
Citation: Rautiainen, S.; Pantano, M.;

Traganos, K.; Ahmadi, S.; Saenz, J.;

Mohammed, W.M.; Martinez Lastra,

J.L. Multimodal Interface for

Human–Robot Collaboration.

Machines 2022, 10, 957. https://

doi.org/10.3390/machines10100957

Academic Editor: Med Amine Laribi

Received: 25 August 2022

Accepted: 17 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Multimodal Interface for Human–Robot Collaboration
Samu Rautiainen 1,† , Matteo Pantano 2,3,† , Konstantinos Traganos 4 , Seyedamir Ahmadi 1 , José Saenz 5 ,
Wael M. Mohammed 1,* and Jose L. Martinez Lastra 1

1 FAST-Lab, Faculty of Engineering and Natural Sciences, Tampere University, FI-33720 Tampere, Finland
2 Functional Materials & Manufacturing Processes, Technology Department, Siemens Aktiengesellschaft,

D-81739 Munich, Germany
3 Human-Centered Assistive Robotics (HCR), Department of Electrical and Computer Engineering,

Technical University of Munich (TUM), D-80333 Munich, Germany
4 School of Industrial Engineering, Eindhoven University of Technology, De Zaale,

NL-5600 MB Eindhoven, The Netherlands
5 Business Unit Robotic Systems, Fraunhofer Institute for Factory Operation and Automation IFF,

D-39106 Magdeburg, Germany
* Correspondence: wael.mohammed@tuni.fi
† These authors contributed equally to this work.

Abstract: Human–robot collaboration (HRC) is one of the key aspects of Industry 4.0 (I4.0) and
requires intuitive modalities for humans to communicate seamlessly with robots, such as speech,
touch, or bodily gestures. However, utilizing these modalities is usually not enough to ensure a
good user experience and a consideration of the human factors. Therefore, this paper presents a
software component, Multi-Modal Offline and Online Programming (M2O2P), which considers
such characteristics and establishes a communication channel with a robot with predefined yet
configurable hand gestures. The solution was evaluated within a smart factory use case in the Smart
Human Oriented Platform for Connected Factories (SHOP4CF) EU project. The evaluation focused
on the effects of the gesture personalization on the perceived workload of the users using NASA-
TLX and the usability of the component. The results of the study showed that the personalization
of the gestures reduced the physical and mental workload and was preferred by the participants,
while overall the workload of the tasks did not significantly differ. Furthermore, the high system
usability scale (SUS) score of the application, with a mean of 79.25, indicates the overall usability of
the component. Additionally, the gesture recognition accuracy of M2O2P was measured as 99.05%,
which is similar to the results of state-of-the-art applications.

Keywords: human–robot interaction; human–robot collaboration; Industry 4.0; human factors;
natural interaction; hand gesture; gesture personalization

1. Introduction

In the contemporary world, the mass customization of products is a competitive ad-
vantage in the manufacturing domain, yet it is not easily achieved [1]. I4.0 methodologies
address this challenge through novel technological concepts such as smart factories, the
merging of physical devices with digital systems, and the adaptation of manufacturing
systems to human needs, among others [2]. In such regard, HRC is seen as a I4.0 technology,
which can combine human flexibility and adaptability with the repeatability and strength
of machines, therefore providing a solution for the needs of versatile manufacturing sys-
tems [3]. The emergence of HRC systems requires human-friendly communication methods,
which can embody an information exchange similar to human–human communication [4].
This type of communication, however, is complex and usually includes touch, speech, and
body gestures. The interpretation of such natural interaction methods creates a need for
interfaces suitable for HRC systems.
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However, when designing HRC systems that utilize interfaces with natural input, it is
not sufficient to only focus on the interpretation. Usually, human-related characteristics,
i.e., human factors, need to be considered. This is especially the case when the process
is designed to be executed with a human in a key role. The human factors in robotics
includes concepts such as mental models, the workload, a trust in automation, and situation
awareness [5]. On top of the human factors, user experience is a central aspect of a
successful human–robot interaction (HRI) [6], and can be enhanced with personalization
options [7]. Such a personalization can be applied to HRC interfaces, particularly for
situations where operators might behave in different ways due to their background [8]. The
need for personalization has been noted in previous research [9], where authors proposed
gesture personalization as a future work of interest. The personalization of gestures have
been studied previously, such as in [10], where the authors proposed an application for
interpreting dynamic personalized gestures. However, the studies were not focusing on the
effects of personalization on human factors, and generally studies about personalization,
usability, and accessibility in gesture interfaces are limited [11].

