such message, the system shall advance the
workflow into the “Retry” path.

b. Rework Achieved through the “Retry” path, as in Restart
approach.
c. Immediate fixing When immediate fixing is required, typically to be

performed by a human operator, an error is raised and
the “Fix” task is assigned to a human agent. The
operator indicates then the new status and the
workflow continues.

d. Deferred fixing When deferred fixing is required, assigned agents are
released (i.e., considered as not occupied). Task
information is preserved in a pool that controls tasks
to be performed at a later stage. The handling of such
tasks is controlled by the “Deferred Task Controller”
process, which continuously monitors for available
“deferred” tasks. The “Handle deferred tasks” Service
Task of the “Deferred Task Controller” includes the
business logic on when to execute a deferred task,
implemented per scenario/need.

2. Try alternatives a. Replace order When a request for replacing an order arrives, caught
by the “Process event arrived” message of the
“Process Events Listener” event subprocess of the
“Event Handling Process”, related running instances
are canceled, so new ones can start for the new order.
The cancelling of related instances is performed based
on order information (e.g., OrderNo). That means that

200

the corresponding (production) processes shall have
correlated order information with running instances.

b. Change/Move to
new settings

This approach typically involves many activities
besides execution of the regular production processes.
For instance, checking whether a spare production line
is available for starting a new production run, or
whether new setups have to be implemented before
moving. This goes beyond the scope of the operational
level (i.e., decisions on a tactical or even strategical
level) and not always covered by standard modeling
patterns. In case the changes/moving can be
performed easily, the cancellation of related running
instances, as performed for 2.a) can be applied.

3. Compensate

a. Add/Insert tasks

Performing an additional task, typically performed by
a human operator, is an ad hoc way to compensate
some work done in case of errors. The additional work
can vary and often depends on the experience of the
operator to resolve an issue. What is important for the
system is the confirmation that the additional work is
completed (maybe with providing some input
information), as captured by the “Perform additional
task” User Task.

4. Rollback

a. Jump backwards

In case no additional task is needed (covered by 3.a)),
a compensation trigger is raised from the “Task
delivery and exception management pattern”. It is then
caught by the parent task in the main process,
triggering any compensation actions (through a
Compensation boundary event).

5. Suspend/Resume

a. Delay the activity

In case of a task to be performed by a team involving
a human agent, the delay is provided as an option
through the “Execute delayed task” User Task. This is
basically a way to put the workflow in a waiting state
and getting the confirmation of the human agent on
when he plans to start working on it.

In case of a task to be performed by auto agent(s), any
delayed execution is typically handled through
queueing mechanisms as discussed in Section 3.3.3.
Of course, queuing mechanism can be applied for
tasks delivered to human agents as well but given the
flexibility of operators to perform/continue delayed
work, direct support is provided.

b. Suspend/Resume
case

Upon reception of an event, caught by the “Process
event arrived” message of the “Process Events
Listener” event subprocess of the “Event Handling
Process”, requesting for suspending a case, a Service
Task with the required business logic suspends the
related running instance(s) of that case (e.g., linked to
an order). Similarly, a suspended case can be resumed
with a Service Task.

c. Suspend/Resume all
cases

Similarly as in 5.b), more than one cases can be
suspended/resumed.

6. Continue process

a. Skip

Both human and auto agents are given the option to
skip an assigned task (whether they started working on
it or not). Human agents can select the option through
a tasklist application, auto agents can pass this
information on task messages.

b. Jump forward

In case an exception during an activity requires to
jump forward, there should be indication on which
should be the next task. The skipped tasks are marked,
so they are not executed (as handled by the “Skipped”
XOR gateway.

201

Ignore Exceptions are ignored, no action is needed (except
registering the exception for analysis purposes).
Do nothing No action is needed.

7. Terminate

Force complete
activity

Both human and auto agents are given the option to
complete a task (whether its actual work is finished or
not). Human agents can select the option through a
tasklist application, auto agents can pass this
information on task messages.

Force complete
case/process

Upon reception of an event, caught by the “Process
event arrived” message of the “Process Events
Listener” event subprocess of the “Event Handling
Process”, requesting for force completion of a case, a
Service Task with the required business logic
completes the related running instance(s) of that case
(e.g., linked to an order).

Force fail activity

Similarly as in 7a), agents are given the option to fail
a task.

Force fail
case/process

Similarly to 7.b), running instance(s) can be forced
failed.

Discard workpiece

This does not require any action/support (except
registering the exception and the discarded workpiece
for analysis purposes).

8. Escalate

Reallocate

In case an exception during an activity requires a
reallocation (e.g., low battery of an AGYV), the
reallocation mechanism is called again, i.e., Exception
boundary event looping back to “Select Team”
Decision task.

Terminate process
(7) and propagate

In case an exception during an activity requires
termination of a case/process, message is sent to the
“Event Handling Process”. The latter process takes
care to propagate the exception message to upper
management.

Contact/Coordinate

In case of an exception failure, an “Out of normal
action” task is triggered where the agents
contact/coordinate with other roles no whether and
how issues can be resolved.

202

Calls "Task delivery
and exception
management patiern”

(@retate ordr

Release
agent(s)

- Submit for
Update agents deferred fixing

as not occupied
inthe current
task

|for deferred

fiing

details into
R ol TaskB —O
H instance(s)
g Process Process
g started Troger Typically ended
< escalated
§ componsation Faied Yes
2 : .
Compensate Outof normal
action
<«
Execute Delay
delayed task
Retry
Based on
task definition User Taskio
X receive input for
Either provided by human
(@ agent through a User
Indicate Task or byauto agent,
ot sk caughtbythe event
subprocess.
Ifa previous additional task
task resulted in fesigned "::‘(s)
“Jump forward" 9
Skpped =
Succeoded
Select Team
£ Tasktobe Task
£ dalivered completed
g Yes
2 Realocaton
5 Failed
5
§ Task
E faied
g
8 Submit For compensation
2 Message to task_instance_id
< Event Handling Terminate and into a pool
z Process ropagate presening tasks Trigger
2 compensation
&

Skip,
Skipped

s

Task event
artived

Task Events Listener

Complete, fail,
or update a task

Reactto
task event

Task event
ndied

Figure 118: BPMN model construct for task exception handling. The task construct (bottom process)

is a subprocess to be called by tasks modelled in any main process (top process).

203

Initialize
variables

To be terminated Process

terminated

Process
started

Process Events Listener
Based on
orderNo

Replace .@
order ancel related

running
instance(s)

Force fail Force fail
running
instance(s)

Propagate to
management

Event —
= type 4@, Y
rce complete

LN Force complete ol

’ Determine type ! .

= X ——————» running > X
~_7 instance(s)

Event Handling Process

of process event

Process event
arrived

— a Process event
handled

A\
Suspend '@}spend related

running
instance(s)

~——

(>~
Resume %e)sume related

running
instance(s)

~——

s
Initalize @ Handlo

variables deferred tasks

Process

started .-

Task Def. DB

i [For deferred
fixing (or

resumed later)

Trigger deferred
tasks handling

Deferred Tasks Event Listener

Deferred Task Controller

- %ore taskinfo
@ for deferred 0
work

Submit

Trigger deferred
tasks handing

Figure 119: Auxiliary processes for exception handling: (top) process event handling, (bottom) handler
for tasks to be executed at a later stage (e.g., for deferred fixing).

The “Determine type of process event” Decision task in the “Process Events Listener” event
subprocess of “Event Handling Process” (top process of Figure 119) encapsulates the logic
to distinguish what kind of event has been captured and what support is required. Events
captured through the “Process event arrived” message of the “Process Events Listener” event
subprocess of the “Event Handling Process” shall contain the right information to make the
decision. To structure required information, a UML class diagram is designed, shown in
Figure 120. The diagram is an operationalization of the event concept model (Figure 99) of
the data aspect of MPMS (Section 5.3.3.3).

204

; : Event
Enum: EventSeverity Enum: EventStatus i |-ewentid:Long <—
informational created - event_type: EventType
low acknowledged - status: EventStatus
medium isWorked .- datelssue: Timestamp
high handled -1 - severity: EventSeverity
critical deleted + updateStatus (event_id): void
+updateSeverity(event id): vo
Enum: AlertStatus <73 Alert Enum: MeasurementType | ___) Measurement Enum: NotificationStatus [<Z--+ Notification
created ~alert_id: Long f<— activity ~id: Long <H received i D>{-id: Long
acknowledged - event_id: Long resource ue - event_id: Long — acknowledged “’;5 - event_id: Long
humanAcknowledged - category: AlertCategory -~ --1 - type: MeasurementType humanAcknowledged -1+ - status: NotificationSta..
isWorked uie - subcategory: AlertSubcategory - parameters: HashMap<String, Object> isWorked
handledSuccessfully - description: String evaluated
escalated - validFrom: Timestamp deleted
doleted wvalldTo: Timestamp : Enum: ActivityType [< ActivityMeasurement ResourceMeasurement
L status: AlertStatus process -id: Long -id: Long
task - measurement id: Long - measurement_id: Long
+update\alidTo(alert_id): void o
step - type: ActivityType - resource_id: Long -
+ updateStatus (alert_id): void -id: Long -id: Long
- noification_id: Long {—L - notification_id: Long
use - order_id: Long - type: String
ResourceAlert ActivityAlert SafetyAlert T
_id: Long -id: Long — ’—(> -id: Long -id: Long -id: Long
_alert_id: Long -alert_id: Long ~alert_id: Long - activity_measurement id: Long - activity_measurement_id: Long
_resource_id: Long - type: ActivityType - process_instance_id: UUID ~task_instance_id: UUID
+ updateResourceStatus(resource_id): void
ProcessAlert TaskAlert L
-id: Long -id: Long -id: Long -id: Long
- actiity_alert_id: Long - activity_alert_id: Long - safety_alert_id: Long - safety_alert_id: Long
- process_instance_id: UUID - task_instance_id: UUID -loc_id: List<Location> locsf id: List<Location_SF>
+ updateProcess Status process_instance_id):void +updateTaskStatus (task_instance_id): void Toxt 1ot SVG - camnot diplay

Figure 120: UML class diagram as operationalization of Event concept model of Figure 99.

205

6.2.3 Development view of MPMS specification

The development view of K4+1 framework (see Figure 81) discusses the operationalization
of the logical view of the MPMS specification, discussed in Chapter 5. The logical view
touches all five aspects of the UTS framework (Figure 82), discussed in Section 5.3.2 and
Section 5.4.3. Though, not all aspects are relevant from an operational point of view.

The organization aspect (Section 5.3.3.1) analyzes the physical hierarchy of a manufacturing
enterprise and its structure has been considered in the location concept model (Figure 100)
of the data aspect (Section 5.3.3.3). Similarly, the process aspect (Section 5.3.3.2), which
discusses the hierarchy and logical sequence of activities, has been considered in the activity
concept model (Figure 96 and Figure 97) of the data aspect. The integrated concept model
(Figure 101) of the data aspect shall be operationalized. The operationalization of the
software aspect (Section 5.3.3.4) is better discussed through concrete details, i.e., through a
realization system (Section 6.3). Though, the operationalization of the external interfaces
(IF2/TF3) of the logical software architecture (Figure 103) deserves detailed elaboration
regardless concrete technologies of a realized system. Finally, the operational view of the
platform aspect (i.e., concrete deployment details) is better discussed on realized system(s)
(Section 6.3) and through the integration and demonstration of the system in real-world
environments (Section 7.1).

Thus, the current section presents the operationalization of the concept model of the data
aspect in Section 6.2.3.1, and the operationalization of the external interfaces of the system
in Section 6.2.3.2. Deployment details of a realized system (physical view of K4+1) are
discussed in Section 6.3. This discussion refers to the realization of MPMS as a standalone
system. Deployment details of a CPS in which MPMS is embedded are discussed in Section
7.1.

The above explanation is also illustrated in Figure 121. The link between the data and
software aspects is kept to highlight that the operational views of each aspect should consider
details from the other aspect. For instance, the technical data model (data aspect) should
include details of software module(s) (software aspect), e.g., data attributes of the process
engine.

206

Concept
model

data

Location
concept model

Activity
concept model

organization process

platform

Figure 121: UTS aspects with logical design(s) from Chapter 5 that shall be operationalized, mapped
to corresponding sections.

6.2.3.1 Operationalization of concept model (data aspect)

Section 5.3.3.3 discusses relevant concepts to represent manufacturing entities. Different
concept models are designed and linked into an integrated concept model (Figure 101). This
high-level concept model is operationalized by detailing the attributes of each concept.
Section 6.2.2 already presents the data model with respect to the event concept model. This
is also included in Figure 122, which covers all concepts.

A few design decision/explanation points with respect to the data model of Figure 122:

Design decision 1): While the Location class represents the equipment hierarchy in terms of
structure, a more detailed representation of location points is necessary, captured by the
Location SF (shopfloor) class. Examples of entities in this class are the exact location of
devices or storage bins on the shopfloor layout.

Design decision 2): A location point (from Location_ SF class) is described with respect to
its functional purpose as source or target. This is important for transportation tasks (e.g., an
AGYV to move from point storage A to station B). Apparently, the same location can function
either way, depending on the context of the activities taking place.

Design decision 3): The Step class (from Figure 101) are omitted as they are more relevant
for modules of the local control level (and thus to avoid cluttering the diagram).

207

Design decision 4): The entire Team class and a few attributes in ProcessDef, TaskDef and
AgentSpec classes are grayed, as representative examples of attributes used for the allocation
mechanism. More elaborate attributes and relationships are covered in Erasmus (2019).

Design decision 5): The Agent class is not further specialized in Human and Auto agent
classes, to avoid cluttering the diagram. A technical implementation of the data model (e.g.,
in a physical database) should take them into account, as each have different characteristics
(Erasmus, 2019).

Design decision 6). Statuses values in all enumerators can be adapted/extended, but have to
be respected by all components that will use the data model, regardless whether they refer to
global or local level.

208

Figure 122: UML class diagram as operationalization of the integrated concept model of Figure 101.

209

6.2.3.2 Operationalization of interfaces (software aspect)

The design of interfacing MPMS to other systems (Section 5.4.2) includes two main options,
integration through message bus middleware and through context broker. Thus, the
operationalization of these two options is discussed separately below.

6.2.3.2.1 Interfacing to Message bus middleware

Interfacing to a message bus requires first to register MPMS as a client (per Figure 107). An
application module can handle the registration and creation of endpoints for handling
messages between MPMS and the message bus. Such an application has been operationalized
as part of the current research. Details of accessing the source code can be found on Appendix
J.

To ease the integration of MPMS to the message bus, two auxiliary BPMN processes are
created, as shown in Figure 123. Before any production process runs, the MPMS Handling
process (top swim pool of Figure 123) takes care to register MPMS as a message bus client.
A number of options are given to MPMS administrators/users to make requests to the
message bus, modeled in the bottom swim pool of Figure 123. These include checking for
active connection(s), getting list of registered clients (the names of which are used to send
messages to specific recipients), informing main processes for active registration, and
disconnecting MPMS (e.g., for maintenance or troubleshooting purposes).

MPWS Handling Process

v
inflaized

pave
v (S
Chock oropen
e Socn

Message Bus Broker Requests Process

Figure 123: Auxiliary BPMN processes to handle MPMS integration to Message bus middleware.

Once registration of MPMS as a client is handled, the main production processes can start,
in which messages to/from the message bus are exchanged. Figure 124 illustrates an example.
The top swim pool refers to a high-level view of the process. In the beginning, a check is
performed on whether an active connection to the message bus has been established,
otherwise the process is paused (intermediate signal catch event) until registration has been
established. Relevant information is received from data stores (e.g., product info, or task
parameters). Then, a subprocess is called to actually execute the production activities (bottom

210

swim pool). When a task requires to be delivered to an agent through the message bus, a task
assignment message is sent upon task instance creation. When the actual work has finished,
a task completion message is forwarded by the agent to MPMS. The application that handles
the messages completes the task through process engine’s API (or any specification).

y

[Batch Datatable

Retrieve
Product Info

MRS iniialized

(@scheck for

"MPMS handling
process”

Select product Handle
bateh No bateh

Batch
arrived

Main production process

Batch
Retrieve Tasks processed
is

MPMS initaized

il —$—

Task Def. DB

Starting Ending

Executing

message (caughtby an endpoint),
k I
to WS broker the task is completed
\
\
\
\
\

through process
engine's AP
Task B
by Robot
5 Task assignment \ Task completion
s message \ message
[y F— y
‘ Message Bus ‘

Figure 124: Example of production processes in which interfacing to message bus is required.

Upon receiving of a
Send message from WS
task assignment

¢ Product qualty

Handle batch process

by Operator

[——

Example messages are shown in Figure 125, expressed in JSON® format. The syntax of the
messages is specified by the message bus implementation (e.g., the HORSE message bus
specification (Arnaudov, 2018a)). Similar messages can be constructed to exchange
information on processes, events, agents, etc., respecting the data models (Section 6.2.3.1).

{ {

'Topic': 'task assigned’', 'Topic': 'task_completed’,
'SenderID': 'mpms', 'SenderID': 'rosbridge’,
'Receivers': 'rosbridge', 'Receivers': 'mpms’,
'Subtype': 'notification’', 'Subtype': 'notification’,
'Timestamp': '20180117103348', 'Timestamp': '20180117103348",
'ExternalBrokers': '*', 'ExternalBrokers': '*’,
'SenderBroker': '', 'SenderBroker': '',
"Body':{ '"Body’ : {
‘args':{'agent _ids': 'l"', 'out_variables':{'quality_result': 'passed'}
'task_id': '4°', }
'task_instance id': '7d69-5c05', }
'process_instance id': '§ldd-1le3’
b,
'in_variables':{'batch_no': '34'}
}
}
(a) (b)

Figure 125: Example messages for task delivery through message bus, expresses in JSON format (a)
task assignment, (b) task completion.

%4 https://www.json.org/json-en.html
211

https://www.json.org/json-en.html

Note that other type of messages can be exchanged as well, e.g., alerts, not only task-related
information.

6.2.3.2.2 Interfacing to Context Broker

An application module can handle the subscriptions, the context update and the context
consuming of MPMS in relation to a Context Broker (per Figure 108). As a context
consumer, MPMS, shall subscribe to specific entities that are relevant for receiving context.
These entities are: process entities (to receive changes on process level), task entities (to
receive task status changes), resource entities (to receive changes on availability), and alert
entities (to receive new alerts). The entities follow a specification® respecting the data
models (Section 6.2.3.1). As context producer, MPMS shall post entities that are relevant for
other components to consume. For instance, task entities to be delivered to a robot controller
module. Such an application has been operationalized as part of the current research. Details
of accessing the source code can be found on Appendix J.

To ease the integration of MPMS to a Context Broker, an auxiliary BPMN process is created,
as shown in Figure 126. The process automates the handling of subscriptions creation. First,
all existing subscriptions are retrieved, then a check is performed on whether desired
subscriptions already exist. If not, new subscriptions are created.

filtering entity
attributes

Based on entity
types and/or

@
S Subscribe to
= Check pa§ed on entities
5 subscription ID
@
2
> .
2 H
> \
Z ”
b Lol Lol
Get Check already
subscriptions subscribed

Start

Required
subscriptions
found?

Figure 126: Auxiliary BPMN process to handle subscriptions to Context Broker.

An example of a subscription is shown in Figure 127. The subscription refers to task entities
and more specifically to receive updates upon changes on the “status” attribute.

65 https://shop4cf.github.io/data-models/

212

https://shop4cf.github.io/data-models/

"description™: "Notify MPMS of tasks status changes”,

"type™: "Subscription”,
"entities": [{"type": "Task"}1,
"watchedAttributes": [
"status"
1,
"notification™: {
"format": "normalized",
"endpoint": {
"uri”: "http://localhost:8080/tasks/status™,
"accept”: "application/json”
}
X
"@context": [

"https://smartdatamodels.org/context.jsonld",
"https://raw.githubusercontent.com/shopdcf/data-models/master/docs/shopdcfcontext.jsonld"

I

Figure 127: Example of a Context Broker subscription. Subscribes on changes on the “status” attribute

of the “task” entity (according to datamodel specification).

Once subscriptions have been created, the main production processes can start, in which
messages between MPMS and the Context Broker are exchanged. Figure 128 illustrates an
example. When a task requires to be delivered to an agent through the Context Broker, a task
entity is posted upon task instance creation. When the actual work has finished, the task status
attribute of the task entity is updated (e.g., “completed”) by the external component which
controls the agent. Per subscription, the application receives a notification with the update
and completes the task through process engine’s API (or any specification).

Upon receiving of a
notification from CB on task
changes (based on the
subscription), the task s

Starting

Ending

Post task entityon
cB completed through process

engine's AP| Executing
H Product qualty
s (&) () H .
2 TaskB R TaskA 3SSex N
§ byRobot by Operator X X
3
[Start L r Rejected End

Asynchronous
task delivery

C=

Discard product

Post Notification on

IR

\
\
A |
\
; \
E = \
A
¥

Task Def. DB ‘

task entity task changes

Context Broker

Figure 128: Example of production process in which task delivery is performed through Context
Broker.

An example of a task entity, posted upon task instance creation, is shown in Figure 129. Note
that its initial task status is set to “pending” (per datamodel specification). When the value
changes, notifications are sent to the modules which have subscribed to these changes.

213

"id": "urn:ngsi-1d:Task:bos:e0cd4-6£0e",
"type": "Task",
"isDefinedBy": {
"type": "Relationship"”,
"object™: "urn:ngsi-ld:TaskDefinition:bos:TABO"
]l
"involwves": {
"type™: "Property",
"value": [
{
"type": "Relationship”,
"cbject": “urn:ngsi—ld:Resource:bos:operator_x"

1
"happensAt": |
"type™: "Property",
"value": [
{
"type": "Relationship”,
"object": "urn:ngsi-ld:Location:bos:workcell 1",
"locationFunction™: {
"type": "Property”,
"wvalue": "source"

¥y
b
"workParameters™: {
"type™: "Property",

"value™: {"batch no": "34"}
]l
"status": |
"type": "Property",
"value": "pending",
"observedAt™: "2020-12-01T11:23:192"

]l
"outputParameters™: {
"type™: "Property",
"value"™: {
"percentageCompleted™: 0
}l’
"observedAt": "2020-12-01T11:23:192"
}l
"@context": [
"https://smartdatamodels.org/context.jsonld",
"https://raw.githubusercontent.com/shopdcf/data-
models/master/docs/shopdcfcontext.jsonld”

Figure 129: Example of a task entity to be posted on Context Broker.

Note that other type of messages can be exchanged as well, e.g., alerts, not only task-related
information.

6.2.4 Architecture model of advanced MPMS

Having discussed the operationalization of the individual conceptual design artefacts, the
functionality and the specification of the integrated solution is completed. Figure 130

214

provides the architecture model of an advanced manufacturing process management system,
the elements of which are described in Table 24.

Table 24: Description of advanced MPMS elements.

Advanced MPMS elements

Description

Definition Tools

Process definition

Recipe controller

Exception
handling
constructs

Covers functionality to specify manufacturing processes in
terms of process models, i.e., what is the sequence of
activities, which resources are involved (specifications of
roles) and where they take place. It also includes the recipe
controller model and the exception handling constructs.

Task definition

Covers functionality to specify tasks to be executed by (a
team of) agents. Specification includes task input/output
parameters, required roles, etc.

Resource Definition

Covers functionality to specify the characteristics of
resources involved in manufacturing processes, with a
focus on agents that perform activities. Specification
includes skills, authorization, etc.

Location definition

Covers functionality to specify the entire production
area/site in terms of physical layout.

Definition data

Process/Task
Def. data

Stores specifications of processes and tasks. Can be
physical databases or file repositories. For instance, process
definitions can have the form of BPMN/XML files.

Resource Def.
data

Stores specification of resources.

Location Def.
data

Stores specification of resources.

Process Enactment Service

Process Engine

Responsible to automatically control the actual execution
of process definitions.

Core application

Agent allocation

Covers functionality for selecting eligible (team of)
agent(s) to perform a task.

Task delivery

Covers functionality to deliver tasks to agents (both human
and auto agents).

Recipe system

Covers functionality to provide synchronization

mechanism of processes.

Exception
handling

Covers functionality to handle exceptions.

(Execution) Data

Engine data

Persists process engine data (e.g., running process
instances, process variables, etc.)

Application data

Stores application data (e.g., recipe’s system persisted data,
etc.).

Auxiliary
tools

Administration Tools

Covers functionality to manage applications users (e.g.,
groups, authorizations, etc.)

Monitoring Tools

Provides process monitoring and covers functionality to
manage processes.

Interfaces

IF1

Provides interfacing between Definition Tools and Process
Enactment Service. For instance, it can take the form of a
file repository where process models are stored to be
accessed by the Process Engine.

1F2

Provides interfacing between Core Application and agents
(both human and auto agents) to deliver tasks (through
middleware technologies). Technically, it is to the systems
that control those agents (e.g., a robot controller).

IF3

Provides interfacing between Core Application and other
enterprise information systems/other systems (through
middleware technologies).

IF5

Provides interfacing between the process enactment service
and the Auxiliary Tools.

215

A few design decision/explanation points with respect to the architecture model of Figure
130:

Design decision 1): As the architecture model of advanced MPMS is based on the MPMS
specification (Chapter 5), it keeps the same structure of Figure 103. That also means that its
design is based on the three references architectures introduced in Section 5.3.2.

Design decision 2): Following the same reasoning as Design decision 1, interfaces IF1/2/3/5
are highlighted and keep the labeling of the WfRM.

Design decision 3): Data stores are included (compared to Figure 103), according to the
detailed models of the Mercurius reference architecture (Grefen & Remmerts De Vries,
1998).

Design decision 4): The Recipe controller process model (Figure 117) and the exception
handling modeling constructs (Figure 118 and Figure 119) are included in the Process
Definition tool as should be used during process modeling.

Design decision 5): Process and Task definition data are conceptually placed under one data
store, as these two concepts are closely related (i.e., a process is a series of tasks).
Technically, these can be different stores.

Design decision 6): Def. data as specification of IF1 is not a separate data store, but it
aggregates the three data stores of Definition Tools. It is drawn there to highlight that it can
play the role of the IF1 for interfacing Definition Tools and Process Enactment Service.

Design decision 7): The Service/Integration layer is Figure 103 is further elaborated to
specific connection points as different integration methods between MPMS modules and
external systems are required.

Design decision §): Integration to data stores for retrieving product related or order related
information is omitted for simplicity reasons. The integration to such data stores can be
achieved with the data connectors of the process engine or the core application.

Design decision 9): Internal interfacing between Process Engine and Core application is not
specified with specific points, as there can be various ways to achieve this (e.g., through
process engine’s API or other connectors).

Design decision 10): IF5 does not have specific integration points with Process Enactment
Service, as Auxiliary tools (i.e., Administration and Monitoring Tools) may connect with
Process Engine (e.g., to show process instances) and/or Core application (e.g., to show
application data). Typically, IF5 connects to the data store of process engine (and not directly
to process engine), but to keep the interfacing flexible, it is not specified further.

Design decision 11): The Recipe system module is considered as an extension module of the
workflow enactment server architecture of Mercurius (see Fig.7 of (Grefen & Remmerts De
Vries, 1998)), similarly to the Exception handling module as discussed in Section 5.3.3.4.

216

Definition Tools Process Enactment Service
Process/
Task
Def. data -
Process Engine
Engine data
Process i~ HTTP/SOAP Data
Task L————— REST/Inter. API ; ini i
§ definition L BPMN/ / $.__connectors ConNEctars.. .. dministration
= definition XML Tools
§ Reci Excep. " "
= ecipe handl. Core application
Q ST ||| copmmes L
e IF1 Agent Tools Monitoring
S . Tools
;;;c Resource Location - Agent Task Recipe Exception
definition definition Def. allocation delivery system handling
data
MessageBus Other Context Broker
';Z'?):;ct: I;::a::tr; socket connectors services { _endpoints
. il
=| = w
& g g
v w
o
2
% Message Bus Context Broker
sy
s
o~ m
v o
Agents EIS
(Human/Auto) Other systems

Figure 130: Architecture model of advanced MPMS.

217

6.3 Realization

The previous section presented the architecture of an advanced Manufacturing Process
Management System (MPMS) that applies BPM theories in response to complexity issues in
smart manufacturing. To realize such a system, an existing BPMS 1is chosen as a basis,
presented in Section 6.3.1. On top of this basis, extra components shall be realized to provide
the advanced functionality that this research proposes (as discussed in Section 6.2.4). The
complete realized system is presented in Section 6.3.2. Finally, a deployment diagram of the
system is presented in Section 6.3.3, as part of the physical view of K4+1 framework (see
Figure 81).

6.3.1 Existing BPM tooling

The selection of an existing BPM system was driven by a major requirement of the HORSE
project for providing open-source solutions. Various open-source systems exist with different
technologies, support and extensibility options. A decision was made upon the beginning of
the HORSE project (2015) to explore Camunda Platform® (Camunda BPM back then),
among other options such as Activiti®’, Flowable®®, Bizagi®.

Camunda Platform, from the Camunda’ organization, is a leading workflow and decision
automation platform for end-to-end business process orchestration. It is widely used in
financial and insurance services, media and entertainment, technology and
telecommunications sectors, by clients such as Deloitte, Allianz, Warner Music, Deutsche
Telekom, etc. In a broad sense, it covers the main phases of the Business Process
Management (BPM) cycle, i.e., process design, automation, monitoring and improvement. It
offers native support for the latest BPMN, DMN and CMMN standards. The Community
Edition, licensed under the Apache License, provides a highly extensive and scalable
platform based on open-source components and a developer-friendly approach, with detailed
documentation and a vibrant community. While it does not include all features of the
Enterprise Edition that the organization offers (for obvious commercial reasons), it is a
powerful and popular tool among companies and researchers to use and extend a workflow
management/BPM system.

6.3.1.1 Camunda architecture
Camunda Platform features components for process modeling, execution and monitoring

(with optimization component offered in the Enterprise edition). Figure 131 illustrates the
overview of the main components, which are described below:

e Modeler: Modeling tool for BPMN 2.0 and CMMN 1.1 diagrams as well as DMN
1.3 decision tables. It comes as a user-friendly desktop application’' licensed under
the bpmn.io license (bpmn.io” is an open-source project for the modeling

66 https://camunda.com/platform-7/

67 https://www.activiti.org/

68 https://www.flowable.com/

% hitps://www.bizagi.com/en

70 https://camunda.com/

71 https://docs.camunda.org/manual/7.15/modeler/
72 https://bpmn.io/

218

https://camunda.com/platform-7/
https://www.activiti.org/
https://www.flowable.com/
https://www.bizagi.com/en
https://camunda.com/
https://docs.camunda.org/manual/7.15/modeler/
https://bpmn.io/

framework and toolkits). A cloud-based solution, called Cawemo, is also available
to ease the collaboration and business-IT alignment.

Process Engine: The process engine is a Java library responsible for executing
BPMN 2.0 processes, CMMN 1.1 cases and DMN 1.3 decisions. It has a lightweight
Plain Old Java Object (POJO) core and uses a relational database for persistence.
Object—relational mapping (ORM) mapping is provided by the MyBatis mapping
framework.

REST API: It allows using the process engine from a remote application or a
JavaScript application.

Tasklist’: A web application for human workflow management and user tasks that
allows process participants to inspect their workflow tasks and navigate to task
forms in order to work on the tasks and provide data input.

Cockpit™: A web application for process monitoring and operations that allows for
searching for process instances, inspecting their state and repairing broken
instances.

Admin?: A web application that allows for managing users, groups and
applications authorizations.

73 https://camunda.com/platform-7/cawemo/

74
75
76

https://docs.camunda.org/manual/7.15/webapps/tasklist/
https://docs.camunda.org/manual/7.15/webapps/cockpit/
https://docs.camunda.org/manual/7.15/webapps/admin/

219

https://camunda.com/platform-7/cawemo/
https://docs.camunda.org/manual/7.15/webapps/tasklist/
https://docs.camunda.org/manual/7.15/webapps/cockpit/
https://docs.camunda.org/manual/7.15/webapps/admin/

Business Analyst / Operator
Developer End User (technical/business) Administrator
o i Custom s -
Modeler Tasklist E H Cockpit Admin
Py S Appl{ ation

Camunda Platform

“x

RESTY Java

REST / Java Al

Engine

BPMN, CAQVIN, DIVIN)

REST

S

Advanced MPMS /

\

N

\

\

Definition Jfools Process Enactnfient Serflice
Process/
Task
Def. data
Process Engine
Engine data
£ % £ HTTP/SOAP ™™ ¢ D:
- P it Task EW EST/Inter. API - d ata H dministration
s definition . connectors. connectors, 1
N definition XML Tools
B
2 =2 and! 4 Core app\i‘aﬁon
3 controller oo
2 TFL AgentfTools T~ Monitoring
S Tools
5 Resource Location] Ade Task Recipe Exception
definition definition Def. allod delivery system handling,
data
| |
< MessageRus Other Context Broker
Resource Location Ly sockel} " connectors | 4 endpoints -
5 1 <] E‘
o || T B
3 Message B Context Broker
s

2
Agents.
(Human/Auto)

ElS
Other systems

Figure 131: Camunda Platform architecture’”” and mapping to advanced MPMS architecture.

Figure 131 also illustrates the mapping of the Camunda Platform architecture components
onto the designed advanced MPMS architecture (Figure 130). As can be seen, three modules
of the Definition Tools and the Core application with its interfaces from the MPMS
architecture are not covered by the Camunda Platform architecture. These modules shall be
realized with different technologies, as discussed in Section 6.3.2.

6.3.1.2

The process engine of Camunda Platform is a core component that provides the automation
and is the most complex one. Thus, it is further elaborated in this Section.

Camunda process engine

Camunda Platform is a Java-based framework. The main components are written in Java and
there is a general focus on providing Java developers with the tools they need for designing,
implementing and running business processes and workflows on a Java virtual machine
(JVM). Nevertheless, to make the process engine technology available to non-Java
developers, the platform also provides a REST API which allows developers to build
applications connecting to a remote process engine.

77 https://docs.camunda.org/manual/7.15/introduction/
220

https://docs.camunda.org/manual/7.15/introduction/

The process engine architecture is shown in Figure 132, with its main components explained

below:
[]

Asynchronous
Background Waork

Process Engine Public API: Service-oriented API allowing Java applications to
interact with the process engine. The different responsibilities of the process engine
(i.e., Process Repository, Runtime Process Interaction, Task Management, etc.) are
separated into individual services. The public API features a command-style access
pattern: Threads entering the process engine are routed through a Command
Interceptor which is used for setting up Thread Context such as Transactions.
BPMN 2.0 Core Engine: This is the core of the process engine. It features a
lightweight execution engine for graph structures (PVM - Process Virtual Machine),
a BPMN 2.0 parser which transforms BPMN 2.0 XML files into Java Objects and a
set of BPMN Behavior implementations (providing the implementation for BPMN
2.0 constructs such as Gateways or Service Tasks).

Job Executor: The Job Executor is responsible for processing asynchronous
background work such as Timers or asynchronous continuations in a process.

The Persistence Layer: The process engine features a persistence layer responsible
for persisting process instance state to a relational database. The MyBatis mapping
engine is used for object relational mapping.

. Thread
Process Engine ree

Public Api W
Job BPMN 2.0
Executor Core Engine
Persistence Layer
(MyBatis ORM)
JDBC

Relational
Database

Command
Pattern

!

Figure 132: Camunda process engine architecture’®.

6.3.2

Advanced MPMS components

Camunda platform, as the basis of the advanced MPMS, covers core functionality but not the
entire functionality to support process management in smart manufacturing (as illustrated in
Figure 131). To realize a system based on the architecture of Figure 130, extensions on
existing components and extra components are built. Figure 133 illustrates the overview of
the developed components of an advanced MPMS, which are described below:

78 hitps://docs.camunda.org/manual/7.15/introduction/architecture/

221

https://docs.camunda.org/manual/7.15/introduction/architecture/

e Definition Tool: Captures requirements of manufacturing scenarios and translates
them into definitions in accordance with the data models (Section 6.2.3.1). It is
implemented as MS Access™ tool. It provides the functionality to define process
requirements, tasks, resources and locations. These definitions are also stored in a
PostgreSQL®® database, to be accessed and used by the execution (runtime)
components.

e Modeler: The default Camunda Modeler to draw BPMN, CMMN models and DMN
diagrams and tables. As the Modeler traditionally is used by business roles (e.g.,
analysts, process modelers), user-friendliness and collaboration are important
aspects. Thus, available layout plugins are used. For instance, a layout plugin that
shows tooltips®' with basic details of an element, without having to open the
properties panel. Extensions for embedding comments on elements®? is available, as
well. Element templates®’ are also available to provide extra configurations, such as
properties on a Service Task to automatically send an email or connection details of
an external (web) service. Note that the Recipe Controller process model and the
exception handling constructs are readily available as BPMN process models to be
altered per need and deployed in application projects.

e Process Engine: The default Camunda process engine to enact the modeled
processes. It includes extensions to provide delegate code (listeners) upon starting
and ending phases of tasks (see Section 6.2.1.1). Process engine data are persisted
in a PostgreSQL database.

e Core application: A Spring Boot® application written in Java, as a standalone
application that can run easily. It handles the business logic of the process models
and includes functionality for:

o Agent allocation: Implements the mechanism for selecting eligible (team
of) agent(s) to perform a task (Erasmus, 2019), as modelled in Figure 55.

o Task delivery: Implements the handling of task assignment to agents (as
discussed in Section 6.2.1.1 and Section 6.2.3.2).

o Recipe system: Implements the synchronization mechanism of processes
(as discussed in Section 6.2.1.2).

o Exception handling: Implements the business logic of exception handling
(as discussed in Section 6.2.2).

o Interfaces: Connection points to middleware technologies (as discussed in
Section 6.2.3.2) and other systems.

e Tasklist UI: Application(s) to present tasks to human agents. Available as a web
application (default Camunda Tasklist) and as an Android smartwatch application.

e Cockpit: The out-of-the box Camunda Cockpit web application for process
monitoring. A plugin to visualize process variables onto the process model instances
has been created as well (see Section 7.1 for examples).

e Users Admin: The out-of-the box Camunda Admin web application for managing
applications users.