This paper presents a multimodal interface for HRI using hand gestures. A glove-
based gestural interface was developed in an earlier project (the work done in [12]), which
is used as an inspiration for the work in this paper. The proposed interface utilizes a similar
smart glove setup, yet it focuses on enhancing the user experience through a graphical user
interface (GUI) and presents a modularly integrable component for a system operating
in a smart factory. The main goal of this paper is to study the considerations of human
factors when using such a gestural interface through user tests. In fact, the evaluation of
the proposed component focuses on finding the SUS score and studies the preferability of
the personalization of gestures and its effects on the perceived workload when integrated
in a smart factory use case.

To present the results of this study, this paper is organized as follows: Section 2
introduces the smart factory concept and the state-of-the-art HRI communication methods,
Section 3 presents the proposed method from the component perspective, and Section 4
from the use case perspective. Finally, Section 5 explains the method of evaluation, Section 6
the results and discussion, and Section 7 the conclusions of the research.

2. Literature Review and Related Work

Creating a multimodal application that can fit in a smart factory setup requires re-
search on the methods and concepts in the domain. Such research is presented as follows:
Section 2.1 presents the concept of smart factories and Section 2.2. explains the methodolo-
gies regarding HRI and HRC and presents the state of the art in natural interfaces.

2.1. Smart Factories

The smart factory is one of the fundamental concepts of I4.0 [2]. Mark Weiser proposed
the first interpretation of a smart factory in the early 1990s, whose description for a smart
environment was a physical world with daily life objects equipped with and connected
to sensors, actuators, and computers within the same network [13]. In [14], the smart
factory is described as a manufacturing solution that provides flexible processes and
creates a foundation for dynamically changing the manufacturing flows. Both definitions
describe a seamlessly connected shop floor that has the capabilities to be agile, flexible,
reconfigurable, and modular. Furthermore, smart factories are designed to focus on the
needs of humans [15].

On a more technical level, smart factories can be described as a collection of connected,
context-aware systems, which have an ability to consume and create context information
(e.g., the position or condition of an object) and assist machines and humans in executing
tasks [16]. As an enabling technology of smart factories, cyber-physical systems (CPS)
provide a means for merging the physical and digital world [17–19]. The use of such
systems requires a methodology for system integration and interoperability across the shop
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floor [20]. The major enabling technologies for CPS are the Internet of Things (IoT), cloud
computing, service-oriented computing, and artificial intelligence (AI) [21].

CPS do not strictly follow the traditional automation hierarchy pyramid introduced
by the IEC:62264-1 standard [22]. The pyramid defines five levels from the top to the
bottom: management, planning, supervisory, control, and the field level. The data flow
of such systems is vertical and must follow the hierarchy. On the contrary, CPS allows
for a communication between any applications, with a disregard for the typical hierarchy
levels [23]. The interconnections are established by a shop floor where the actors are
connected to the same medium.

Hence, in order to fulfil the adaptability and flexibility requirements of smart factories,
traditional automated robot cells are not the optimal solution [24]. In many use cases,
these requirements can be met through the use of HRC [25]. However, the interactions and
collaborative work between humans and robots will require methods that help to achieve
the common goal by establishing a communication channel between them.

2.2. Methodologies for Human–Robot Interaction and Communication

For a human and a robot to work together, bidirectional communication channels need
to be established. After all, the key for a successful collaboration within any type of team
is communication [26]. Such communication, i.e., HRI, can be divided roughly into three
categories: human supervisory control, remote control, and social human–robot interac-
tions [27]. In manufacturing processes where HRI is needed, the utilization of an interaction
skill set that is already familiar for humans, i.e., the use of natural interaction methods such
as touch, speech, and body gestures, can lead to efficient communication [28–30].

The type of such a communication can be explicit or implicit [31]. Explicit communi-
cation includes intentional interaction stimuli through the modality, such as the use of a
specific trigger word or pointing to an object. Implicit communication includes an indirect
interaction such as tone of the voice, body language, or eye contact. The latter one plays a
large role in social robotics, where it is advantageous to understand a user’s intentions and
be able to act proactively [32]. Both require open communication channels for exchanging
information. When the channel is open, the information exchange cannot be prevented [33],
which can then lead to involuntary interaction stimuli, i.e., unwanted actions in the process.
To cope with this challenge, the set of actions such as trigger words or body gestures should
be chosen in a way that it is difficult to use them accidentally [34].

Different natural interaction methods have specific uses in HRI and are not always
interchangeable. Furthermore, the used sensor technology might affect the performance
of the interaction. Therefore, the following paragraphs present the state of the art in such
modalities and the typical sensor technologies associated with them.