79 https://www.microsoft.com/en-ww/microsoft-365/access
80 https://www.postgresql.org/
81 https://github.com/viadee/camunda-modeler-tooltip-plugin

82 hitps://github.com/camunda/camunda-modeler-plugins/tree/master/bpmn-is-plugin-embedded-

comments

83 https://github.com/camunda/camunda-modeler/tree/master/docs/element-templates
84 https://spring.io/projects/spring-boot

222

https://www.microsoft.com/en-ww/microsoft-365/access
https://www.postgresql.org/
https://github.com/viadee/camunda-modeler-tooltip-plugin
https://github.com/camunda/camunda-modeler-plugins/tree/master/bpmn-js-plugin-embedded-comments
https://github.com/camunda/camunda-modeler-plugins/tree/master/bpmn-js-plugin-embedded-comments
https://github.com/camunda/camunda-modeler/tree/master/docs/element-templates
https://spring.io/projects/spring-boot

o -.- TaSkliSt u' N = H-
IS e +{=13 m— =
s - [I3 @ Human tasks Ul
. 2 :
—~ Processl Engine

(smartwatch app)
Human tasks Ul (web app)
0B

fi l]
Definition
Modeler e
Tool D =

Tasks,
Resources, ;

. Process-oriente
Loca.tl.:)n dashboard
Definitions

&

Users Admin

3

Definition and Application .
. Core
application
Design Execution

Figure 133: Overview of the developed components of the realized advanced MPMS.

223

Examples of illustrating the use of the components are provided in Section 7.1 through the
demonstration of the system in real-world settings of pilots.

6.3.3 Deployment diagram

Camunda Platform is a flexible framework which can be deployed in different scenarios. It
can be used both as a standalone process engine server or embedded inside custom Java
applications. The embeddability requirement is at the heart of many architectural decisions
within Camunda Platform. The most common deployment scenarios are illustrated in Figure
134.

Java Applications

‘ ‘ ‘ Remote Applications Standalone
Communiaton a Rt Webseriess Process Engine Server

Process Engine
jar Library
Process Engine J Applicati
(Container Service) ava Application
L war, jar, ear
Runtime Container
(Application Server)
(c)

(a) (b)

Figure 134: Camunda Platform deployment scenarios®: (a) Shared, Container-Managed process

engine, (b) Embedded process engine, (c) Standalone (remote) process engine server

In the first deployment scenario (Figure 134(a)) the process engine is started inside the
runtime container (Servlet Container, Application Server, etc.). The process engine is
provided as a container service and can be shared by all applications deployed inside the
container. The concept can be compared to a Java Message Service (JMS) Message Queue
which is provided by the runtime and can be used by all applications. There is a one-to-one
mapping between process deployments and applications: the process engine keeps track of
the process definitions deployed by an application and delegates execution to the application
in question. In the second deployment scenario (Figure 134(b)) the process engine is added
as an application library to a custom application. This way, the process engine can easily be
started and stopped with the application lifecycle. It is possible to run multiple embedded
process engines on top of a shared database. In the third deployment scenario (Figure 134(c))
the process engine is provided as a network service. Different applications running on the
network can interact with the process engine through a remote communication channel. The
easiest way to make the process engine accessible remotely is to use the built-in REST API.
Different communication channels such as SOAP Webservices or JMS are possible but need
to be implemented by users.

The embedded process engine option has been selected, due to its flexibility of implementing
the core application of MPMS as a Spring Boot application. To ease the deployment and
control of the software, the software packages are provided based on the containerization
approach, as has been discussed in Section 5.4.3.2 (see Figure 111). Using Docker® as the
containerization technology, MPMS (runtime) packages are deployed as shown in Figure
135.

85 https://docs.camunda.org/manual/7.15/introduction/architecture/

86 https://www.docker.com/

224

https://docs.camunda.org/manual/7.15/introduction/architecture/
https://www.docker.com/

DB mngt containers m T
‘shupAd—mpms-cor:-po!tgras Webapps

—

Camunda Process Engine
élhowd-mpms-adminer Process engine

0B

<?
MPMS
core application

Application ()
* o
shopdcf-mpms-app-postgres

Figure 135: Deployment diagram of advanced MPMS as Docker containers.

More discussion on deployment (physical view of K4+1) is provided in Section 7.1, through
the demonstration of system in real-world settings of pilots, as part of entire CPS.

6.4 Chapter conclusion

The identified issue of complexity in manufacturing operations, introduced in Chapter 1, has
been approached from three different perspectives (discussed in Section 2.1.6). Conceptual
design artefacts are developed to tackle each of these perspectives, as presented in Chapters
3,4 and 5. However, for addressing the general issue, an integrated solution is required.

Thus, this chapter presented a response to RQ4 on how an advanced manufacturing process
management system can support the complexity tackling in smart manufacturing. An
architecture model of a system has been designed, as the ensemble of the operationalized
artefacts of the individual conceptual designs. The design has been inspired by existing
WIMS and BPMS reference architectures, covering though missing functionality for
application in smart manufacturing. Thus, it acts as a blueprint on how to realize a system to
support modeling of complex production scenarios, to support operational exception
handling, and to enable horizontal and vertical integration of manufacturing operations.

A possible realization of the architecture model is presented as well, to prove that the
designed artefact is viable. The realized system has been demonstrated in various pilots
within the three projects. Demonstrations at three of these pilots (analyzed in Section 2.2) are
presented in Section 7.1. The evaluation of the system is discussed in Section 7.2.

225

226

CHAPTER 7/

Demonstration and evaluation

Following the DSRM (Figure 11), the developed artefacts shall be demonstrated and
evaluated. Thus, this chapter discusses these two phases. Section 7.1 presents illustrative
examples of the showcased implemented solutions. The advanced MPMS developments have
been applied as part of complete CPS solutions. Section 7.2 discusses the evaluation of the
designed solutions. Section 7.3 concludes the chapter.

7.1 Demonstration

The three EU projects (introduced in Section 2.2.1) provided plenty of opportunities to apply
and demonstrate the designed solutions. The three pilot cases discussed in Section 2.2, as part
of the problem analysis, are used here as testbeds to demonstrate the realized artefact(s) in
real-world operational environments. Thus, the next three subsections present the
demonstrated solutions. An overview of the application of the implemented MPMS in 14
pilots in total is provided in Appendix K.

The presentation of each pilot follows the same structure:

e Scenario(s) description, with a focus on application of the MPM designed
artefact(s). The analysis process models (from Section 2.2) have been transformed
into executable ones based on the approach documented in Vanderfeesten et al.
(2019); The executable models incorporate the realized artefacts (presented in
Section 6.2);

e Details on the developed CPS, in which MPMS is embedded, as integrated solution;

e Illustration of the physical demonstrators to showcase the results. A representative
set of results is selected (for reasons of brevity). More information for published
demonstrator media is available in Appendix J.

7.1.1 TRI

TRI, as a manufacturer with the ambition to transition into smart manufacturing®’, provided
various options to test new technologies and approaches. All three intervention scenarios
(highlighted in Figure 30 and described in Section 2.2.2.5) were tested at great extent, in the
context of the HORSE project, providing useful results.

7.1.1.1 Scenario(s) description
The three intervention scenarios are described individually in the following three subsections.

87 https://youtu.be/IJBodoko84jc - TRI IROS

227

https://youtu.be/JBodoko84jc

7.1.1.1.1 Single tool assembly

The tool assembly process (Section 2.2.2.5.1) has undergone significant changes compared
to the as-is situation. An AR system projects assembly instructions on a worktable to assist
inexperienced operators. In parallel, a mobile robot fetches the necessary tools from the
storage. MPMS orchestrates the activities, as modeled in Figure 136. More specifically, task
messages are delivered to the AR system through a message bus middleware. Similarly, task
messages are delivered to the controller of the mobile robot. Errors during the AR task are
propagated to a teamleader who has the experience to either fix the errors or cancel the
process.

228

Tries f xthe
enueor et s
N the AR process . ssue fixed
2 No
H
H
ves
. Next g
ME ook
HE s Fetch o o
HH setcurent Fochnow [— e Disassemole Reum prevous
=K tooling block No tooling black block onto cart pr J tooling block
HE gk ok
H ER e T e T
H - Pt ; ; - - Tondod
hid H H H H
g [t et et s ot
5
g
g
[
I New Tooling. Yes No
g gs t. t S gs ot Bk
H atcuren N . ot provious ion o
H twoling bock No alngpars ooty g pars toolng block No Soemppas X X
g ok ok
3 R
H - s Roineg
E H T Toolg Bk
o Next Tooling H H
R P oo [

Figure 136: Tool assembly process at TRI with clear indication of parallel activities for AR support for assembly instructions (middle swimlane) and mobile
robot for tool parts collection (bottom swimlane), modelled and orchestrated by MPMS. An example of exception handling is shown as well (highlighted in
red).

229

7.1.1.1.2 Profile stacking

The structured and layered stacking of profiles into bins (Section 2.2.2.5.2) was also
automated with the use of a conveyor belt and a robot arm. The robot arms picks-up a number
of profiles and places them, layer-by-layer, into a bin. In between layers, a separator has to
be placed, so the profiles are easily picked-up again from the next robot in P2 area. The
process has been modeled in MPMS, as shown in Figure 137. The iteration of tasks by the
robot arm is handled by MPMS (purple-highlighted sequential multi-instance subprocess,
according to the pattern of Figure 59). A mobile platform is responsible for the transportation
of bins (both empty and full).

230

ot oo
niate batch We assume that the
details. Fillabin

H Three options:
g 1. Let FlexBE completely control the sync. = Fill layer with Place separation)
2 2. FlexBE controls robot and sensor, but
H keeps MPMS informed (preferred opton). One st pn Layerful
= 3. PN iniiates the pick svery e a set e g
a of profiles are ready. picking
E

S i D) sucinaeres [o(@)—<fD>—<X X X> X D] omsicins oo 3o X

< Rotol safely Robot sty Anyfubi = Robot ety Fobot safety Unhanded i

@ system paused systemresumed A JBE handles task systom disabled systemenabled Pl

e |queve.

Figure 137: Profile stacking process at TRI by a robot arm. The highlighted subprocess (purple) shows the handling of multiple tasks by MPMS.

231

7.1.1.1.3 Loading and unloading of profiles

A robot arm with a special gripper is used to assist the loading and unloading of profiles
taking place at P2 (Section 2.2.2.5.3). The orchestration of activities is managed by MPMS.
The modeled loading process is shown in Figure 138. The green-highlighted task applies an
agent allocation mechanism to select either a human operator or a robot to perform the
hanging. The purple-highlighted sequential multi-instance task (calling the task delivery
pattern of Figure 55) follows the iteration pattern of Figure 59. The unloading process is the
counteractive part, omitted here for reasons of brevity.

nt)

Operator (HumanAger

Grab, lift and
hang single |—
profile

=4

Multi-instance
(task repetition)
13 based on the
S capacity of the
Lt

P2 oading
conpleted

Figure 138: Loading of profiles onto racks process at TRI, performed either by human operator or
robot (allocation mechanism highlighted in green). The purple highlighted task shows the multiple task
handling by MPMS.

7.1.1.2 Developed CPS

MPMS has been applied at all TRI intervention scenarios to enact all the modeled processes
presented in Section 7.1.1.1. As part of developed CPS, the system communicates with the
new technologies according to the HORSE system architecture. Figure 139 shows the
technology stack applied at all TRI scenarios, as a more concrete instantiation of the HORSE
CPS technology stack shown in Figure 110.

The cyber-physical middleware is realized with a websocket message bus, based on OSGi.
The role of the Hybrid Task Supervisor, responsible to design and synchronize execution
steps by agents, is undertaken by FlexBe® software. It features OSGi plugins to existing
OSGi nodes, ROS integration to robots and interfaces to industrial equipment. FlexBe was
customized and extended by a project partner to be able to connect to other HORSE
components. ROS (O’Kane, 2014) is a commonly used, open-source, meta-operating system
for robots and provides functionality such as hardware abstraction, low-level device control,
implementation of commonly used functionality, message-passing between processes, and
package management. GPU Voxels (Hermann et al., 2014) has been used to provide
advanced robot motion planning, covering safety functionality at local control level. To
provide the processing power required by such software, a parallel computing platform and
application programming interface model is required (nVidia CUDA (Storti & Yurtoglu,
2015)). Such a high-performance processing platform enables real-time 3D projections.

88 http://wiki.ros.org/flexbe

232

http://wiki.ros.org/flexbe

KUKA Sunrise robotics interface has been used to provide all functions to operate the
lightweight KUKA robots. Finally, a Light Guide System (LGS) was adopted and customized
by a project partner to provide the AR support.

Level 4
77777777777777777777777777 HORSE Manufacturing Process Management System
(built on CamundaBP™M)
Level 3
HORSE Websocket Message Bus (OSGi)
Level 2
HORSE Hybrid Task Supervisor
(FlexBe)
HORSE OSGi nVidia Cuda ROS HORSE-ROS HORSE KUKA
applications bridge Sunrise
PP GPU interface
Voxels ROS
Messaging
Level 1 -
eve Online M‘{'t“"f‘°da'd Augmented
. monitoring an o
replanning of intention reality
robot motions estimation (LGS)
Level O
|:| 0'(3 lﬂ] QL
O O O

Figure 139: Technology stack of deployed CPS at TRI.

All the components have been deployed according to the topology of Figure 107. Figure 140
shows the deployment diagram of the CPS at TRI. For simplicity reasons, only the local
deployment of components at the single tool assembly intervention scenario is shown. As
can be seen, MPMS is deployed at a global domain level, able to orchestrate activities of all
three local deployment solutions (consisting of heterogeneous technologies).

233

Depiyment Dagram
HEG TRI

<<dev>> HORSE PC

<<env>> Linux

T |

C ws
Broker %
ws
Dispatcher @
JDBC

<<dev>>
Router/
Switch

gt

]

Ws+DBC
Semmeong) e
HEL Tooling HEL P1 Stackiws+iosc (HEL P2 Hanging

<<dev>> RaspberriPi P w—
. <<dev>> <<devs>
<cenvs> Linux Router/ Router/
— Switch Switch
<<dev>>
Router/
Switch
) — (
<<dev>>
Kinect
: <<dev>> KUKA PC/Controller
UsB3 il
<<dev>> T
| dev>> AR PC ws+ffoc <<env>> Sunrise
I il
<<env>> Windows s
g
Starts
s)
Ws+JDBC
<<env>>
Python (Anaconda)
AR-MPMSEDB % KUKA-MPMS&DB,
™8 [T]
"‘R'K;”‘(A ‘"'i"“ KUKA-AR interhce@
(Robot position) N (Robot position)
AR-Safety in(erfac@ ‘
TMB e
AR Work
T Robot Control @
™B AR Renderer @

Y — —
<<devs> <<dev>>
Beamer KUKA

robot

Figure 140: Deployment diagram of CPS at TRI, with one global domain and three local domains
(European Dynamics, 2018).

7.1.1.3 Physical demonstrator

The following three subsections present a few details per intervention scenario of the physical
demonstrators.

234

7.1.1.3.1 Single tool assembly

The tool assembly process starts with the operator selecting a production order through the
MPMS Tasklist application, as shown in Figure 141. Each production order includes a set of
tools to be assembled, presented to the operator.

& Tool set
Select Order N Sa‘;‘sg‘e‘f““;“" assembly for Tm"i:"’::"“‘
y production order setto
Production ordel | = Tools assembled
available

MPMS Tasklist Keyboard Shortcuts & Create task [E Start process & Demo Demo &t +

y

TRI_Tool-assembl

Create afitter + < Createdv | - <p /7 ‘Add Comment +
Select Order
TRI Tool-Assembly
Select Order 8 et olow-up date & setaue cate i Add groups 2 DemoDemo

My Tasks (1) Z 16 M.
My Group Tasks
Al Tasks.

TRIToOE AT DemoDeMo £om history Diagram Description

Created afew seconcs ag0 B
WP Tskist « S S S— po—
Available Production O (3 i Cewa

o7 | Select Order

=

PO0NO77753
tion

g ‘IIIIIIII'IIII'

PO00077765
PO00OTTIE7

POOI20835S Akt Tes profileren 250mm
POON208356. e TR Lover s PO00077760
PoUZ0B357

Stn: Bagonnen

poosz0358
PoOI208691
Po0N077775
POONOT7TT6.
PO0IZ08346.
PonT208349 108082

107057

205080

Pow208350 +

Figure 141: Tool assembly production order selection through MPMS Tasklist.

A snapshot of the actual single tool assembly assisted by AR is shown in Figure 142. As can
be seen in the background, the mobile robot fetches the bins with tool parts (for the next
assembly block) from the storage area, letting the operator to focus on the tool assembly
process.

235

Figure 142: Single tool assembly process at TRI with AR support for assembly instructions and mobile
robot for tool parts collection.

7.1.1.3.2 Profile stacking

Figure 143 illustrates the physical layout of the profile stacking demonstrator. The robot arm
picks-up the profiles from the conveyor belt and places them into an empty bin, either being
on the right or left side. Layer separators are placed by the robot arm as well. An AGV is
responsible to transport the bins.

@3 Conveyor belt

Full bin

Layer separator

Figure 143: Physical layout of P1 profile stacking at TRI (source: HORSE project’s material).

Figure 144(b) shows the stacking of profiles to the bin by the robot arm, in comparison to the
unstructured placing in the current situation (Figure 144(a)). The use of the AGV was
demonstrated in a different phase.

236

(a) (b)

Figure 144: Profile stacking into bins: (a) unorganized by human operators (current situation), (b)
structured by robot arm (source: HORSE project’s material).

7.1.1.3.3 Loading and unloading of profiles

Figure 145 showcases the hanging of profiles onto racks, either by the human (as performed
in the current situation) or by the robot. It was proven that the robot was significantly slow
compared to the operator.

(a) (b)

Figure 145: Profile hanging onto racks: (a) by human operator (as current situation), (b) by robot
(source: HORSE project’s material).

71.2 CPP

The demonstration at CPP took place in their Customer Experience Center in Venlo, the
Netherlands, in the context of the EIT OEDIPUS project. The two intervention scenarios

237

(Section 2.2.3.5) were demonstrated in two different phases, however, for the purposes of the
current thesis they are treated as a single case study.

7.1.2.1 Scenario(s) description

The complete scenario refers to the production of books with the involvement of various
resources:

e 1 cover printer “CP”, to print covers of books;

e | book-block printer “BBP” + 1 binder attached, the BBP prints bookblocks of
books and with the loaded covers (produced by a CP) are automatically binded;

e | printer + 1 binder attached “PB”, to print any media that require binding;

e 1 collaborative robot arm mounted in front of the printer of the PB devices, to unload
media from the high capacity stacker (HCS) of the PB onto designated trays;

e 1 AGV + amotorized robot arm “MRA” + 1 deposit tray mounted on it, to transport
media (e.g., covers from CP to be loaded into BBP);

e 1 guillotine/trimmer, to trim media into the right size;

e 7 work-in-progress (WIP) trays, to deposit media to be picked-up by the robot arm
or a human operator;

e 4 “virtual” printers, to demonstrate the routing of orders in different types of printers
and the handling of multiple process instances;

e | human operator, equipped with a smartwatch to access tasks (e.g., loading covers
into a BBP or taking corrective actions in case of exceptions).

A set of business orders are handled, consisting of many orderlines and print jobs. At orders
level (see top process model of Figure 41), a production planning service is first called to
determine the type of printers that should handle each orderline. The determination is based
on a decision tree, modeled as a DMN decision table as shown in Figure 146. Note that the
decision is taken on the type of the printer (e.g., cutsheet/black-white or continuous feed/full-
color), and not on specific devices. The assignment to specific printers is performed with the
task allocation mechanism just before a printing task has to be executed.

238

Orders DE".,

@

Retrieve order
info

Supported
orders.

Check factory
capabilities

hoducion &
planning and Review Orders Omer’c":;:i‘mg .()
scheduling p
Ll Orders delivered

f3)
Grdorm. tient for

unsu ported

or (s) =O
Orders not
processed

Orders available

Order-to-Delivery Printing Process

Determine Printer type for Orderline | HitPelicy: Unique v
When And || Then And
pages X copies % FCpages @ printertype printercolortype € Annotations
integer double string string

1 | >=10000 = e e

2 | 10000 0 heSy "BW"

3 | <10000 (0.10] "c8" "FC-BW"

4 | <10000 >10 nEoE ECH

i

Figure 146: Decision table to determine the type of printer to handle an orderline, modeled in DMN.

Let us focus on the production of covers. The process model, shown in Figure 147, refers to
a single print job, i.e., a single cover. The process highlights advanced MPMS developments
such as agent allocation (green), synchronization points (blue) and exception handling (red).

Soon andin ransport

Coris o 2
cover printer | COvris
HCS. Readyfor | bundied on AGY

A

Cover loaded in
Qualty ook biock printer
eheck 4

Figure 147: Book cover production process with highlighted advanced MPMS functionality: (green)
agent allocation (green), (three) synchronization points (blue), exception handling (red).

Regarding the synchronization points, the process includes three main points. The first refers
to raising a message when a cover is about to finish being printed (note that when many
covers are being printed on the same printer, i.e., many task instances for the same printer,
the recipe controller handles only one of them for avoiding redundant messages). This
message triggers the AGV to go to the cover printer. The queue task management of the AGV
is shown in Figure 148, in which corresponding synchronization points are highlighted as
well.

The second synchronization point refers to bundling a group of covers onto the AGV (to be
transported to a BBP). When each instance (cover) is ready, it informs the recipe controller

239

(with a Submit message), which updates the state of the recipe accordingly. The
corresponding recipe definition is listed in Table 25. According to it, when 5 covers (from 5
running instances) are printed, 1 AGV is ready to bundle them (with the use of the motorized
arm). Note that the recipe system considers both cases, either the AGV is already present
when the fifth cover is printed, or the AGV arrives at the printer at a later point. This is
satisfied through the way the recipe controller continuously evaluates recipes (see Figure
117). When all covers are bundled on the AGV, the “waiting” state of each of their
corresponding process instance is “released”.

Table 25: Defined recipe for bundling covers onto the AGV (synchronization point 2 of Figure 147 and
Figure 148).

Recipe name: Transport from Book Cover Printer WIP to Covers WIP bundle

Selector attribute: | None

Input instance type min | max | gen relpol mask rel
Book Cover 1 5 ° LIFO LAST [
AGV 1 1 ® FIFO FIRST [

The third synchronization point is the counterpart of the second. More specifically, when the
covers have been transported (and deposited) to the BBP, the recipe controller “releases” the
continuation of their instances. This is defined by the recipe listed in Table 26.

Table 26. Defined recipe for unbundling covers from the AGV (synchronization point 2 of Figure 147
and Figure 148).

Recipe name: Transport from Book Cover Printer WIP to Covers WIP unbundle
Selector attribute: | Fulfillment ID of recipe Transport from Book Cover Printer WIP to
Covers WIP bundle
Input instance type min | max | gen relpol mask rel
Book Cover 1 5 o FIFO ALL o
AGV 1 1 o FIFO ALL o

Regarding the task management of the AGV (Figure 148), the process model follows the task
queue management construct, as designed and presented in Section 3.3.3. Note that each task
referring to the AGV or its mounted motorized arm is modeled as a subprocess, which calls
the task delivery pattern (Section 3.3.1 and Section 6.2.1.1).

240

variables.

Wattfor transport
tasks to ext

Transport covers

[
o bookblock
printor WP

Current)

consider priority
or distance from
currentlocation

Tasktype

Pick nexttask

AGV Managemendt

Instances

Task queve

Tasks are only.
ueued if they
were notin the

Transportrequired
attrivmed

quilotine WP

Moy
printer HCS

Task Falld

Task faied

Mowe to
BaokNaker WIP

Task Faled

Task faied

Move to timmed|

no duplicate
tasks)

requied at modia
00

guillotine WIP

Task Faled

Task faied

Mowe to media

storage WIP

Task Faie

Task faed

Bundle book
covers on AGY

Bundle
untimmed
books on AGV.

SUTHAGY to
recipe Transport
from Unirimmed
ooks WP o
Untrivmed

Bundle timmed
books on AGV

from Trimmed
s to Delvery
WIP bundie’

AGV artived at
nedia storage

P

@—

Receive unique.
bunc

ling
identifier

Receive unique
bundling
identifier

from recipe
Transport from
Unirirmed Books

0 Untrmmed
Guiloline WP
bundie

Receive unique.
bundling
identifier

Release AGY
fromrecipe
Transport from
mmed Books o

bundie”

—

entrior " [Remove sk v
(& centferfor from task queus for Mowe to DW

Deferred
val to Takes 15
ignore covers. Defined
messages sent in recipe
during travel definiton

time

identifer for
unbundiing

Remove task
from task queue

Fetch covers
from HCS

No move task
required for
AGV, directly
issue deposit
on location

command

Deposit covers
on bookblocl
printer cover

ad covers in
bookblock
printer PIM

g

vers on
covers WIP

SubmitA

ecipe “Transport
om Book Co

Executed by
Task aie Task faes
Derenes a 4 operator
e Takes 1-5
romor: untimmed
o ooks. Defined
messages sent s
during travel e
i deinio
: & &3 Prace
= Sore ufiment Prepare Info untimmed
Centerior [Removetask | forvow b Loz unvimmed untimmed books fom AGY
unbundiing o vew guilloine WP on untimmed
Release AGY @ @ guillotine WIP
Task Falec H Task Faie H
Executed by Executed by
operator Task faled operaior
Task faled
e Takes 1-5
timmed
gnore books. Defined
messages sent
in'recipe
during ravel
duri definiton
I
Place rimmed Now to
books onAGY delivery WP fom Aowio

delivery WiP.

@i

Executed by
Deferred [Dpsralnr Executed by
Dolerred skt - doivary
ignore operator (not
messages sent nommal operstor)
uting vave
ime
Romove sk propare o &‘ag'm“;;: Nove o coner Load media
from task et o subom meda, piner W
Task faied ecuter, Task Faie
ocuteaby
opertor
Task faled Task falled

S Register

required at
cover printer

ort requred
ver prite

& Register

ransport
roquired at
untrimmed
books WP

Transpor required

re

2

at e

gullotine WP

& Registor
ransport

guillotine WIP

quired at

Unbundle
untrimmed

ntrimmed
guillotine WIP.

Gullotine WIP
unbundie’

Unbundle
trimmed books
on delivery WIP

bmAGY o
acipe Transpor
from Trimmed

Books to Delve
WP unbunde

Inform the
operator he can
now load the
media

Media stack

oaded

Figure 148: AGV (queue) task management with synchronization points (blue) and exception handling (red).

241

7.1.2.2 Developed CPS

A Printing Process Management System (PPMS), realized based on the architecture model
of the advanced MPMS (Figure 130), provides global control of activities performed by
various resources in different locations of the “print shop”. This enables horizontal
integration. The vertical integration, i.e., the actual control of resources, is achieved with the
development of a cyber-physical system. The implemented CPS respects the global/local
separation of concern (as discussed in Chapter 5). Its high-level architecture model is shown
in Figure 149.

PPMS
REST API <
HTTP POST 2 HTTP POST
requests requests
(JSON) v (JSON)
Middleware
HTTP POST A HTTP POST
requests requests HTTP POST
(JSON) W (JSON) requests
(JSON)
REST API
Local
Orchestrator
Printers/ Robotic/AGV
Binders Controllers
Controllers
............ A
IMF REST API

HTTP POST HTTP POST
requests requests
S —

@@@

Figure 149: CPS architecture model, developed for CPP pilot. A Printing Process Management System
(PPMS) orchestrates, in a global level, the activities of heterogeneous actors, synchronized locally by
a Local Orchestrator. Communication between the two levels is performed through middleware.

PPMS takes care of the process advancement. It selects the actors and delivers tasks to them,
through the middleware and the Local Orchestrator. The Local Orchestrator communicates
with the controllers of the devices, which eventually trigger their action. For instance, it
exchanges JMF messages with the printer controllers to initiate printing tasks or request their
status. Similarly, it communicates with the controllers of the robotic arm or the AGV, which
utilize an Hierarchical Finite State Machine (HFSM) (Yannakakis, 2000) implementation to
trigger their physical stepped motions. Tasks for the human operator are delivered on the

242

web-based tasklist application and a smartwatch application. As these components are part
of the PPMS implementation (see Figure 133), a direct interface with PPMS enactment
service (through REST API) is implemented, bypassing the typical communication through
middleware and Local Orchestrator.

7.1.2.3 Physical demonstrator

The resources used in the demonstrator (listed in Section 7.1.2.1) compose a layout of a small
printshop. Figure 150 showcases the unloading of media by the collaborative robot arm.
Information on which of the two WIP trays is empty is handled by PPMS.

9

Figure 150: Media unload from printer by a collaborative robot arm®.

Figure 151 shows the AGV with the motorized arm and a deposit tray, in front of cover
printer.

89 Robotic developments of Figure 150 and Figure 151 were implemented by the EIT OEDIPUS project
partner CEA - http://www.cea.ft/

243

http://www.cea.fr/

Figure 151: AGV with motorized robot arm and deposit tray for media unloading and transportation,
in front of 'a cover printer.

Figure 152 shows the Ul of the smartwatch tasklist application that notifies the operator for
pending tasks. Once they perform them, they indicate this to the application, so the workflow
advances to the next work item.

Figure 152: Smartwatch tasklist application for human operators.

The PPMS, as a realization of the MPMS architecture model (Figure 130) offers monitoring
functionality for a complete production status overview. Two kinds of cockpits were
implemented/used, both using the same production status information generated by PPMS.
One based on the physical layout of the print shop, i.e., positioning virtually all the production
devices/equipment in a nice layout. A pop-up menu list of orders was available for the
operator/production manager to point where each order was. Figure 153 shows a snapshot of
this cockpit. As can be seen, the selected orderline was in both the CP and BBP. Meanwhile,
it is shown that the AGV is moving from the input WIP of the BBP onto the output WIP of
the binder to pick-up a bound book from another orderline. Other information, like the time
for a printer to get idle, is shown as well.

244

Production Dashboard

018D s53udasew|
018D SS3udeBew|

§

0EE9dA

016D SS3udeBew|

Ton_#1-1_Laboras's thesis

For printing
2019-12-01

ImagePRESS C10000

O -
JOB_C.3-1 cover

List of orders

Q Search..
Order

Ton_#1-1_Ls

Elsemieke_#2-2_Rita's Dinner

Wim_#3-3_Canals and Rivers book

Wim_#4-3_Ghosts Eastbourne book

Selma_#5-4_Victorian
Middlesborough Dentist book

Selma_#6-4_Copertina Dopo
linterregno

Francois_#7-5_ASLU20 Pots, Farmers
and Foragers

Francois_#8-5_SC@RUG

Rob_#9-6_Da habt ihr's

Rob_#10-6_Graphic Arts

Kostas_#20-10_poster

KREmMmmMmMm@mMmMmM™m@ e L2

Ken_#29-1_Laboras's thesis

Status. Date

forprinting 2011202
forprinting 20191203
mber 151203
ookt 151300
InbookTaker 50151204
InbookTBkEr 50151205
InDOOTRET 50151205
inbookmaker 0o
wip

L swkmker 20191206
Rejected 0191208
forpacking 2011201

Figure 153: Production cockpit, physical layout view.

Apart from the physical layout view, which visualizes the production status in a more
intuitive way, managers may be interested to have a process-oriented view. That is shown in
the snapshot of the second type of cockpit in Figure 154 , where the running instances of the
process models are listed with their execution information.

Processes Decisions

oae PPMS Cockpit

Dashboard » Processes » Production Process : Runtime

Human Tasks More +

2 pemoDemo ¥~

Determine

9
Orderiine

phases delays
Orderine

Filter Jobs

- r

per Orderline

bookblockor
cover
Filter Jobs

@
pertype

Production Process

received

Cover obs exist

Bookblock jobs.
exst

Print covers

$-O

Orderine.

L1 +—4%

Process Instances Allinstances Incidents History

Called Process Definitions

Job Definitions

Options

¢

[}

faald6es-1413-11ea-b24d-00059a3¢ 7200

fa0e544d-143-11ea-b24d-00059a3¢c 7200

18c50C34-1413-11a-b240-00050a3C 7200

18c32130-1413-11€a-b24d-00050a3¢ 7200

Date and Time displayed in local timezone: Europe/An

Figure 154: Production cockpit, process view.

245

start Time Business Key
2019-12-02T12:07:60
2019-12-02T712:07:50
2019-12-02T12:07:47

2019-12-02T12:07:47

v

Powered by camunda BPM /17 8.0

71.3 BOS

The demonstrator took place in the production environment of BOSCH factory in Madrid,
Spain, in the context of the SHOP4CF project.

7.1.3.1 Scenario(s) description

The feeding process of empty trays into the packaging stations currently relies on operators
who visually see that empty trays are needed. In the intervention scenario, the physical
observations and activities from the operator are heavily delegated to a mobile robot. The
robot is an AGV with a robot arm mounted on it. A special gripper is designed to grasp empty
trays. As the mobile robot moves across different locations in the production area, it is
important to represent those. Figure 155 illustrates the physical layout of the PPS3 area, with
two loading stations, three wagons, each with different types of trays, and a charging station.
Each location gets a code for easier reference when exchanging transportation tasks
messages. The representation of the shopfloor locations is based on the data model of Figure
122.

Upon a trigger from the PLC system of the loading station that empty trays are needed, the
AGV moves to the corresponding wagon to pick up the trays, and then loads them to the
station. Given that triggers can be raised by both loading stations, at any time, the route of
the mobile robot depends on the sequence of tasks it has to perform and its current position.

Shop floor layout — PPS3

LP2 LP5
PPS3 PPS3
& o
1 2 3

K EH Location
Location 5
loc_id =~ | loc type ~| loc_code -~ loc_descr ~ | loc_coord -

¥ locid 5 ACS ACS1 Charging Station 1 far AGV (10,50,20)
:”‘-"’p; 6 1S 152 LP2 PPS3 loading station (20, 20, 20)
I“‘ZD . 715 Lss LP5 PPS3 loading station (12, 30, 40)

oc_descr
loceooid 3 W w1 Wagon storage 1 (30,67,50}.
9w w2 Wagon storage 2 (45, 73, 45)
10 W W3 Wagon storage 3 (56, 46, 56)

Figure 155: Shop floor diagram and corresponding location data model.

The various options to orchestrate the activities of the mobile robot and the human operator
have been captured in the BPMN process model of Figure 156. The process is initiated by
the first trigger from the PLC. The mobile robot receives tasks in a linear way. When a next
trigger is raised while the robot is busy, it is assigned to a human operator. As the operator
might be busy in other tasks in other production areas, he might miss the task. This is captured
with a task deadline event. In that case, the task is queued for the AGV (according to the task
queue management pattern).

246

The process includes same tasks regardless which loading station raised the trigger for
requesting empty trays. The information is passed parametrically (as indicated with the task
names in the orange-highlighted tasks). Exception handling functionality takes care to catch
issues on the tasks performed by the mobile robot and inform the operator.

Figure 156: BOS trays feeding process with mobile robot, with queue task management (purple),
exception handling (red) and parametrically tasks (orange) to cover both loading stations.

7.1.3.2 Developed CPS

The modeled process is enacted by MPMS. The triggers from the PLC systems requesting
empty trays are captured by a Web-of-Things®® interoperability component, developed by a
SHOP4CF project partner. It is translated into an Alert entity®!, posted on the Context Broker
of FIWARE middleware. MPMS, which has subscribed to receive such Alerts, handles the
workflow by allocating tasks to either the mobile robot (e.g., transportation tasks to the AGV
or handling tasks to the robot arm) or the operator. The navigation of the AGV is assisted by
a Human-Aware Mobile Robot Navigation (HA-MRN) component, developed by a project
partner, to ensure safe navigation on the shop floor (as there are not fixed trajectories and
operators might walk along a possible route). The physical devices (AGV and robot arm) are
controlled by their controllers.

Figure 157 shows the involved components that constitute the deployed CPS, with a typical
sequence of messages exchange. The diagram is based on the SHOP4CF architecture
(Zimniewicz, 2020). All the messages between SHOP4CF components (i.e., PLC not
considered a SHOP4CF system) are exchanged through the Context Broker for FIWARE
middleware, which is omitted in the diagram for sake of simplicity.

9 https://www.w3.0org/WoT/
91 https://shop4cf.github.io/data-models/alert.html

247

https://www.w3.org/WoT/
https://shop4cf.github.io/data-models/alert.html

. i
3. Moving task: | 3’. Moving task:
destination | completion status

1. Alert:to feed
the machine

FIWARE-ROS bridge

HA VRN
ER Controller MIR Controller

3rd-party systems

Figure 157: Components diagram as deployed for trays feeding process at BOS.

The execution phase components have been deployed as Docker containers.

7.1.3.3 Physical demonstrator
Figure 158 showcases a snapshot of the mobile robot loading the station empty trays.

248

1
i
—
i .

Figure 158: Mobile robot (AGV with mounted robot arm with gripper) feeding empty trays on loading
station at BOS.

While tasks to the mobile robot are delivered to its corresponding controllers (as task entities
through Context Broker), tasks for the operator are delivered through the MPMS Tasklist
application. Figure 159 shows a screenshot of the application. It is shown on a screen next to
the loading station.

IPSEA N
(\s:m;‘cj MPMS Tasklist Keyboard Shortcuts & Create task [@Start process & DemoDemo i ~
Create afilter + < cCreatedv + <> Add Comment +
My Tasks 26 n- Pick-up 12 emtpy trays of type A
| ts27asks @) s BOS_demo_simple &
Pick-up 12 emtpy trays of type A - -simp
LS5 Tasks BOS_demo_simple 152 Loading Station & Set follow-up date & Set due date # Add groups 2152 Loading Station x
Croated 10 months ago 0
All Tasks Form History Diagram Description
TUfe S Date and Time displayedinlocal fimezone: Europe/Amsterdam

Figure 159: MPMS Tasklist for human operator for the trays feeding process at BOS.

249

For shopfloor managers who want to get an overview of the activities, MPMS Cockpit
application is available, as shown in Figure 160. The application shows the current active
tasks and related process information (e.g., which loading station requested which tray type).

gty MpMs Coekpit

Figure 160: MPMS Cockpit for trays feeding process at BOS. Blue token denotes the state of the process
instance. Values of process variables are also available.