The modality of touch can be considered to be bidirectional, e.g., entity A touching
entity B, or entity A sensing that it is being touched by entity B. Humans experience both
modalities natively. A robot can feel when it is touching other entities by using sensors
of various types, such as pressure, force, or torque sensors. For example, the end effector
can feel which surfaces are in contact with the objects [35]. An exemplary application that
utilizes robot touch can be found in [36], where the authors propose a vision-based optical
tactile sensor that can measure contact force and geometry with a high spatial resolution.
The feeling of being touched can be achieved with tactile sensors [37] installed on the robot
body, e.g., robot “skin” consisting of capacitive pressure sensors [38].

Another modality is achieved via speech recognition. The applications supporting
this technology can be used to control a robot or CPS through verbal communication.
Technologically speaking, speech recognition is often achieved through use of machine
learning (ML) techniques. The state-of-the-art methods were earlier based on hidden
Markov models (HMM), and more recently use deep neural networks [39]. To apply such
interfaces to HRI, in [40] the authors proposed a speech interface for industrial robots where
the robot executes predefined tasks when users pronounce predefined keywords.
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Communication established with an arm or hand can be divided into two categories:
using the whole human arm equipped with the wrist and/or armbands triggered by
motions [41], or using hand gestures which are recognized with wearable or vision-based
sensors. Wearable sensors, such as smart gloves, provide a flexible and portable solution to
recognize hand gestures. However, smart gloves have a lower accessibility and wearability
compared to vision-based systems [42]. Such smart gloves have either bending sensors
(e.g., [43]), inertial measurement units (IMU) (e.g., [44]), or optical encoders (e.g., [45]) for
sensing the pose of each finger. Vision-based approaches (e.g., [46,47]) utilize cameras
coupled with ML algorithms for recognizing the human hand gestures. Gesture recognition
with cameras generally performs well [48] and keeps the worker free from wearable sensors,
but presents other challenges with respect to their low portability, high dependencies on
the lighting or background conditions, and requires complex algorithms [42]. Additionally,
the human needs to be oriented towards the camera for the system to effectively recognize
the gestures.

Hand gestures, or generally any of the modalities presented earlier, can be uti-
lized in multimodal applications. The early research on the topic of multimodality fo-
cused on adding natural interfaces on top of the traditional computer interface key-
board/mouse/display, such as with speech in [49]. Recent research has focused on enabling
multiple different natural interaction methods for communication in HRC setups, such as
hand gestures and speech in [50].

Most of the research presented earlier focuses on the technology advances of the
modalities. Even though the modality itself is human-friendly, the effects of the modality
and the developed applications around it on human factors should be further investigated
since the number of research papers on this topic is inadequate [11]. Moreover, since the
sensor technology will gradually advance, applications created around them should take
such advancements into account by providing a support for changing and/or updating the
used device.

3. Proposed HRI Component for Smart Factory Environment

This section presents the methodology used for implementing the multimodal smart
factory application for HRI. For understanding the design choices made for the component
and its suitability for a smart factory setup, first Section 3.1 explains the relevant information
about the architectural and data modeling methods. Second, Section 3.2 focuses on the
component, its internal architecture, and the provided modalities.

3.1. SHOP4CF Architecture

The EU-funded project SHOP4CF is centered around developing a platform on an
open architecture that can support humans in production activities in smart factories.
SHOP4CF aims to find the right balance between a cost-effective automation for repetitive
tasks and involving the human workers in areas such as adaptability, creativity, and agility,
where they can create the biggest added value (https://www.shop4cf.eu/, accessed on 15
June 2022).

The SHOP4CF approach builds on the existing work, including the HORSE
(http://horse-project.eu/, accessed on 25 July 2022) project and the L4MS (http://www.
l4ms.eu/, accessed on 25 July 2022) project on smart logistics for manufacturing. The
framework is a modular architecture with clear subsystems and interfaces at several lev-
els of aggregation, resulting from a structured, hierarchical system design, based on the
theoretical principles and guidelines [51]. From a functional high-level perspective, it
distinguishes between the manufacturing activities taking place in a work cell and the
activities in a production area or even an entire factory (across work cells). This distinc-
tion is depicted with two levels, the global and local. There is also a clear distinction of
the phases, one regarding the design of the manufacturing activities (e.g., modeling and
parameterization), one regarding the execution of the manufacturing activities (e.g., actual

https://www.shop4cf.eu/
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product manufacturing), and lastly an analysis of the manufacturing data, i.e., the design,
execution, and analysis phases.

Thus, it consists of six main logical modules, whose interaction through interfaces are
shown on the high-level logical software architecture [52] in Figure 1.
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Figure 1. High-level logical software architecture of SHOP4CF [52]. Architecture consists of global
and local level, which each consist of design, execute, and analyze modules. The communication
between the subsystems can be direct or indirect through different communication means which can
store the information on databases (e.g., SpecL).