7.2 Evaluation

The Framework for Evaluation in Design Science (FEDS) by Venable et al. (2017) has been
used to guide the evaluation part of the current research. In their work, they categorize
evaluation categories across four dimensions: 1) why to evaluate, 2) when to evaluate, 3) how
to evaluate, and 4) what to evaluate. The why, i.e., the functional purpose, and the Zow, i.c.,
the evaluation paradigm, compose a two-dimensional framework, as shown in Figure 161.
The why dimension (x-axis) ranges from formative to summative evaluations. The purpose
of the former is to help improve the outcomes of the process under evaluation, while the latter
aim at judging the extent that the outcomes match expectation. The sow dimension (y-axis)
distinguishes between artificial and naturalistic evaluations. Artificial evaluations may be
empirical or non-empirical and include laboratory experiments, simulations, mathematical
proofs, etc. Naturalistic evaluations explore solutions in their real environments. They are
always empirical and typically include case studies, field studies, action research, etc.

As the current research follows the DSR paradigm, and as such its objective is to provide
prescriptive knowledge that helps practitioners to solve real problems (as defined in Figure
11), some form of summative evaluation should be performed. The summative evaluation
should check utility aspects of the artefacts(s) (as discussed in Section 1.7). Of course, before
the final evaluation, various evaluation activities have been performed. The pathway to reach
the final evaluation through the intermediate evaluations differs per project. Venable et al.
(2017) have identified four main pathways, called evaluation strategies, which are
graphically illustrated in Figure 161. Based on the circumstance selection criteria of each

250

strategy, Technical Risk & Efficacy has been selected for the current research (highlighted in
Figure 161). This strategy is selected:

o if the major design risk is technically oriented, and/or

o ifitis prohibitively expensive to evaluate with real users and real systems in the real
setting, and/or

e if a critical goal of the evaluation is to rigorously establish that the utility/benefit is
due to the artefact, not something else.

The first criterion holds true, especially given the complexity of both MPMS and the CPS in
which it is embedded. Regarding the second criterion, placing a solution in production
environments is not feasible due to high risks in occurred costs. Instead, sandbox
environments are setup to apply solutions in real-world settings. The design(s) shall first be
evaluated in artificial environments (e.g., software simulators on development servers) until
reaching a mature level to be applied in real-world settings (sandbox). Regarding the third
criterion, it is indeed a critical goal to show the impact of the designed solution, regardless
how easy or difficult it is to assess this.

Naturalistic

Artificial purely Technic®

Formative Summative

>
>

Notation: ——— = Design/Construct A = Evaluation episode(s)

Figure 161: Selected evaluation strategy based on the Framework for Evaluation in Design Science
(FEDS) (Venable et al., 2017).

Thus, as this research is a rather long (time-wise) and extensive (content-wise) project, it is
evaluated through different evaluation episodes. The more technical evaluation episodes,
aiming at verifying the designed artefacts, are discussed in Section 7.2.1. Through the
demonstration of the system at various pilots in real-world settings, the final naturalistic and
summative evaluation episode is discussed in Section 7.2.2. The focus there is on the user
acceptance of the solution(s). Finally, Section 7.2.3 discusses general findings through the
demonstration and evaluation efforts.

251

7.2.1 Verification

The operationalized form of the designed artefacts (presented in Section 6.2) shall be verified
to check their correctness, before evaluating their utility. In other words, it should be first
checked whether the artefacts work and do what they are meant to do (Gregor & Hevner,
2013; Prat et al., 2015) before checking their value. As all these are finally integrated into an
information system, their software constructs are verified based on software quality
attributes, according to the ISO/IEC 25010:2011 standard (International Standards
Organization, 2011). The main objective is to verify that the proposed solutions address
specific issues and requirements, thus, functionality has been selected as the main software
attribute. Other attributes such as reliability, efficiency and security are left out of scope given
the purposes of this research and the prototypical nature of the implemented solutions.

To check whether the individual solutions function as intended, various test scenarios have
been designed and executed throughout the development process, in an iterative form (as the
design was also evolving in cycles (Wieringa, 2009)). All the test scenarios follow the same
structure: pre-conditions (describing the initial state of the system), steps to be executed,
(expected) post-conditions (to be checked with the actual outcomes). For instance, the
synchronization mechanism has been verified through automated test scenarios in the form
of mock-up recipes, described in the proposed notation as in Table 6. Testing the system with
respect to its interaction with other systems, a more integrated approach is necessary, as the
one that has been followed in the HORSE project (Arnaudov, 2019). Integrated test scenarios
involve the interaction across various components, through which the functionality of MPMS
as part of a CPS has been verified.

All the intermediate verification tests raised the confidence for verifying the final system in
real-world settings. To verify its functionality, Table 27 discusses how the system
requirements (derived from scientific literature and practical analysis and presented in
Section 2.3) are satisfied. As a reminder, demonstration has been selected as the primary
verification type according to (International Council on Systems Engineering, 2015). As can
be seen in the evidence column of Table 27, all requirements have been met, showing that
the system is verified with respect to its design. Of course, completeness of the solutions
cannot be claimed as the solutions have been tested with respect to specific scenarios. To be
more clear, a future scenario which is also considered as a complex one, with respect to R0O1,
but with different setups than the ones verified, might not be addressed with the existing
developed modeling solutions. However, considering that the verification scenarios are
representative with respect to the high-level system requirements, it is argued that the proven
evidence is sufficient to consider the implemented solutions as correct.

Table 27: Verification of advanced MPMS requirements (presented in Section 2.3).

R# Requirement Verification Verification | Evidence

type scenario(s)
Design
RO1 The MPMS shall provide | Demonstration | CPP Recipe system for
modeling support of synchronization of printing
complex processes that and transportation activities.

involve synchronization
of activities by various
actors (including human-

252

robot collaboration

scenarios)

RO2 The MPMS shall be able | Demonstration | (Erasmus, Definition of resources and
to define manufacturing 2019) tasks according to theoretical
resources, such that it can framework.
determine during
execution which resource
should perform an activity
(linked to R06).

RO3 The MPMS shall be able | Demonstration BOS Definition of tasks with task
to define tasks, such that CPP input and output parameters in
clear control of activities TRI all modeled processes.
is provided in both
modeling and execution
phases.

RO4 The MPMS shall be able | System BOS Definition of location (points)
to represent the physical | realization CPP to represent physical location
equipment hierarchy, such TRI points that are included in the
that functional processes physical processes.
are mapped to their
respective physical
environment.

Execution

ROS The MPMS shall be able | Demonstration | BOS Automated execution of
to enact the modeled CPP process models by the Process
processes in an automated TRI Engine module of MPMS in
way. all scenarios.

RO6 The MPMS shall be able | Test (Erasmus, Resource allocation for tool
to dynamically select and 2019) assembly process at TRI.
allocate the most suitable
resource(s) to tasks, based
on task requirements and
resource capabilities.

RO7 The MPMS shall be able | Demonstration | BOS Task delivery mechanisms,
to send a list of tasks to be CPP either through middleware
performed by each actor TRI technologies or through
in the production tasklist applications, in all
environment, for a executed processes.
specific production order.

RO8 The MPMS shall be able | Demonstration | BOS As part of CPS, MPMS
to accept notifications CPP receives messages from other
from actors in the TRI systems controlling actors
production environment through middleware
regarding a change of technologies (MPMS has
manufacturing system been registered as a
status, including actors’ websocket message bus client
availability and status. or context consumer).

RO9 The MPMS shall be able | Demonstration | BOS As part of CPS, MPMS
to receive events CPP receives events from other
regarding changes of the TRI systems regarding statuses
manufacturing system through middleware
status. technologies (MPMS has

been registered as a
websocket message bus client
or context consumer).

R10 The MPMS shall be able | Demonstration | BOS Implemented process models
to react on exceptional TRI include the exception

events that change the
status of the
manufacturing system

handling modeling constructs
to react on deviating behavior.

253

RI11 The MPMS shall be able | Demonstration | BOS MPMS Cockpit application

to monitor the status of the CPP provides monitoring
manufacturing system TRI functionality. Additional
during execution of dashboard for representing
processes. production status from a

physical view perspective has
been developed as well.

General
R12 The MPMS shall be able | System BOS MPMS Admin application
to provide administration | realization CPP manages users, processes
of processes. TRI authorizations and other
administrative functionality.
R13 The MPMS shall be able | Demonstration | BOS As part of CPS, MPMS
to integrate to other EIS, CPP receives information from
including ERP/MES. TRI other systems through
middleware technologies

(MPMS has been registered as
a websocket message bus
client or context consumer).

7.2.2 User acceptance

The advanced MPMS, with its individual developments, has been verified as functioning as
intended (with respect to addressing specific requirements). However, it should be assessed
whether the end users (i.e., practitioners) accept the proposed concepts and technologies for
solving their problems. For this purpose, the Technology Acceptance Model (TAM) (Davis,
1989) is used. TAM is commonly used to explain and predict user acceptance (or rejection)
of information systems. According to TAM, three validated scales can measure the perceived
ease of use and perceived usefulness to indicate whether users intend to use specific
artifact(s).

Semi-structured interviews (Adams, 2015) were held to gather feedback from practitioners
on utility of advanced MPMS. This type of interview was chosen to allow for better
explanations and follow-up questions, compared to static questionnaires. The structure of
each interview was as follows:

1. Introduction, to explain the purpose of the interview and its setup;

2. Background information was collected with respect to participant’s job domain and
familiarity/expertise on BPM approaches;

3. Briefoverview of advanced MPM developments as have been developed within this
research and demonstrated within the three European projects. Note that all
participants had already seen in practice the proposed solutions as all of them were
involved in the design, development and/or deployment of the complete CPS
solutions in their respective pilots;

4. Close-end questionnaire to get responses on perceived ease of use, perceived
usefulness and intention to use of the advanced MPMS. The questionnaire consisted
of a set of statements (based on the evaluation method of Moody (2003), adapted
for the specific artefacts that this research has generated), listed in Table 28. For
each of the statement, a 5-point Likert scale was used to capture the level of
agreement of the interviewees (1= Strongly agree, 5 = Strongly disagree). Note that
some statements are deliberately presented in negated/reversed form to keep the

254

attention of the interviewees high (respectively the results of that statements are
interpreted in reversed form);
5. Open-end questionnaire to get more general feedback on the developments.

The evaluation form used in the interviews is available in Appendix L.

Table 28: Evaluation criteria and corresponding statements to measure "utility" aspects of advanced
MPMS (on a 5-point agreement scale, ranging from strongly agree to strongly disagree).

Statement

Perceived Ease of Use

1. Modeling processes with MPMS modeler is easy for me.

I find it difficult to provide definitions of involved entities (i.e., resources,
tasks, location points) through MPMS.

3. I find that implementing any business logic (through coding an application
project) is difficult for me.
4. The configuration and customization of MPMS is easy for me.

5. My interaction with the MPMS applications (Tasklist, Cockpit, Admin) is
clear and understandable.

6. I find it takes a lot of effort to become skillful at using MPMS modules.

7. I find MPMS rigid and inflexible to use.

8. Overall, I find MPMS easy to use.

Perceived Usefulness

9. Using MPMS (Modeler) allows me to clearly represent (production)

processes.

10. | With MPMS (Modeler) it is possible to model complex production
scenarios.

11. MPMS allows for process integration and automation that would be not

possible (or difficult to achieve) without this system.

12. MPMS would enable higher productivity through process management.
13. With MPMS I get a clear overview of (production) processes.

14. Overall, I find MPMS useful for tackling process complexity.
Intention to use

15. I would consider using the MPMS solutions for tackling process complexity
in my organization.
16. I intend to use MPMS for tackling process complexity in my organization.

Six practitioners from five organizations were interviewed (their responses are added in
Appendix M). Their roles and expertise are categorized as listed in Table 29:

Table 29: Profiles of practitioners of evaluation interviews.

Practitioner Role Tenure

P1 System integrator 2-4 years
P2 Product/system designer 2-4 years
P3 Workflow architect >10 years
P4 Workflow architect >10 years
P5 Managing director >10 years
P6 Product/system designer >10 years

255

Note that all interviewees were/are involved in the three European projects (Section 2.2.1)
(they all are members of organizations participating in the respective projects) and have seen
and/or applied the developed solutions.

The graph in Figure 162 shows the survey participants’ familiarity with the BPM paradigm.
While most of them do not consider themselves experts, all expressed their interest on what
BPM can bring in their manufacturing operations.

BPM familiarity of interviewees

M Strongly agree Agree Neutral Disagree M Strongly disagree

| am familiar with BPM techniques and tools

| am interested in applying BPM techniques and tools

| consider myself expert in BPM

Iam interested in process/workflow modeling

I am familiar with BPMN modeling
| consider myself expert in BPMN modeling

0% 25% 50% 75% 100%

Figure 162: Responses to questionnaire on the familiarity with the BPM paradigm of interviewees that
evalued advanced MPMS.

The following three graphs (Figure 163, Figure 164, Figure 165) present the aggregated
responses to the close-end questionnaire regarding Perceived Ease of Use (PEoU), Perceived
Usefulness (PU) and Intention to Use (ItU) respectively. Statements marked with an asterisk
(*) are reversed compared to the statements in the questionnaire to keep homeomorphism of
the presentation of the results towards one scale (i.e., easiness).

256

Perceived ease of use

W Strongly agree I Agree Neutral 1" Disagree W Strongly disagree
Modeling processes with MPMS modeler is easy for me | SSSNIFWRZA e
I do not find it difficult to provide definitions of involved entities (i.e., resources, tasks, location points) through MPMS* 17%
| find that implementing any business logic (through coding an application project) is easy for me* 17% 33% 17% 33%
The configuration and customization of MPMS is easy for me m
My interaction with the MPMS applications (Tasklist, Cockpit, Admin) is clear and understandable
Ifind it does not take a lot of effort to become skillful at using MPMS modules* 83%
I'do not find MPMS rigid and inflexible to use*
Overall, | find MPMS easy to use 17% 83%
0% 25% 50% 75% 100%

Figure 163: Responses to questionnaire on Perceived Ease of Use (PEoU) of advanced MPMS.

Perceived usefulness

W Strongly agree I Agree m Neutral I Disagree m Strongly disagree
Using MPMS (Modeler) allows me to clearly represent (production) processes 50% 50%
With MPMS (Modeler) it is possible to model complex production scenarios
MPMS allows for process integration and automation that would be not possible (or difficult to achieve) without this system
MPMS would enable higher productivity through process management 50% 50%
With MPMS | get a clear overview of (production) processes 50% 50%
Overall, | find MPMS useful for tackling process complexity 17% 67% 17%

Q
xR
N
@
xR

50% 75% 100%

Figure 164: Responses to questionnaire on Perceived Usefulness (PU) of advanced MPMS.

257

Intention to use

M Strongly agree Agree Neutral Disagree M Strongly disagree
I would consider using the MPMS solutions for tackling 33%
process complexity in my organization °

lintend to use MPMS for tackling process complexity in

my organization

0% 25% 50% 75% 100%

Figure 165: Responses to questionnaire on Intention to Use (I1tU) of advanced MPMS.

While the number of participants is rather small, the results show some clear indications on
the usability aspects, with insightful points from the justification from the interviewees. The
following paragraphs interpret and discuss the results.

Perceived use of use:

e Respondents might have difficulties to model processes, which can be attributed to
their low expertise in BPMN.

e The high score in neutral responses with respect to the use of the Support tool for
defining involved entities was rather expected. The practitioners did not have much
interaction with the tool as at the moment of requirements analysis and designing of
the scenarios, the tool was not at its final level.

e The implementation of any business logic of the process models seems to be the
hardest part of using the advanced MPMS modules. As this requires coding, the
interviewees do not seem confident with this part as this is not their role. Moreover,
the selected coding language plays a role, as one interviewee commented that the
selected Java language required extra efforts from his side. All respondents, though,
indicated that the coding should be doable for a team of developers in their
organization.

e The realized MPMS has a rather intuitive interface but there are
comments/suggestions for improvements, not only from a user-friendly perspective
(e.g., showing informational messages in some cases), but also from a functional
perspective. For instance, the Cockpit application could be more interactive when
managers could select and view more details of a production order/instance.

e All interviewees indicated that it would take considerable effort to use all advanced
MPMS modules. This can be attributed both to their non-high expertise in the
concepts and that each module requires different skills.

e Respondents seem confident that with the designed modeling constructs would be
able to model complex production scenarios. However, they indicated that their
response should be treated with caution as there might be complex scenarios that
their organization does not include, and thus, they cannot predict how useful the
existing constructs would be. This relates to the observation made in Section 7.2.1
with respect to the completeness of the verification evidence (cf. Table 27).

258

Perceived usefulness:

e The usefulness of MPMS for process automation and integration received positive
reactions. In that respect, a process orchestration system is essential in organization.
However, as a few respondents commented, they cannot attribute all the merits to
MPMS as they would like to explore alternatives. This is a fair comment, especially
for SMEs which might not employ at all a (similar) system for process management.

e The process automation, the integration of systems, and the orchestration of actors
that the advanced MPMS offers are definitely enablers for higher productivity. Of
course, as many other factors might affect productivity (e.g., type of technologies),
it is hard to judge (especially without quantitative metrics) what is the effect of the
system.

e A similar explanation is given for the overall question whether MPMS helps in
tackling process complexity. The proposed solutions are deemed promising on that
direction, but there are more aspects to consider regarding complexity issues in
organization (e.g., the size of the enterprise information systems landscape that
MPMS has to fit in, the maturity level of the solutions, etc.).

Intention to use:

e Practitioners seem willing to use the advanced MPMS, or at least part of the
developments (e.g., modeling). However, the actual usage might be affected by
factors such as competitor systems (either within the organization or offered by
commercial providers), fit in the entire IS landscape, or existing level of expertise
to support it.

7.2.3 Findings

The demonstration of advanced MPMS is deemed successful, verifying that the system
design satisfies its purposes to solve practical needs. The evaluation survey on user
acceptance of the advanced MPMS technologies through interviews with practitioners shows
promising results on the utility of the system. The demonstration efforts and the discussions
with practitioners raised, though, a few interesting points, which are discussed in the
following paragraphs.

While most of the demonstrators and pilot scenarios had a rather small scope, the essence of
using the advanced MPMS as a process orchestrator for activities performed by
heterogeneous actors became apparent in most of the cases. For instance, using a mobile
robot to serve one production line during a demonstrator might make someone think that this
could be automated by any software that handles the device(s). But when the organization
wants to scale up such solutions in many production lines or using many more devices, a
process overview is missing. Thus, while a software system that manages a (fleet of) mobile
robots can serve well the activities of these devices, such a system is unable to manage a set
of heterogenous actors that need to perform similar activities or collaborate with each other.
Think for instance the BOS pilot case (Section 2.2.4) in which either a mobile robot or a
human operator can perform loading/transportation activities. A system like MPMS is
necessary to orchestrate their activities. Of course, large organizations might have a system
(e.g., an MES with process management functionality) to provide a process perspective, but
for SMEs the lack of such systems is impeding for embracing new technologies.

259

MPMS is a multi-faceted information system with various modules dealing with both design
and execution phases (Figure 130). Each of the modules shall be used by different roles, so
different expertise is required. More specifically, a process modeler will use the Definitions
Tools modules, a developer will implement any advanced business logic of the process
models (i.e., developing the Core application), a production manager will configure processes
and resources on Administration Tools and monitor those on Monitoring Tools. The
researcher of this thesis had/acquired the knowledge to deal with all modules, however, this
might not be the case in organizations. Various people shall be responsible in employing and
using MPMS. This observation was also obvious during the evaluation sessions, in which
practitioners did not have the same level of confidence to judge the various components.
Consequently, the evaluation results should be treated with caution.

Regarding the process modeling, the current research proposes BPMN, as a modeling
language which is highly expressive, entails execution semantics for automated process
enactment, is promising for business and manufacturing processes integration, and can be
easily adopted as an open-source standard with strong academic and commercial support.
The designed developments (i.e., artifacts for flexible process modeling and exception
handling) enrich the language for adoption in smart manufacturing. However, as many legacy
and bespoke systems in organizations typically use their proprietary modeling languages, it
might be hard for BPMN to find its position in the manufacturing process modeling domain.
This, though, does not invalidate the existing efforts and should not discourage further
developments, especially when there is high interest to provide a process modeling
perspective that organizations miss.

The unified process management approach, that the current research proposes, distilled in a
single process management system, has to reach a broad application in practice to prove its
promises. Especially when Industry 4.0 demands for decentralization, a centralized system
such as MPMS might be proved to be cumbersome. However, the current research has put
forward approaches that might be missing in practice at the moment.

7.3 Chapter conclusion

The application and demonstration of advanced MPMS developments, through complete
CPS solutions, proved feasibility of the designed artefacts. In a substantial set of real-world
scenarios, practitioners were able with the MPMS to:

1. Model complex production scenarios, e.g., mobile robot sharing across loading
stations or synchronized media unloading from a printer by a mobile robot.

2. Handle operational exceptions, e.g., machine failures by transferring tasks to
human operators.

3. Orchestrate the activities of heterogeneous actors (through vertical control) in a
cross-level perspective (horizontal integration).

The developments, having as objective the generation of utility, were evaluated in the context
of the pilot cases with respect to perceived ease of use, perceived usefulness and intention to
use. Practitioners are positive on applying the proposed solutions in their organizations, as
they find them useful towards tackling their operations challenges. While they posed some
concerns regarding the easiness and flexibility on using a centralized process management
system, they recognized the need for a process perspective in their organizations.

260

CHAPTER &

Conclusion

The manufacturing industry is going through disruptive changes, both from business and
technology perspectives. Market trends such as mass personalization and high fluctuation in
demand for material and products compel manufacturers to seek for flexibility in their
operations. Product variety imposes production and equipment variety (Brunoe & Nielsen,
2016; Johansson et al., 2016), often causing increased complexity of production operations
(ElMaraghy et al., 2013; Hu et al., 2011). Dynamic market environments increase uncertainty
and demand high responsiveness not only on strategic or tactical level but also on operational
level. On the other hand, the rapid technology developments with advanced robotics,
augmented reality systems, and automated guided vehicles, all leveraged by the connectivity
of IoT and cloud computing, promise for increased productivity, higher efficiency, flexibility
and labor cost reduction (Dalenogare et al., 2018; Hofmann & Riisch, 2017). However, the
transition from a traditional factory into a smart one is typically achieved in stages, resulting,
often, in isolated, fragmented developments that do not solve the need for production
adaptability and flexibility.

All changes result in a general complexity problem in manufacturing operations, impeding
manufacturers, especially SMEs, to harvest the Industry 4.0 benefits. The research presented
in this thesis aims to provide support in tackling operations complexity with process
management theories and techniques. The identified general problem is decomposed into
specific challenges, for which solutions are designed and developed.

This last chapter summarizes and concludes the research presented in this thesis. Section 8.1
presents a summary of the research and reflects on how the various developments fulfil the
research objective(s). Section 8.2 describes the contributions, both to research and practice.
Section 8.3 discusses the limitations, followed by a few research directions for future work
in Section 8.4. Finally, Section 8.5 concludes this thesis with final remarks and takeaway
messages.

8.1 Research summary

Design science research approach (Hevner et al., 2004; Peffers et al., 2007) is followed to
provide useful solution(s) to the identified problems and challenges. Extensive problem
analysis both from scientific literature and practical perspectives (as elaborated in Chapter 2)
found three main categories of causes that lead to the general operations complexity problem
in smart manufacturing:

e Complex production scenarios (due to both market push and technology push);

e Rise of exceptions (due to both market dynamicity and increasing used
technologies);

261

e Integration complexity (due to technologies heterogeneity and fragmented
solutions).

It is argued that BPM theories and tools can provide support in the abovementioned identified
challenges. While the paradigm has proven its strength in various domains, its application in
manufacturing is not mature, yet receiving a lot of research interest (e.g., (Pauker et al., 2018;
Prades et al., 2013; Schonig et al., 2018; Zor et al., 2011)). Thus, the research presented in
this thesis is dedicated to applying and extending BPM in smart manufacturing with the main
research objective to provide models/constructs, guidelines and specifications of systems to
apply advanced process management in smart manufacturing to tackle process complexity.

To accomplish the research objective, the following main research question has to be
answered:

RQ: How can manufacturers tackle the process complexity in dynamic, discrete, smart
production environments, in terms of flexible modeling and responsive enactment of their
processes?

To provide an answer to the above research question, four sub questions have been defined
(as introduced in Chapter 1). The following paragraphs discuss how these research questions
have been addressed.

RQ1: How can we provide flexible modeling of complex production processes?

Production processes are getting more complex, not only due to process variety to provide
the demanded product variety, but also due to the different actors that perform activities and
need to collaborate or synchronize with each other. In the line of applying BPM in smart
manufacturing, BPMN as the de facto standard for business process modeling has been
selected to cover the modeling of manufacturing processes. BPMN has been selected based
both on the increasing interest for its application in manufacturing (Section 3.2) and the work
of Erasmus et al. (2020), which investigates the completeness and suitability of BPMN 2.0
for representing manufacturing operations. That work has to be extended to cover more
detailed modeling requirements and be automatically enacted.

Analysis from practice (i.e., the intervention scenarios from projects’ pilots) had shown that
there should be modeling support for: i) task delivery to heterogeneous agents, i.e., how work
instructions are delivered to the actors (either human or automated operators) that perform
activities, ii) human-robot collaboration, i.e., the interaction between a human operator and
a robotic device/equipment on performing required operations, and iii) the activities
synchronization, i.e., the points in time and space dimensions at which two or more activities
have to be synched. The first two requirements have been addressed with the design of BPMN
modeling patterns/constructs. The third one has been addressed with a synchronisation
mechanism, called recipe system. The recipe system has been designed and formally
described to provide modeling support for common manufacturing constructs, namely
buffering and (un)bundling.

RQI has been addressed in Chapter 3.

262

RQ2: How can events and exceptions be handled in dynamic manufacturing environments?

The rise of exceptions requires manufacturers to be responsive to avoid downtimes, extra
costs and/or performance deterioration. The first step to handle exceptions is to have a clear
picture of the type of exceptions. A categorization of exceptions has been constructed from
both input from literature and practice. An SLR has identified type of exceptions in the
manufacturing domain that appear in literature. Input from practice has been gathered to
verify literature and identify additional type of exceptions that occur in practice. The input
was both in the form of an empirical database containing information on exceptions
(quantitative) and through interviews with practitioners on what exceptions occur in their
organizations (qualitative).

With a categorization of exceptions, the determination of a suitable handling strategy was the
next step, as corrective action(s) depend on the type of occurred exception(s). A set of
decision trees have been designed that guide the selection of handling strategies. The
guidelines take also into account KPIs, as the performance of the organization might affect
its corrective mechanisms.

RQ2 has been addressed in Chapter 4.

RQ3: How can we enable process integration for end-to-end manufacturing process
management?

Process management in enterprises is often fragmented, with different techniques applied in
different parts of the enterprise. A broader, cross-functional overview is missing, hindering
flexibility. A single process management system is required to unify process management
functionality offered by traditional systems such as ERP and MES (Erasmus et al., 2018).
Such a system has been designed based on traditional BPM systems, called MPMS.

The logical view of MPMS (i.e., its functionality) has been described with an updated version
of the 5-aspect framework of Truijens (Grefen, 2016). The data aspect is covered with the
design of relevant concept data models. The software aspect is covered with the design of a
logical software architecture, based on three reference architecture models for BPMS. More
specifically, the long-established Workflow Reference Model (WfRM) of the Workflow
Management Coalition (WfMC) (Hollingsworth, 1995), the Mercurius reference architecture
(Grefen & Remmerts De Vries, 1998) and the novel BPMS reference architecture (BPMS-
RA) (Pourmirza et al., 2019) have been considered. The software architecture includes
logical modules for both design and execution phases of manufacturing operations.

The conceptual design of the system is complemented with specifying the interfaces of
MPMS to other systems. This is achieved by positioning MPMS in a CPS. The reference
architecture of the HORSE CPS system (Grefen & Boultadakis, 2021) has been selected as a
basis for that reason. The HORSE system is a modular architecture for integrated
manufacturing process management of heterogeneous advanced technologies.

The design of MPMS specification has followed an iterative process (Wieringa, 2009) with
various refinements towards the presented final result.

RQ3 has been addressed in Chapter 5.

263

RQ4: How can an advanced manufacturing process management system support the
complexity tackling in smart manufacturing environments?

In order for MPMS to support all three identified aspects of complexity, it has to include the
required functionality to do so. That means that the system should include operational support
of the conceptual designed artefacts for flexible process modeling and exception handling.
Moreover, the conceptual specification of MPMS has to be further described from a
development point of view. Thus, an architecture model of an advanced MPMS has been
designed, as the ensemble of the operationalized three designed artefacts. To prove feasibility
of such an architecture, a system realization with concrete technologies has been presented
as well.

RQ4 has been addressed in Chapter 6.

8.2 Contributions

The design science research paradigm, which the current research has followed, aims at
providing knowledge to address practical needs/problems (Hevner et al., 2004). The
knowledge is in the forms of artefacts, which are designed and developed with the goal to
generate or improve utility, i.e., create artefacts that are useful and purposeful to solve
business problems. While the artefacts can be readily available for application (either directly
or through concrete instantiations in case of abstract artefacts), their constructions also
generate contributions that extend the knowledge. The extended knowledge can be then used
to solve new or adapted business needs.

Accordingly, the research presented in this thesis has generated knowledge contributions. It
is concerned with the application and extension of BPM for tackling process complexity
issues in smart manufacturing. According to the DSR knowledge contribution framework of
Gregor & Hevner (2013), the research is positioned at the intersection of invention and
exaptation, as discussed in Chapter 1. The following two subsections discuss the significant
relevance and value of knowledge contributions, both to research and practice.

8.2.1 Scientific contributions

As the general process complexity problem has been decomposed into individual problems,
a set of artefacts has been generated to provide support in all individual problems. As the
artefacts are in the form of constructs, methods, guidelines and (architecture) models to be
applied by practitioners, they constitute prescriptive knowledge (in contrast to descriptive
knowledge). More specifically, the following artefacts have been generated:

1. A set of modeling constructs to represent (complex) manufacturing operations
processes.
a. Task delivery patterns;
b. Human-robot collaboration patterns;
c. (Activities) Synchronization mechanism.
2. A categorization of exception types appearing is smart production environments and
set of guidelines to determine suitable handling approaches.
3. A specification of an information system to design and enact manufacturing
processes, as part of a CPS.

264

4. An architecture model of an advanced manufacturing process management system
that integrates the first three design artefacts.

The theory of invention and exaptation of BPM for smart manufacturing operations
management is comprised of all the above artefacts. Complementing the work of Erasmus
(2019), which focuses on dynamic resource allocation, the theory presented in this thesis
extends the reach of the BPM paradigm in the manufacturing domain. While BPM has seen
interest and has been applied in manufacturing, the current research applies the paradigm to
a wide extent, covering many aspects (e.g., modeling, inclusion of resources/agents,
exception handling, technologies/systems to support the runtime execution, integration to
other systems and process monitoring). This is in comparison to other works that partially
apply BPM theories and techniques, as has been discussed throughout the thesis and
summarized in Section 2.1.7.4 (e.g., approaches that focus only on process modeling with
BPMN extensions without execution support or others which provide also execution engines
to enact process models but do not (extensively) cover aspects such as exception handling or
process monitoring). Moreover, the current research puts focus on integration aspects by
placing MPMS within the context of a CPS system, to enable and realize the horizontal and
vertical integration that Industry 4.0 demands (Kagermann et al., 2013). In that respect, the
architecture model of the advanced MPMS contributes on how BPM systems could be
realized for application in smart manufacturing. With respect to modeling of manufacturing
processes, the proposed modeling constructs have been designed to cover as many
manufacturing operations scenarios as possible. This enriches the already powerful BPMN
language and contributes to its use in physical domains. Especially, the synchronization
mechanism provides BPMN support for common manufacturing constructs (i.e., buffering
and (unbundling)) that the notation inherently lacks (as discussed in Section 3.5.1). With
respect to exception handling, the designed categorizations and handling guidelines, together
with their modeling (and execution) support, provide a compact overview of how BPM
approaches should treat exception handling in physical domains such as smart
manufacturing. That is a clear contribution compared to works which either deal with
exception handling in manufacturing without explicit process support (e.g., (Keddis et al.,
2016)) or provide process support but without (clearly) addressing smart manufacturing
characteristics (e.g., (Reichert & Weber, 2012a)). Finally, all the developed solutions have
been applied in real-world settings (and not remaining on theoretical level), through
prototype demonstrations, proving feasibility. Through the application and evaluation,
valuable insights have been gained, as further discussed in the next section.

8.2.2 Practical contributions

As already stated, DSR targets to solve problems rooted in practice. Practitioners do not
always care about how solutions are designed but whether these eventually address their
needs/problems. The current research has created knowledge to address the identified
problems in the following ways:

e With the use of BPMN, which covers also complex production scenarios through
the developed modeling constructs, practitioners have an expressive way to model
scenarios, which can also be enacted during runtime (compared to other notations
which do not have execution semantics). This is useful especially for manufacturers
which do not adopt process modeling (while their processes are getting more
complex), or they do it in an ad hoc way, or they are limited to proprietary modeling
languages. Moreover, the use of BPMN for both business and manufacturing

265

processes can facilitate process integration between Level 4 and Level 3 of the IEC
62264-1 standard functional hierarchy, considering that the notation is already the
de-facto standard for business process modeling.

e Through a clear categorization of exceptions and a set of handling guidelines,
practitioners have a structured way to handle deviations at operational level.
Operators, even with low experience or knowledge, can follow clear instructions on
selecting appropriate handling strategies. Providing also automated exception
handling support during execution of processes, enables organizations to be more
efficient and responsive in dynamic environments, with, possibly, reducing negative
effects such as high downtimes, production errors or incurred costs.

e A process management information system enables cross-functional process
integration and automated execution of modeled processes in which heterogeneous
actors are involved. As has also been indicated by practitioners during the evaluation
sessions, an end-to-end process view is often missing, exactly due to the lack of a
process orchestration hub. Especially for SMEs which do not have the resources to
afford a commercial system with process management functionality that can play
that role, MPMS can be used to enable horizontal and vertical integration, as it has
been designed to be part of a complete CPS.

The practical significance of the realized advanced MPMS is further demonstrated through
three European projects (introduced in Section 2.2.1), in which fourteen (at the moment of
writing this thesis) pilots operating in various sectors have applied and evaluated it (see
Appendix K). MPMS has been a core component in the HORSE CPS framework (Traganos
et al., 2021), which jointly with middleware and robot control systems provides seamless
integration across the entire functional hierarchy. Ten pilots in the HORSE project used
MPMS to solve their needs (as briefly listed in Appendix B), getting introduced to BPM
approaches. In the EIT OEDIPUS project (Traganos, Vanderfeesten, et al., 2020), BPM has
been introduced to enable automated production printing, in a domain where the paradigm
was not applied before (at least to that extent). Similarly, in the SHOP4CF project, various
pilots have applied developments that the current research has generated to orchestrate the
activities of the robotic solutions they aim to introduce in their factories.

Thus, manufacturing process management, as the current research proposes it, has reached
practice which now (re)considers of how operations are orchestrated.

8.3 Limitations

The demonstration of advanced MPMS developments has proven application feasibility and
the positive feedback through the evaluation indicates that the current research has made
contributions in the right direction towards solving the identified challenges. However, the
research has a few limitations which are discussed in the following paragraphs.

During the analysis phase for identifying problems and setting the requirements for the
solutions, practical relevance has been ensured by investigating challenges and Industry 4.0
endeavors in real factories. While the European projects, in which the author has been
involved, provided a reasonable set of pilots with various scenarios, there is risk of
overlooked problems. Scientific literature has been extensively consulted but, as the
manufacturing domain is rather vast, diverse and fast evolving, the current research might
have missed to cover existing problems. For instance, at the moment of writing this thesis,

266

no pilot that had been analyzed used any virtual reality (VR) technologies (which are gaining
a lot of interest (Zhou et al., 2019)). It would be interesting to explore how MPMS could
deliver tasks to human operators that use VR devices or how production status (currently
available in dashboards) could be interactively visualized in augmented technologies.

The current research is practice-oriented and, thus, less emphasis has been put on formalizing
all conceptual designs. Apart from the synchronization mechanism (i.e., recipe system),
which is a novel approach to cover an inherent limitation of the BPMN language (i.e., process
instances correlation), other less complex constructs have been designed with practical
applicability as the main drive. For instance, the task queue management pattern (Figure 60)
could have been formalized with queuing theory (e.g., representing the alternative task paths
as queuing buffers, denoting whether they refer to a single task or a series of tasks). Similarly,
the various task status values that are used in task exception handling could have also been
defined as a state diagram, complementing the designed BPMN model construct (Figure
118). The lack of such formalizations, though, does not invalidate the scientific rigor of the
artefacts as these are constructed based on extensive requirement analysis and clear design
steps.

As has already been mentioned in the evaluation discussion (Section 7.2), the final
naturalistic and summative evaluation has been performed on the realized advanced MPMS
and not on the architecture model itself. Reference software architectures are typically
evaluated on their quality (Angelov et al., 2012; Dobrica & Niemeld, 2002) (e.g., assessing
maintainability, modifiability, etc.) through scenario-based methods (Babar & Gorton, 2004).
Well-known methods are the Scenario-based Architecture Analysis Method (SAAM)
(Kazman et al., 1994) and the Architecture Trade-off Analysis Method (ATAM) (Kazman et
al., 1998). Scenario-based methods involve various stakeholders (especially software
architects), should be performed at different stages of a project, and require tool-support,
which few of them provide (Shanmugapriya & Suresh, 2012). It would be hard to perform
such evaluations within the scope of the current research. Especially for BPMS architectures,
(Pourmirza et al., 2017) found that none of the selected primary studies had evaluated their
architectures based on well-known evaluation methods (e.g., SAAM, TAM). Instead, the
architectures were evaluated through actual implementation or through case studies for
measuring aspects such as evolution or performance. That means that the lack of evaluation
guidance would make the evaluation of MPMS harder within the scope of the current
research.