Each of the SHOP4CF components built within the project realizes a (sub)set of six
main modules. Manufacturing scenarios which require specific functionalities are then
addressed by an integrated set of components, whose interoperability is secured by the
well-defined interfaces of the architecture and the data models.

The platform aspect of the SHOP4CF architecture represents the organization, from
the functional perspective, of software and hardware that is necessary for the software
components to be operational. Its top-level logical view is illustrated in Figure 2.
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Figure 2. Top-level logical architecture of the platform [52]. The communication within the architec-
ture happens through vertical neighborhood. SHOP4CF components communicate with each other
using FIWARE and are primarily containerized, provided that an abstraction to the hardware layer
was integrated.

The software layer consists of the SHOP4CF components, the middleware, contain-
ers (i.e., OS-level virtualization), and third-party information systems (i.e., external to
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SHOP4CF) that may exist on a shop floor. The hardware layer consists of servers. In
addition, CPS and IoT devices on a shop floor may belong to both layers. Regard-
ing the middleware, the chosen platform is FIWARE [53] due to its open-source ca-
pabilities and wide support from other European projects (https://www.fiware.org/
about-us/impact-stories/, accessed on 15 June 2022). FIWARE uses the Orion Context
Broker (OCB) to manage the whole lifecycle of context information through REST API
(https://fiware-orion.readthedocs.io/en/master/, accessed on 4 August 2022), coupled
with a Mongo database (https://www.mongodb.com/, accessed on 4 August 2022) to
store the context information. In SHOP4CF, the OCB is enabled with Linked Data (LD)
extensions, which means that it uses an NGSI-LD information model standardized by
ETSI [54]. The FIWARE middleware is used whenever possible; only connections that
have real-time constraints are organized directly between the two involved components
(or between a component and an IoT) as the FIWARE middleware does not guarantee a
response times for real-time systems [55].

With respect to data modeling, the focus is on the interoperability among components,
i.e., the information exchanged between components, and not how a specific component
translates and uses that information internally. By following the well-established formal
approach by [56], data requirements are translated to concept data models, consisting of
definitions of data entities, their attributes, and the relationships between the entities. Then,
by applying technical constraints (i.e., concrete technical data format) and considering both
the existing FIWARE data models and the IEC:62264-1 standard [22], specific SHOP4CF
Data Models were defined (https://shop4cf.github.io/data-models/, accessed on 15 June
2022). The top-level logical data architecture is shown in Figure 3.
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execution classes. The latter is used for exchanging information during operation, the former is
focused on exchanging data during the design of the application [52].

The data models are split according to the design–execution separation of concerns.
Design data models refer to the definition of entities and typically are constant (or change
infrequently). The design definition entities are Process Definition, Task Definition, Re-
source Specification, and Location. These describe the information during the design
phase of manufacturing scenarios. For instance, a Process Definition includes the infor-
mation of the sequence of tasks carried out during the process. Execution data models
represent the information of the status of entities during execution. The execution entities
are Process, Task, Resource, and Alert. The Process entity holds the information of a
running process instance (according to its Process Definition). The Task entity describes a
task that has been instantiated (according to its Task Definition). The information included
in a Task entity is the set of resources performing the task, which specific materials are
needed/used, where the task is executed, and what are the important parameters. The
Resource entity describes the state of a resource, which can take the form of a: (i) device,
according to [44], (ii) material, (iii) asset, i.e., a physical object that is neither a device nor a
material, or (iv) person. The Alert entity holds the information of exceptional notifications,
errors, and issues. Alerts are used for a notification of a malfunction, needed predictive
maintenance, or some other state where an alert is needed, which triggers actions. An alert
is not a recurrent information nor is it predictable.
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3.2. M2O2P

The proposed HRI smart factory component, M2O2P, was developed, tested, and
validated in a smart factory use case. The application was used to control a collaborative
robot with a smart glove and with an interactive graphical user interface (GUI), hence
presented here as a multimodal interface. Furthermore, the application was created to
consider the human factors and provide a device agnostic interface in terms of the controlled
device and the hand gesture recognition device. The important requirements for the
component included a compatibility with FIWARE and the usage of the CaptoGlove LLC
sensor glove (https://www.captoglove.com/, accessed on 7 June 2022).

Caiero-Rodriguez et al. [57] wrote a comprehensive comparison between commercial
smart gloves, which includes CaptoGlove and provides information on how CaptoGlove
compares to other commercially available products in the smart glove category. CaptoGlove
is mainly designed for virtual reality (VR) applications and video games. Bringing such a
glove to the industrial setup has its own limits and challenges.