The advanced MPMS, as a result of a research project, has been built as prototypical solution
(as part of CPS solutions within research and innovation projects) to be validated in real
production environments. As such, it is considered at technology readiness level 6 (Mankins,
2009; Olechowski et al., 2015). Since the emphasis was mainly on testing and proving
intended functionality, other aspects such as robustness, scalability, user-friendly interfaces,
and security, were out of main focus. Any criticism from the pilots on these aspects, should
therefore be treated with caution for assessing the adoption of the developed solutions.

8.4 Prospects

The current research provides a solid theory of the application of BPM in smart
manufacturing for tackling process complexity. The following paragraphs discuss research
opportunities that can further extend the theory.

267

With respect to modeling, the developed constructs have been designed to cover as many
production scenarios as possible, but their utilization will be enhanced once overcoming their
design limitations. More specifically, current assumptions in the definition of the
synchronization mechanism, such as that pools have infinite capacity or their cardinality is
only expressed in units of process instances, can be relaxed. Think again the example of
printed media grasping by the mobile robot in CPP pilot (see Figure 151), where the
books/covers are represented with the same unit (i.e., as instances of their respective process
model), regardless of their thickness and size. Workaround solutions exist, such as using an
external knapsack problem solving engine, which passes group information to the recipe
system in the form of selector attribute values, so that the recipe system can perform the
appropriate bundling operations. Similarly, the assumption that a selector attribute is shared
across all pools should be addressed by giving unique object identifiers to each pool.
Furthermore, to make the system more dynamic and flexible, the recipes should be
(re)configured during runtime and the fulfilment conditions should be variable instead of
static. Moreover, new extension BPMN elements can be designed to help modelers identify
and represent synchronization points more easily (as currently only vanilla BPMN 2.0
standard elements are used). One such extension can be the use of a “buffer” element, as the
one proposed by Aspridou (2017), complementing it with execution semantics. The
visualization of BPMN elements for representing manufacturing processes can also be
enhanced with new BPMN task types to represent the ones executed by automated actors
(instead of using the User or Service tasks). Such visualization extensions, closer to the
physical manufacturing world, will hopefully increase the adoption of BPMN in the domain.

BPMN is a very rich language in describing processes but, in some cases, the rather linear
approach might be cumbersome to represent all scenarios. There might be scenarios where a
sequence of activities is not always clear/predefined or the number of production paths might
result in spaghetti-like process models (van der Aalst, 2012). In those cases, a different
approach might be more suitable, for instance modeling activities with the guard-stage-
milestone (GSM) approach (as discussed in Section 3.2.3). CMMN is a candidate notation to
be explored for modeling process modeling. It can also be combined with BPMN, in a hybrid
approach (Traganos & Grefen, 2015).

Regarding the logical software architecture of MPMS, which currently considers separation
of concerns for Design/Execution phases (per life cycle & value stream dimension of RAMI
4.0 framework, as discussed in Section 5.3.1), there should be an extension to include an
Analysis phase. Running systems, robots, and devices produce a lot of data that can be useful
both in short and long-term for optimization of processes. Similarly, the plethora of events
and exceptions should be analysed to find any correlations that might affect (positively or
negatively in terms of performance) the operations. Therefore, the Analysis phase shall
include components to provide support for analysis of data for optimization of either
Execution (i.e., without explicit redesign) or Design (i.e., with explicit redesign). Such an
approach is followed in the SHOP4CF project (Zimniewicz, 2020), however MPMS has not
covered yet the analysis phase of the project’s software architecture at the moment of writing
this thesis. The analysis functionality shall conform to the BPI&BPA component of the
BPMS-RA.

As discussed in Section 5.2, MPMS has been proposed as an orchestration hub that unifies
process management functionality offered by other traditional enterprise systems (e.g., ERP,

268

MES). MPMS is then responsible for process control, with an end-to-end process orientation.
On the other hand, business or shop-floor planning has a resource or function orientation.
Consequently, there is a gap between process control and planning. In the prototypical
implementations in pilots, the planning aspect was not extensively considered (e.g., handling
of a set of orders was performed with mock-up planning scenarios). However, further
research should address how MPMS (control system) should interface planning systems.
There should be clear roles on whether MPMS shall trigger a planning system (Marrella,
2019) or whether a planning system with detailed scheduling shall trigger MPMS to perform
executions.

In all pilots’ demonstrations, MPMS (embedded in CPS) has covered orchestration and
automation of manufacturing processes within the physical boundaries of a single
organization or even a single site. However, nowadays, processes for manufacturing products
have an inter-organizational scope, where they span across multiple locations or even
different, collaborating enterprises, in a complete manufacturing chain or even
manufacturing networks. Cross-organizational manufacturing was the main concept of the
CrossWork project (Grefen, Eshuis, et al., 2009; Grefen, Mehandjiev, et al., 2009), in which
a centralized global business process controls the activities of local processes of multiple
organizations. The same approach can be applied in CPS architectures (e.g., the HORSE
CPS) where a global process of a manufacturing organization, orchestrated by the MPMS,
can synchronize local processes, both within the same organization (but e.g., in different
locations) and across other organizations. Such an approach is illustrated with an example in
Figure 166. And of course, the collaboration among enterprises does not stay only on the
business level (Level 4 of the IEC 62264-1 standard functional hierarchy) but goes in
operational and actual control levels through the vertical integration that a CPS offers. This
networked process management (Grefen, 2013) has gained increasing attention in Industry
4.0 as well (Schulte et al., 2012; Weyer et al., 2015), especially due to technologies such as
cloud computing. An inter-organizational approach can lead to full automation in complex
manufacturing network environments. Note that where necessary for security or privacy
issues, the management of the local and cross-organizational processes can be handled by
separate systems, as suggested by the CrossWork framework.

269

Manuf. Organization A

Location A1

Global
process

Manuf. Organization B

Local
process,

N
N

Location A2

\ \ Manuf. Org»u{at—ion c
Local \

processes ocal
progess

Figure 166: Cross-organizational, networked manufacturing (inspired by (Grefen, Mehandjiev, et al.,
2009)).

SMEs, as MPMS targets, often do not deploy robust information systems solutions (e.g., a
commercial MES) or high-end control systems. Moreover, there is often limited usage of
advanced robotics, due to lack of expertise and/or financial resources, and thus, full
automation is not there yet. This limited availability of on-premise infrastructure and
computing resources can be addressed with cloud computing technologies (Shawish &
Salama, 2014). This means that MPMS (and the CPS in which it is embedded) should support
the cloud services paradigm (as currently the solutions were deployed locally, on-sites’
premises). The application of cloud solutions may not influence the logical view of the
software architectures, in terms of how the designed modules function, but it will definitely
influence the physical view (of the Kruchten framework), in terms of how the system will be
deployed to exploit computing infrastructure investments. Performance and timing
constraints are crucial factors in deciding which services can be brought to the cloud.
Modules that require sub-second response times (especially local execution ones) should be
better deployed on-premise (local) infrastructures, probably combined with fog computing
(Bonomi et al., 2012). On the contrary, modules used during the design phase of processes
or modules that are not heavily impacted by internet traffic and communication delays can
be hosted as cloud applications, either as Software-as-a-Service (SaaS) or Platform-as-a-
Service (PaaS) solutions (Erasmus, Grefen, et al., 2018). The use of cloud computing can

270

also further enable cross-organizational manufacturing as discussed in the previous
paragraph (Hans et al., 2013; Schulte et al., 2014).

Production environments are transforming with the introduction of new technologies.
Especially for shopfloor human operators, the changes pose new ways of working. They have
to use new robots, wear handheld equipment, interact with new HMI devices and operate
new software systems. Clear understandability of the functionality and the actual usage of
the new systems and technologies is important to ensure that these will be well adopted and
proved valuable. As also indicated through the evaluation and feedback discussions, clear
instructions and (error) messages shall be presented to operators, who often have to act under
time-pressure. Specifically for MPMS, tasks delivered to operators and information shown
on dashboards (e.g., running process models) should be clear and non-ambiguous. While
user-friendliness was not a main focus of the developed solutions (as discussed in Section
8.3), further work should be performed on these aspects. That also means that the developed
solutions should be evaluated on extra aspects (Hassenzahl et al., 2010), such as user
experience (UX), emotional reaction of users during execution of tasks with new
technologies, etc. Towards that direction, Task Technology Fit (TTF) (Goodhue &
Thompson, 1995) and the contemporary TAM-UX (Mazmela et al., 2018) evaluation models
shall be considered.

8.5 Final remarks

This final section concludes this thesis with a few final remarks. Section 8.5.1 discusses
lessons learnt through the course of the entire research project. Section 8.5.2 delivers a
takeaway message.

8.5.1 Lessons learnt

The research presented in this thesis performed within the frames of three European projects
(Section 2.2.1). Through the entire process of designing, implementing, testing, deploying
and demonstrating MPMS and the complete CPS solutions, and through the collaboration
with various project partners with diverse backgrounds (with respect to the process view of
K4+1 framework - Figure 81), valuable experiences have been gained that might be useful
for the adoption of the solutions. The most important points are highlighted below:

e The distinction between global and local levels is important to separate concepts
and keep structured hierarchy levels. Modeling a process from a global perspective
(with MPMS) provides a good overview of activities to process owners and
production managers. Modeling the physical activities with a more detailed view
(e.g., with a state machine local orchestrator component) provides a clear view on
how things happen, which is important for the process participants (i.e., human
operators) as well. However, the line between these two levels is not always clear.
That is mostly obvious on modeling tasks and steps. For instance, a modeler could
combine the two consecutive tasks, “Move to wagon with trays” and “Pick-up
trays”, of Figure 160, into one, e.g., “Fetch trays”, depending on how much control
is desired on the global level and whether the mobile robot (AGV plus mounter
robotic arm) should be treated as a single actor. Thus, the granularity of the process
models and workflows might be a challenge. However, we believe that it is a matter
of agreements between process modelers based on the views and the control they
want to provide on each level.

271

e The process-oriented control that a system like MPMS provides, seems to be a
useful approach to fill the gap of missing or insufficient process overview, visibility
of production status, resource allocation and orchestration, that many manufacturers
face on their production sites. The techniques, though, might be hard for some group
of people to grasp and adopt. The use of BPMN as a language to model
manufacturing processes, while is gaining a lot of interest in the manufacturing
domain, requires experienced process modelers. Moreover, operators without
knowledge of the notation might have difficulties to understand the modeled
workflows. However, the expressiveness of the notation concerning integration and
execution semantics (Ko et al., 2009), together with the implementation solutions
we provided within advanced MPMS, make BPMN a good candidate for
applications by practitioners in smart manufacturing.

e Safety is cornerstone aspect of Industry 4.0 developments. A CPS shall provide
functionality to prevent hazards for humans. For example, the HORSE system
includes global and local awareness modules, with response time being an important
factor to distinguish their functionalities and responsibilities. Critical events with
sub-second response times that occur within a work cell need to be addressed by the
local awareness module. The module should track and analyze, in real-time,
physical movements within a work cell (e.g., with laser curtains, 3D-space or
thermal cameras). When there is any imminent human-robot collision, it has the
responsibility and the authority to provide the right instructions to the involved
agents for immediate and effective action (for instance, stopping the robot or raising
emergency alerts). In case safety breaches can impact a bigger area than a work cell,
or the risks are not real-time critical, the captured events need to be propagated to
the global situation awareness module. However, the involvement of a lot of
components in vertical control of physical actors might impact response times. A
task assignment message from MPMS, through the Message Bus, through a robot
controller software and finally to a robot can cause some latency, as this was
practically experienced in some pilots. This has a negative effect not only on
performance and efficiency (by increasing cycle times), but also on safety. Thus,
the selection of the communication protocols and powerful and robust
infrastructures to host the applications (either on-premise or onsite) are important
factors.

8.5.2 Takeaway message

Currently, markets for many product categories are becoming extremely dynamic. The
electronics and automotive markets are typical examples. This development implies that
manufacturers have to become increasingly flexible in their operations. Customers demand
more tailor-made products, with shorter delivery times. Manufacturing processes have
become more complex to satisfy this demand and enterprises, especially SMEs, have to be
reactive to stay competitive. The Industry 4.0 developments with advanced robotics, AGVs
and AR systems, leveraged by the Internet-of-Things, Cyber-Physical Systems and Cloud
Computing, promise significant gains in production efficiency, manufacturing flexibility and
product customization. The realization in industrial practice, though, of these developments
is not an easy task, as it faces many challenges, such as technology heterogeneity, lack of
digitization, etc. More importantly, robotic solutions are often employed with a bottom-up
approach, following a vertical orientation in their robot control processes. This normally

272

leads to isolated, fragmented developments that add extra complexity in the efforts of
achieving horizontal process integration.

The research presented in this thesis aims at tackling manufacturing operations complexity
in smart production environments. With the application and extension of the well-established
business process management paradigm, knowledge artefacts are provided on how
practitioners can put structure in their complex production processes, be responsive to market
and operational events that disrupt their systems, and orchestrate their activities performed
by heterogenous actors. The theory presented is an enabler of horizontal and vertical process
integration in smart manufacturing.

273

274

Bibliography

Aalst, W. M. P. (1998). Three Good Reasons for Using a Petri-Net-Based Workflow Management
System. In Information and Process Integration in Enterprises (pp. 161-182). Springer US.
https://doi.org/10.1007/978-1-4615-5499-8 10

Aaltonen, ., & Salmi, T. (2019). Experiences and expectations of collaborative robots in industry and
academia: barriers and development needs. Procedia Manufacturing, 38, 1151-1158.
https://doi.org/10.1016/J.PROMFG.2020.01.204

Abele, E., Liebeck, T., & Worn, A. (2006). Measuring Flexibility in Investment Decisions for
Manufacturing Systems. CIRP Annals, 55(1), 433—436. https://doi.org/10.1016/S0007-
8506(07)60452-1

Abouzid, 1., & Saidi, R. (2019). Proposal of BPMN extensions for modelling manufacturing
processes. 2019 International Conference on Optimization and Applications, ICOA 2019.
https://doi.org/10.1109/ICOA.2019.8727651

Adam, E. E. (1983). Towards a Typology of Production and Operations Management Systems.
Source: The Academy of Management Review, 8(3), 365-375. https://about.jstor.org/terms

Adams, W. C. (2015). Conducting Semi-Structured Interviews. Handbook of Practical Program
Evaluation: Fourth Edition, 492-505. https://doi.org/10.1002/9781119171386.CH19

Adeyeri, M. K., Mpofu, K., & Adenuga Olukorede, T. (2015). Integration of agent technology into
manufacturing enterprise: A review and platform for industry 4.0. IEOM 2015 - 5th
International Conference on Industrial Engineering and Operations Management, Proceeding.
https://doi.org/10.1109/TEOM.2015.7093910

Aguilar-Savén, R. S. (2004). Business process modelling: Review and framework. International
Journal of Production Economics, 90(2), 129-149. https://doi.org/10.1016/S0925-
5273(03)00102-6

Ahuett-Garza, H., & Kurfess, T. (2018). A brief discussion on the trends of habilitating technologies
for Industry 4.0 and Smart manufacturing. Manufacturing Letters, 15, 60—63.
https://doi.org/10.1016/j.mfglet.2018.02.011

Aldin, L., & de Cesare, S. (2011). A literature review on business process modelling: New frontiers of
reusability. Enterprise Information Systems, 5(3), 359-383.
https://doi.org/10.1080/17517575.2011.557443

Alexakos, C., Georgoudakis, M., Kalogeras, A., Charatsis, K., Gialelis, J., & Koubias, S. (2006). A
model for the extension of IEC 62264 down to the shop floor layer. IEEE International
Workshop on Factory Communication Systems - Proceedings, WFCS, 243-246.
https://doi.org/10.1109/WFCS.2006.1704162

Andaloussi, A. A., Burattin, A., Slaats, T., Petersen, A. C. M., Hildebrandt, T. T., & Weber, B.
(2019). Exploring the Understandability of a Hybrid Process Design Artifact Based on DCR
Graphs. Lecture Notes in Business Information Processing, 352, 69—84.
https://doi.org/10.1007/978-3-030-20618-5_5

Andree, K., Thde, S., & Pufahl, L. (2020). Exception handling in the context of fragment-based case
management. In Lecture Notes in Business Information Processing: Vol. 387 LNBIP. Springer
International Publishing. https://doi.org/10.1007/978-3-030-49418-6_2

Angelov, S., Grefen, P., & Greefhorst, D. (2012). A framework for analysis and design of software
reference architectures. Information and Software Technology, 54(4), 417-431.
https://doi.org/10.1016/J.INFSOF.2011.11.009

Angkiriwang, R., Pujawan, I. N., & Santosa, B. (2014). Managing uncertainty through supply chain
flexibility: reactive vs. proactive approaches. Production and Manufacturing Research, 2(1),
50-70. https://doi.org/10.1080/21693277.2014.882804

Aratijo, M. B., & Gongalves, R. F. (2016). Selecting a Notation to Modeling Business Process: A
Systematic Literature Review of Technics and Tools. IFIP Advances in Information and
Communication Technology, 488, 198-205. https://doi.org/10.1007/978-3-319-51133-7 24

Arnaudov, V. (2018a). Final Version of HORSE Cross-Domain Messaging. Deliverable D3.11.
HORSE Consortium. (confidential deliverable)

275

Arnaudov, V. (2018b). User Handbook. Deliverable D4.5. HORSE Consortium. http://horse-
project.eu/sites/default/files/publications/HORSE D4.5 User Handbook v1.00.pdf

Arnaudov, V. (2019). Test Report. Deliverable D4.4. HORSE Consortium. (confidential deliverable)

Arzén, K.-E. (1996). Grafchart: A Graphical Language for Sequential Supervisory Control
Applications. IFAC Proceedings Volumes, 29(1), 4831-4836. https://doi.org/10.1016/S1474-
6670(17)58445-1

Aspridou, M. (2017). Extending BPMN for modeling manufacturing processes [Master thesis,
Eindhoven University of Technology]. https://research.tue.nl/en/studentTheses/extending-
bpmn-for-modeling-manufacturing-processes

Atzori, L., Tera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks,
54(15), 2787-2805. https://doi.org/10.1016/j.comnet.2010.05.010

Avvaru, V. S., Bruno, G., Chiabert, P., & Traini, E. (2020). Integration of PLM, MES and ERP
Systems to Optimize the Engineering, Production and Business. [FIP Advances in Information
and Communication Technology, 594, 70-82. https://doi.org/10.1007/978-3-030-62807-9 7

Babar, M. A., & Gorton, 1. (2004). Comparison of scenario-based software architecture evaluation
methods. Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 600—-607.
https://doi.org/10.1109/APSEC.2004.38

Babiceanu, R. F., & Seker, R. (2016). Big Data and virtualization for manufacturing cyber-physical
systems: A survey of the current status and future outlook. Computers in Industry, 81, 128—
137. https://doi.org/10.1016/J.COMPIND.2016.02.004

Bader, S. R., Maleshkova, M., & Lohmann, S. (2019). Structuring Reference Architectures for the
Industrial Internet of Things. Future Internet, 11(7), 151. https://doi.org/10.3390/£i11070151