The CaptoGlove has bending sensors in each finger, which limits the finger tracking
degrees of freedom (DoF) to five. The receiver has a wired connection to each of the
sensors and uses Bluetooth Low Energy (BLE) to connect to the PC. Additionally, the glove
has pressure sensors on each fingertip. However, this functionality is not used in this
application due to the repeatability problems when fingers are bent and pressure is applied
to the sensor.

Bending sensors provide one raw sensor value per sensor, which is then processed by
the component. Figure 4 presents how the sensor value of the little finger is changed when
doing a gesture.
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value is high, whereas in Index straight the little finger is bent, and the sensor value is low. 

There are two example gestures made in the sequence of 20 s, Horns (the index and 
little finger is straight, the rest are bent) and Index straight (only the index finger is 
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gesture. The sensor value for the little finger is presented in a green color and the time 
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finger has three bending states, 0 when the sensor value is more than the red-colored up-
per threshold, 1 when the sensor value is between the thresholds, and 2 when the sensor 
value is less than the magenta-colored lower threshold. 

Figure 4. Sensor values of the little finger when Horns (index and little finger straight) and Index
straight gestures were made within the time frame. As the little finger is straight in Horns, the sensor
value is high, whereas in Index straight the little finger is bent, and the sensor value is low.

There are two example gestures made in the sequence of 20 s, Horns (the index and
little finger is straight, the rest are bent) and Index straight (only the index finger is straight,
the rest are bent), and the fingers are held straight otherwise. Such gestures lead the little
finger to be straight during the Horns gesture and bent with the Index straight gesture. The
sensor value for the little finger is presented in a green color and the time sequences where
the gestures were recognized are illustrated with blue dashed lines. Each finger has three
bending states, 0 when the sensor value is more than the red-colored upper threshold, 1
when the sensor value is between the thresholds, and 2 when the sensor value is less than
the magenta-colored lower threshold.
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M2O2P includes 21 different hand gestures for use. A list of these gestures with their
corresponding names, the states of the fingers, and images are presented in Table 1.

Table 1. All 21 gestures and the corresponding bending states. State of fingers’ bending is presented
as numbers varying from 0 (straight, over the upper threshold) to 2 (bent, under the lower threshold).

Gesture Thumb Index Middle Ring Little Pose

Horns 2 0 2 2 0
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The software of the CaptoGlove, Capto Suite, requires that the operating system (OS) be
Windows 10. In addition, in the development phase, there were restrictions recognized for
containerizing the CaptoGlove software development kit (SDK), which lead to the choice
of deploying the SDK as Windows executable. The main function for the SDK is to connect
to CaptoGlove via Bluetooth, to receive the sensor data from the glove, and to send the
data via a TCP/IP connection to the other modules of the component.

The simplified software architecture of the component Is displayed in Figure 5. M2O2P
is presented inside the red dashed box and all the modules that are containerized with
Docker are inside the black dashed box.
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M2O2P modules in addition to other modules and components are all containerized, as shown inside
the black dashed box. M2O2P consists of three main modules, AC, Web UI, and ROS2-FIWARE
bridge, and additionally the eProsima’s© Integration Service. These modules interact with each other
using ROS2 and with other components with FIWARE, ROS2, ROS1, and PostgreSQL.

M2O2P consists of three main modules: the application controller (AC), Web user
interface (Web UI), and ROS2-FIWARE bridge. The communication between the modules is
done using ROS2 [58]. ROS is an open-source publish/subscribe system created to act as the
middleware for robotic applications and is widely used [59]. ROS2 is a significant upgrade
to ROS, providing additional new functionalities (https://github.com/ros2, accessed on
5 August 2022). Having ROS2, and with the help of the eProsima© Integration Service
(https://integration-service.docs.eprosima.com/en/latest/#, accessed on 5 August 2022)
ROS as interfaces, the application provides an option to directly control a robotic system
that supports such interfaces on top of the FIWARE interface. The communication between
FIWARE and ROS2 is established with a bi-directional ROS2-FIWARE bridge, which was
created specifically for the use of M2O2P, yet was developed to be as configurable as
possible. This module supports the LD information model and provides functionalities to
handle the SHOP4CF data models through the REST API. As is explained in detail later in
Section 4.3.2, most of the information exchanged between the different components is done
with the Task entities. The information regarding the specification of the tasks is stored in
a PostgreSQL DB (which realizes the SpecG/L data stores from the SHOP4CF architecture),
which can be retrieved by the component as additional information. As the AC and Web UI
are the more complex modules of the component, they are presented in further detail in the
following subsections: Section 3.2.1 explains the functionalities of the AC and Section 3.2.2
elaborates the wireframe and functions of the Web UI.

https://github.com/ros2
https://integration-service.docs.eprosima.com/en/latest/
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3.2.1. Application Controller

The AC handles the processing of the raw sensor data to the states, gestures, and
commands, and triggers the completion of the tasks invoked by the human operator. The
main functions offered by the AC are as follows:

1. Establish a TCP/IP connection with the SDK;
2. Transform raw sensor data to states, gestures, and commands;
3. Receive tasks from FIWARE and, if necessary, retrieve additional task information

from PostgreSQL (communication is explained in Section 4.3.2);
4. Provide additional options such as calibration, filtering by the task, and testing mode

(these options are further elaborated in Section 3.2.2).

From the perspective of the gestural interface, the main function of the AC is the
sensor data processing function, which is executed in a dedicated Python thread. The
algorithm that is used for transforming the raw sensor data to the commands is presented
in Algorithm 1 (Pseudo code of the AC working principle. The algorithm is used for
reading the sensor data and deciding when the command should be forwarded.). In a
normal situation where the gesture made and held with the smart glove is correct, the
application waits for 500 ms before prompting a notification to the user in the Web UI to
further hold the gesture. If the same correct gesture is held for 1500 ms total, the task will
be updated to a completed status. Such time ensures that the gesture is held long enough
to be considered an intentional interaction and aims to filter the accidental gestures done
when, for example, manipulating an object.

Algorithm 1: How Application Controller transforms raw sensor data to commands

Result: From raw sensor data to commands
while True do

if Message from any glove received then
Retrieve sensor data, transform to states, recognize gesture;
if Gesture is recognized then

while Time is less than 1500ms do
if Same gesture is held for 500ms then

if Gesture = Gesture set by the task then
print Hold gesture for a second to send the command;

else
print Doesn’t correspond gesture set by the task;
break loop;

end
end
Retrieve sensor data, transform to states, recognize gesture;
if Gesture = Gesture set by the task AND gesture is held 1500ms then

Update task entity status from “inProgress” to “completed”;
Update Device entity command id;

end
end

end
end

end

The AC is a class-based ROS2 node, which enables the changing states and modes
invoked by the user with the Web UI in the background. Furthermore, the algorithm
transforms the sensor data to the states and so on to gestures in the separate functions. By
applying modifications to these functions and keeping the rest of the application as it is, the
AC can handle any gesture recognition device as a source of input. Additionally, if there
is an application and a device that can send similar data (one value per finger) to the AC
via a TCP/IP connection, the change to another device would be possible by just changing
the thresholds.
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3.2.2. Web User Interface

The Web UI was developed for M2O2P to provide essential information for the user
visually. As a smart factory component, the UI should utilize the help of the human
operator when changes in configuration are necessary. Furthermore, the UI should take the
human factors into consideration and present the information and options clearly.

Figure 6 illustrates the wireframe of the UI, including all the different sections that are
explained later. The black boxes in the wireframe represent the buttons. The UI includes
only one page; hence, the continuation of the page is illustrated with a green arrow.

Machines 2022, 10, x FOR PEER REVIEW 11 of 24 
 

 

there is an application and a device that can send similar data (one value per finger) to the 
AC via a TCP/IP connection, the change to another device would be possible by just 
changing the thresholds. 

3.2.2. Web User Interface 
The Web UI was developed for M2O2P to provide essential information for the user 

visually. As a smart factory component, the UI should utilize the help of the human oper-
ator when changes in configuration are necessary. Furthermore, the UI should take the 
human factors into consideration and present the information and options clearly. 

Figure 6 illustrates the wireframe of the UI, including all the different sections that 
are explained later. The black boxes in the wireframe represent the buttons. The UI in-
cludes only one page; hence, the continuation of the page is illustrated with a green arrow. 

 
Figure 6. Wireframe of the UI developed for M2O2P component. The UI consists of three main sec-
tions: monitor section for general information and task information, calibration section for calibrat-
ing the threshold values of the glove, and testing section for training and testing the gestures. Fi-
nally, additional options section holds a button to switch filtering by incoming tasks on or off. Since 
the UI is on one page, the continuation of the page is presented with green arrow. 

Since the primary use of the component is to receive tasks and complete them using 
the smart glove, the first section of the UI considers the task and AC monitoring. For the 
AC to be able to communicate with the user and give additional information, the applica-
tion controller output module is reserved for this purpose. This acts as an outlet for the 
AC to guide the human worker and inform them about the functions occurring in the 
background. The Task information module holds the information about the received task, 
such as the task description and the name of the gesture required for completing the task 
and offers an option for the user to pause the task. This option is made for situations where 
the task is received but, for any reason, the human worker needs to take a break. The 
graphics interchange format (GIF) of the required gesture for completing the task is pre-
sented in the Example gesture module. If there is any situation where the gestures cannot 

Figure 6. Wireframe of the UI developed for M2O2P component. The UI consists of three main sec-
tions: monitor section for general information and task information, calibration section for calibrating
the threshold values of the glove, and testing section for training and testing the gestures. Finally,
additional options section holds a button to switch filtering by incoming tasks on or off. Since the UI
is on one page, the continuation of the page is presented with green arrow.