Barbosa, J., Leitdo, P., Adam, E., & Trentesaux, D. (2015). Dynamic self-organization in holonic
multi-agent manufacturing systems: The ADACOR evolution. Computers in Industry, 66, 99—
111. https://doi.org/10.1016/J.COMPIND.2014.10.011

Bauer, M., Boussard, M., Lucent, A., Bui, N., & Carrez, F. (2013). Internet of Things — Architecture
1oT-A Deliverable D1 . 5 — Final architectural Internet of Things — Architecture loT-A (Issue
July). https://www.researchgate.net/publication/272814818_Internet of Things -
_Architecture_IoT-A_Deliverable D15 -
_Final architectural reference model for the IoT v30

Bauer, W., Bender, M., Braun, M., Rally, P., & Scholtz, O. (2016). Lightweight robots in manual
assembly — best to start simply! Examining companies’ initial experiences with lightweight
robots.
https://www.researchgate.net/publication/327744724 Lightweight robots_in_manual assembl
y__
_best to start simply Examining companies%?27 initial experiences with lightweight robo
ts

BaumgraB, A., Botezatu, M., di Ciccio, C., Dijkman, R., Grefen, P., Hewelt, M., Mendling, J., Meyer,
A., Pourmirza, S., & Volzer, H. (2016). Towards a Methodology for the Engineering of Event-
Driven Process Applications. Lecture Notes in Business Information Processing, 256, 501-514.
https://doi.org/10.1007/978-3-319-42887-1_40

BaumgraB, A., Dijkman, R., Grefen, P., Pourmirza, S., Volzer, H., & Weske, M. (2015). A software
architecture for transportation planning and monitoring in a collaborative network. /FIP
Advances in Information and Communication Technology, 463,277-284.
https://doi.org/10.1007/978-3-319-24141-8 25

Bejarano, R., Ferrer, B. R., Mohammed, W. M., & Martinez Lastra, J. L. (2019). Implementing a
human-robot collaborative assembly workstation. /EEE International Conference on Industrial
Informatics (INDIN), 2019-July, 557-564. https://doi.org/10.1109/INDIN41052.2019.8972158

Block, C., Lins, D., & Kuhlenkétter, B. (2018). Approach for a simulation-based and event-driven
production planning and control in decentralized manufacturing execution systems. Procedia
CIRP, 72, 1351-1356. https://doi.org/10.1016/J.PROCIR.2018.03.204

Boiko, O., Shendryk, V., Shendryk, S., & Boiko, A. (2020). Mes/erp integration aspects of the
manufacturing automation. Lecture Notes in Mechanical Engineering, 15-24.
https://doi.org/10.1007/978-3-030-40724-7 2

276

Bollhoff, J., Metternich, J., Frick, N., & Kruczek, M. (2016). Evaluation of the Human Error
Probability in Cellular Manufacturing. Procedia CIRP, 55,218-223.
https://doi.org/10.1016/J.PROCIR.2016.07.080

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of
things. MCC’12 - Proceedings of the 1st ACM Mobile Cloud Computing Workshop, 13—15.
https://doi.org/10.1145/2342509.2342513

Booch, G., Rumbaugh, J., & Jacobson. 1. (1999). The Unified Modeling Language User Guide.
Reading-Massachusetts. Addison Wesley. http://www.awl.com/cseng/

Boote, D. N., & Beile, P. (2005). Scholars Before Researchers: On the Centrality of the Dissertation
Literature Review in Research Preparation. Educational Researcher, 34(6), 3—15.
https://doi.org/10.3102/0013189X 034006003

Braglia, M., Carmignani, G., & Zammori, F. (2006). A new value stream mapping approach for
complex production systems. International Journal of Production Research, 44(18—19), 3929—
3952. https://doi.org/10.1080/00207540600690545

Brahe, S. (2007). BPM on top of SOA: Experiences from the financial industry. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 4714 LNCS, 96—111. https://doi.org/10.1007/978-3-540-75183-0_8

Braun, R., Schlieter, H., Burwitz, M., & Esswein, W. (2014). BPMN4CP: Design and implementation
of a BPMN extension for clinical pathways. Proceedings - 2014 IEEE International
Conference on Bioinformatics and Biomedicine, IEEE BIBM 2014, 9-16.
https://doi.org/10.1109/BIBM.2014.6999261

Brettel, M., Heinemann, F., Engelen, A., & Neubauer, S. (2011). Cross-Functional Integration of
R&D, Marketing, and Manufacturing in Radical and Incremental Product Innovations and Its
Effects on Project Effectiveness and Efficiency. In Journal of Product Innovation Management
(Vol. 28, Issue 2). John Wiley & Sons, Ltd. https://doi.org/10.1111/J.1540-5885.2011.00795.X

Brocke, J. vom, & Rosemann, M. (2010). Handbook on Business Process Management 1. In J. vom
Brocke & M. Rosemann (Eds.), International Handbooks on Information Systems Series.
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00416-2

Brouns, N. (2019). On the road towards Smart Manufacturing A Framework to support the
development of Smart Manufacturing. https://research.tue.nl/en/studentTheses/on-the-road-
towards-smart-manufacturing

Brox, J. A., Fader, C., Broxy, J. A., & Fadery, C. (2010). The set of just-in-time management
strategies: An assessment of their impact on plant-level productivity and input-factor
substitutability using variable cost function estimates.
Hittps://Doi.Org/10.1080/00207540210137657, 40(12), 2705-2720.
https://doi.org/10.1080/00207540210137657

Bruccoleri, M., Amico, M., Perrone, G., Bruccoleriy, M., Amicoy, M., & Perronez, G. (2003).
Distributed intelligent control of exceptions in reconfigurable manufacturing systems.
International Journal of Production Research, 41(7), 1393-1412.
https://doi.org/10.1080/1352816031000075170

Bruccoleri, M., Renna, P., & Perrone, G. (2007). Reconfiguration: a key to handle exceptions and
performance deteriorations in manufacturing operations.
Http://Dx.Doi.Org/10.1080/00207540500140773, 43(19), 4125-4145.
https://doi.org/10.1080/00207540500140773

Bruno, G., & Antonelli, D. (2018). Dynamic task classification and assignment for the management
of human-robot collaborative teams in workcells. International Journal of Advanced
Manufacturing Technology, 98(9—12), 2415-2427. https://doi.org/10.1007/s00170-018-2400-4

Brunoe, T. D., & Nielsen, K. (2016). Complexity Management in Mass Customization SMEs.
Procedia CIRP, 51, 38-43. https://doi.org/10.1016/j.procir.2016.05.099

Bucchiarone, A., Cabot, J., Paige, R. F., & Pierantonio, A. (2020). Grand challenges in model-driven
engineering: an analysis of the state of the research. Software and Systems Modeling, 19(1), 5—
13. https://doi.org/10.1007/S10270-019-00773-6/FIGURES/1

Cachon, G., & Terwiesch, C. (2009). Matching supply with demand : an introduction to operations
management. In Matching supply with demand. McGraw-Hill/Irwin,.

277

Cadavid, J., Alférez, M., Gérard, S., & Tessier, P. (2015). Conceiving the model-driven smart factory.
Proceedings of the 2015 International Conference on Software and System Process, 24-26-
Augu, 72-76. https://doi.org/10.1145/2785592.2785602

Caiza, G., Saeteros, M., Ofate, W., & Garcia, M. v. (2020). Fog computing at industrial level,
architecture, latency, energy, and security: A review. Heliyon, 6(4), €03706.
https://doi.org/10.1016/J. HELTYON.2020.E03706

Calvary, G., Dery-Pinna, A.-M., Occello, A., Renevier-Gonin, P., & Riveill, M. (2014). At the Cross-
Roads between Human-Computer Interaction and Model Driven Engineering. ARPN Journal
of Systems and Software, 4(3). http://www.scientific-journals.org

Calvo Olivares, R. D., Rivera, S. S., & Nufiez Mc Leod, J. E. (2018). A novel qualitative prospective
methodology to assess human error during accident sequences. Safety Science, 103, 137-152.
https://doi.org/10.1016/J.SSC1.2017.10.023

Carvalho, A., O’ Mahony, N., Krpalkova, L., Campbell, S., Walsh, J., & Doody, P. (2019). Edge
Computing Applied to Industrial Machines. Procedia Manufacturing, 38, 178-185.
https://doi.org/10.1016/J.PROMFG.2020.01.024

Carvalho, N., Chaim, O., Cazarini, E., & Gerolamo, M. (2018). Manufacturing in the fourth industrial
revolution: A positive prospect in Sustainable Manufacturing. Procedia Manufacturing, 21,
671-678. https://doi.org/10.1016/j.promfg.2018.02.170

Castro, S., & Teixeira, L. (2021). Industry 4.0 and business process management: An exploratory
study on the bilateral effects. Proceedings of the International Conference on Industrial
Engineering and Operations Management, 4840—4847.

Chen T, D. (2005). Enterprise-control system integration—an international standard. International
Journal of Production Research, 43(20), 4335-4357.
https://doi.org/10.1080/00207540500142399

Chinosi, M., & Trombetta, A. (2012). BPMN: An introduction to the standard. Computer Standards
& Interfaces, 34(1), 124—134. https://doi.org/10.1016/J.CS1.2011.06.002

Choi, B. K., & Kim, B. H. (2010). MES (manufacturing execution system) architecture for FMS
compatible to ERP (enterprise planning system).
Hittps://Doi.Org/10.1080/09511920110059106, 15(3), 274-284.
https://doi.org/10.1080/09511920110059106

Choi, T. M., Wang, M., & Yue, X. (2016). Emerging production optimization issues in supply chain
systems. Annals of Operations Research, 240(2), 381-393. https://doi.org/10.1007/s10479-
015-1948-8

Christopher, M., & Ryals, L. J. (2014). The supply chain becomes the demand chain. In Journal of
Business Logistics (Vol. 35, Issue 1, pp. 29-35). Wiley-Blackwell.
https://doi.org/10.1111/jb1.12037

Chryssolouris, G., Efthymiou, K., Papakostas, N., Mourtzis, D., & Pagoropoulos, A. (2013).
Flexibility and complexity: Is it a trade-off? International Journal of Production Research,
51(23-24), 6788-6802. https://doi.org/10.1080/00207543.2012.761362

Chung, P. W. H., Cheung, L., Stader, J., Jarvis, P., Moore, J., & Macintosh, A. (2003). Knowledge-
based process management—an approach to handling adaptive workflow. Knowledge-Based
Systems, 16(3), 149-160. https://doi.org/10.1016/S0950-7051(02)00080-1

Cimino, C., Negri, E., & Fumagalli, L. (2019). Review of digital twin applications in manufacturing.
Computers in Industry, 113, undefined-undefined.
https://doi.org/10.1016/J.COMPIND.2019.103130

Ciurana, J., Garcia-Romeu, M. L., Ferrer, 1., & Casadests, M. (2008). A model for integrating process
planning and production planning and control in machining processes. Robotics and Computer-
Integrated Manufacturing, 24(4), 532—-544. https://doi.org/10.1016/J.RCIM.2007.07.013

Cohn, D., & Hull, R. (2009). Business artifacts: A data-centric approach to modeling business
operations and processes. [EEE Data Eng. Bull, 32(3), 3-9.
http://scholar.google.com/scholar?hl=en%257B&%257DbtnG=Search%257B&%257Dq=intitl
e:Business+Artifacts+:+A+Data-
centrict+Approach-+to+Modeling+Business+Operations+and-+Processes%257B#%257D0

278

Colombo, A. W., Schoop, R., & Neubert, R. (2006). An agent-based intelligent control platform for
industrial holonic manufacturing systems. /EEE Transactions on Industrial Electronics, 53(1),
322-337. https://doi.org/10.1109/TIE.2005.862210

da Xu, L., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International
Journal of Production Research, 56(8), 2941-2962.
https://doi.org/10.1080/00207543.2018.1444806

Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of
Industry 4.0 technologies for industrial performance. International Journal of Production
Economics, 204, 383-394. https://doi.org/10.1016/j.ijpe.2018.08.019

Dalmarco, G., Ramalho, F. R., Barros, A. C., & Soares, A. L. (2019). Providing industry 4.0
technologies: The case of a production technology cluster. Journal of High Technology
Management Research, 30(2), 100355. https://doi.org/10.1016/j.hitech.2019.100355

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Quarterly: Management Information Systems, 13(3), 319-339.
https://doi.org/10.2307/249008

Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. (2012). Smart manufacturing, manufacturing
intelligence and demand-dynamic performance. Computers and Chemical Engineering, 47,
145-156. https://doi.org/10.1016/j.compchemeng.2012.06.037

de Groote, X. (1989). Inventory Theory: A Road Map. Teaching Note.

de Snoo, C., van Wezel, W., Wortmann, J. C., & Gaalman, G. J. C. (2010). Coordination activities of
human planners during rescheduling: case analysis and event handling procedure.
Http://Dx.Doi.Org/10.1080/00207541003639626, 49(7), 2101-2122.
https://doi.org/10.1080/00207541003639626

de Ugarte, B., Artiba, A., & Pellerin, R. (2009). Manufacturing execution system — a literature
review. Production Planning & Control, 20(6), 525-539.
https://doi.org/10.1080/09537280902938613

Decker, G., & Barros, A. (2008). Interaction modeling using BPMN. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 4928 LNCS, 208-219. https://doi.org/10.1007/978-3-540-78238-4 22

Defense Acquisition University DAU. (2021). Integrated Product Support (IPS) Elements
Guidebook.

DeMarco, T. (1979). Structure Analysis and System Specification. Pioneers and Their Contributions
to Software Engineering, 255-288. https://doi.org/10.1007/978-3-642-48354-7 9

Devos, J., van Landeghem, H., & Deschoolmeester, D. (2014). Information Systems for Small and
Medium-sized Enterprises (J. Devos, H. van Landeghem, & D. Deschoolmeester, Eds.).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-38244-4

Dey, A. K., Hamid, R., Beckmann, C., Li, 1., & Hsu, D. (2004). a CAPpella: Programming by
Demonstration of Context-Aware Applications. Proceedings of the 2004 Conference on
Human Factors in Computing Systems - CHI "04.

Dillmann, R., & Friedrich, H. (1996). Programming by demonstration: A machine learning approach
to support skill acquision for robots. Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1138, 87-108.
https://doi.org/10.1007/3-540-61732-9 52

DIN/DKE. (2016). German Standardization Roadmap.
https://www.din.de/resource/blob/65354/1bed7¢8d800cd4712d7d1786584a7a3a/roadmap-i4-0-
e-data.pdf

DKE. (2015). National Intelligent Manufacturing Standard System Construction Guidelines.
https://www.dke.de/resource/blob/929020/7080b1667308545c088901b39al 11756/manufacturi
ng-guidelines-data.pdf

Dobrica, L., & Niemela, E. (2002). A survey on software architecture analysis methods. /EEE
Transactions on Software Engineering, 28(7), 638—653.
https://doi.org/10.1109/TSE.2002.1019479

Dumas, M., la Rosa, M., Mendling, J., & Reijers, H. A. (2018). Fundamentals of Business Process
Management. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-56509-4

279

Duray, R., Ward, P. T., Milligan, G. W., & Berry, W. L. (2000). Approaches to mass customization:
configurations and empirical validation. Journal of Operations Management, 18, 605-625.
www.elsevier.comrlocaterdsw

Eder, J., & Liebhart, W. (1995). The Workflow Activity Model (WAMO). 3rd International
Conference on Cooperative Information Systems (Coopls *95), 87-98.

el Maraghy, H. A. (2006). Flexible and reconfigurable manufacturing systems paradigms.
International Journal of Flexible Manufacturing Systems 2006 17:4, 17(4), 261-276.
https://doi.org/10.1007/S10696-006-9028-7

el Zaatari, S., Marei, M., Li, W., & Usman, Z. (2019). Cobot programming for collaborative industrial
tasks: An overview. Robotics and Autonomous Systems, 116, 162—180.
https://doi.org/10.1016/j.robot.2019.03.003

ElMaraghy, H. A. (2009). Changing and Evolving Products and Systems — Models and Enablers.
Changeable and Reconfigurable Manufacturing Systems, 25—45. https://doi.org/10.1007/978-1-
84882-067-8 2

ElMaraghy, H., Schuh, G., Elmaraghy, W., Piller, F., Schonsleben, P., Tseng, M., & Bernard, A.
(2013). Product variety management. CIRP Annals - Manufacturing Technology, 62(2), 629—
652. https://doi.org/10.1016/j.cirp.2013.05.007

Elmaraghy, W., Elmaraghy, H., Tomiyama, T., & Monostori, L. (2012). Complexity in engineering
design and manufacturing. CIRP Annals, 61(2), 793-814.
https://doi.org/10.1016/J.CIRP.2012.05.001

Engels, G., Strothmann, T., & Teetz, A. (2018). Adapt Cases 4 BPM - A Modeling Framework for
Process Flexibility in [IoT. Proceedings - IEEE International Enterprise Distributed Object
Computing Workshop, EDOCW, 2018-Octob, 59—68.
https://doi.org/10.1109/EDOCW.2018.00020

Entringer, T. C., Ferreira, A. da S., & Nascimento, D. C. de O. (2021). Comparative analysis of the
main business process modeling methods: a bibliometric study. Gestdo & Produgdo, 28(2),
2021. https://doi.org/10.1590/1806-9649-2020v28e5211

Erasmus, J. (2019). The application of business process management in smart manufacturing -
Towards dynamic allocation of manufacturing resources [Technical University of Eindhoven].
https://pure.tue.nl/ws/portalfiles/portal/138259266/20191119 Erasmus.pdf

Erasmus, J., Grefen, P., Vanderfeesten, 1., & Traganos, K. (2018). Smart Hybrid Manufacturing
Control Using Cloud Computing and the Internet-of-Things. Machines 2018, Vol. 6, Page 62,
6(4), 62. https://doi.org/10.3390/MACHINES6040062

Erasmus, J., Vanderfeesten, 1., Traganos, K., & Grefen, P. (2018). The Case for Unified Process
Management in Smart Manufacturing. 2018 IEEE 22nd International Enterprise Distributed
Object Computing Conference (EDOC), 218-227. https://doi.org/10.1109/EDOC.2018.00035

Erasmus, J., Vanderfeesten, 1., Traganos, K., & Grefen, P. (2020). Using business process models for
the specification of manufacturing operations. Computers in Industry, 123, 103297.
https://doi.org/10.1016/j.compind.2020.103297

Erasmus, J., Vanderfeesten, 1., Traganos, K., Jie-A-Looi, X., Kleingeld, A., & Grefen, P. (2018). A
Method to Enable Ability-Based Human Resource Allocation in Business Process Management
Systems. Lecture Notes in Business Information Processing, 335, 37-52.
https://doi.org/10.1007/978-3-030-02302-7 3

Erasmus, J., Vanderfeesten, 1., Traganos, K., Keulen, R., & Grefen, P. (2020). The HORSE Project:
The Application of Business Process Management for Flexibility in Smart Manufacturing.
Applied Sciences 2020, Vol. 10, Page 4145, 10(12), 4145.
https://doi.org/10.3390/APP10124145

Estruch, A., & Heredia Alvaro, J. A. (2012). Event-driven manufacturing process management
approach. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 7481 LNCS, 120-133.
https://doi.org/10.100