Since the primary use of the component is to receive tasks and complete them using
the smart glove, the first section of the UI considers the task and AC monitoring. For the AC
to be able to communicate with the user and give additional information, the application
controller output module is reserved for this purpose. This acts as an outlet for the AC to
guide the human worker and inform them about the functions occurring in the background.
The Task information module holds the information about the received task, such as the
task description and the name of the gesture required for completing the task and offers
an option for the user to pause the task. This option is made for situations where the task
is received but, for any reason, the human worker needs to take a break. The graphics
interchange format (GIF) of the required gesture for completing the task is presented in
the Example gesture module. If there is any situation where the gestures cannot be used to
complete the task, the Manual task completion module can be used for such an action.

The calibration section was created to provide an easy way to redefine the sensor
thresholds used during the application runtime. This section can be used when the ap-
plication is setup for the first time, or if a calibration is needed for individual users. The
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calibration section used with the testing section provides a convenient tool for calibrating
the glove for an efficient gesture recognition.

On top of being part of the calibration procedure, the testing section provides a way
for the user to test the application. The section includes a desired gesture selection menu
that can be used to train a specific gesture and additionally to see an example of all the
possible gestures in the GIF format below the menu. When the testing mode is activated,
the application will not allow a task completion through the gestures, which means that the
testing mode can be used even during the ongoing process if, for instance, the application
requires a runtime calibration.

Lastly, the Web UI offers the ability to change the Filtering mode. The Filtering mode
determines if the commands sent forward are filtered by the tasks received from FIWARE,
or if all the gestures that correspond to the commands are updated to FIWARE and to the
ROS topics. The desired behavior in normal circumstances is to have the Filtering mode on
since it ensures the reliability of the M2O2P.

The functionalities of the Web UI presented here follow the well-known design princi-
ples introduced in [60]; they provide feedback for the user by showing if the actions the user
is doing are correct or not and create constraints for the user by not allowing the user to do
actions in an incorrect sequence of the process. With only the glove as a communication
modality, such information would not be provided for the user, and the user would not
know what actions to perform. Furthermore, the UI includes the Manual task completion
module, which is an alternative method for completing the task, hence the glove could not
be used for such an interaction. From a design perspective, the need for the Web UI as a
modality in such a gestural interface is thus evident.

4. Smart Factory Use Case

To test the functionalities of the M2O2P component, a use case from the Siemens pilot
of the SHOP4CF project was identified. For the sake of the evaluation, this section explains
how the multimodal interface has been used in the scenario. However, the component
is independent from the use case, due to the adoption of the SHOP4CF architecture, and
other application scenarios can be used. To describe the use case, the following structure is
used. First, Section 4.1 introduces the use case description. Second, Section 4.2 presents
the hardware set-up of the use case. Finally, Section 4.3 reports on the integrated solution
consisting of explanations of the software components, the high-level architecture of the
system, and the communication between the components.

4.1. Use Case Description and Envisioned Interaction

The parts that are used in an assembly process often come to the factories in boxes
and are in scrambled poses. To make use of the parts, they need to be sorted. This
problem can be solved by using robots to pick and sort the parts and is referred to as
the bin-picking problem [61]. The bin-picking problem is a well-known challenge, and
several commercial systems are available (e.g., Roboception™ rc_viscore and Keyence
3D Robot Vision). However, in this case the factory manager was complaining about the
complexity of such systems. Therefore, following the principles of the human-centered
design (HCD) [62], the factory manager was interviewed by the SHOP4CF partners to
identify the major barriers they encountered during the process. During this analysis, it
was identified that operators often need to move between different interfaces, whereby
knowledge about different systems and interaction modalities was necessary (e.g., the
robot UI and bin-picking UI), as also documented on [63]. Therefore, to simplify the
process and help the operators, a technical solution composed of a multimodal interface for
communicating with several systems was selected. The goal of using this interface is to
reduce the amount of effort needed to learn the interfaces of different systems through the
usage of a single, unique interface.

Based on these observations, the following interaction, as illustrated shown in Figure 7,
was envisioned. For the sake of clarity, the interaction is described through the Business
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Process Model and Notation (BPMN) [64], which is a common language for manufacturing
and business flows [65]. In the interaction, the human needs to act as the supervisor, which
guides the robot to perform the scanning of the part.
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Figure 7. Flow of the envisioned interaction. The human needs to act as the supervisor of the robot
and acknowledge when the robot can move on to the next task. All the operator actions are depicted
in the operator lane, all the robot actions are depicted in the robot lane.

4.2. Use Case Hardware

To study the effects of using a multimodal interface for the envisioned interaction, a
robot cell was created. The robot cell compromised the hardware which was necessary to
solve the application and guarantee a safe HRC. Therefore, a Universal Robot™ (UR) 10
with ISO 10218-1 certification [66] was used along with a Sick™ microScan3 safety scanner
for limiting the robot speed when the operators were in the collaborative workspace. Next,
a custom end effector with an embedded camera with the eye-in-hand configuration was
mounted and a safe robot speed was selected by performing validation measurements with
the selected end effector, as described by the authors in [67]. Finally, a Siemens SIMATIC™
HMI Unified Control Panel was added to enable the visualization of the Web UI. The robot
cell can be seen in Figure 8.
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4.3. Integrated Solution

M2O2P is not designed to work independently, since there is at least the need for the
controlled device, and preferably for an orchestrator application that assigns the tasks for
it. The smart factory use case is composed of such software components, and Section 4.3.1
introduces them and illustrates how they are mapped in the SHOP4CF architecture. Further-
more, Section 4.3.2 elaborates how the software components communicate with each other.

4.3.1. Components and Architecture

For the use case, two local level and one global level software components were
employed. The components and their short explanations are presented in Table 2.

Table 2. Software components used in the use case.

Component Name Functionality in the Use Case Level

Multi-Modal Offline and Online Programming
solution (M2O2P) Enables human–robot interactions with sensor glove Local

Manufacturing Process
Management System (MPMS)

Orchestrator application that handles process
enactment and task assignment Global

Siemens Trajectory
Generation tool (TGT) Provides trajectory and motion control for the robot Local

On top of the M2O2P component, MPMS [68] was used to handle the process orchestra-
tion and the trajectory generator (TGT) was utilized to communicate with the collaborative
robot. Such components fulfil the requirements for the dependent applications of M2O2P.

The integrated solution consisting of a set of components was implemented according
to the SHOP4CF architecture. Figure 9 maps the developed components onto the archi-
tecture. A manufacturing execution system (MES) creates the specification between the
design and the execution in the global and local level. Such a specification could be, for
example, storing information about the robot, as described in [69]. MPMS will handle the
higher-level design and execution in the global level, and provides the task information to
the local level, which is then handled by local level components, such as M2O2P and TGT.
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4.3.2. Communication between Components

MPMS assigns tasks to either the human operator through the M2O2P component or
to the robot through the TGT component. Tasks are represented as Task entities, following
the SHOP4CF data model.

Figure 10 presents the sequence diagram of the information exchanged between the
TGT, M2O2P, and MPMS through FIWARE. The main information exchange between
both the local level components with MPMS is to receive a new task through FIWARE
subscription notifications, update the task to an inProgress status, and update the task to a
completed status after the task is finished. Additionally, M2O2P offers an option to provide
additional information about the task through PostgreSQL. The option was added so that in
more complex task specifications, the MPMS could provide some of the information in the
PostgreSQL, from where the additional information would be queried. Such a functionality
was not added to the TGT since the Task entity is sufficient enough to provide all the
required information for the robot to operate.
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Figure 10. Sequence diagram of receiving and completing the task. Each local level component
communicates with the MPMS through FIWARE, by receiving task, setting the state of the task to
inProgress, and, ultimately, to completed when the task is ready.

The communication between M2O2P and the controlled application or device happens
through the orchestrator, i.e., MPMS, hence it does not happen directly. Such a system
design offers the functionality to control any FIWARE compatible device and provides a
more universal solution.

5. Evaluation

The application was evaluated by testing the performance through user tests. To
evaluate the component and its impact in the use case, the envisioned interaction described
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in Section 4.1 was selected for the design of the experiment. The goal of the experiment
was to identify if the personalizing gestures are better perceived by the operators, therefore,
a study with two subsequent interactions was envisioned. The scheme for the study is
shown in Figure 11.
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Figure 11. Scheme of the experiment. At first between time t0 and t1 the users were debriefed on
the experiment and tested a sample task with the glove by also providing initial feedback on the
interface. Afterwards, the experiment started at t1 with the first interaction and ended at t2 where the
users provided feedback about the interaction. Finally, the second interaction unfolded between t2

and t3 and concluded with the users providing their feeling about the second interaction at t3.

To investigate the effects of the gesture personalization on the human factors, the
following measures were recorded during the test. At first, at time t1, the usability of the
M2O2P and the Web UI were assessed using the SUS [70]. Afterwards, at time t2 and t3,
the perceived workload in the interaction was gathered using the NASA TLX [71]. The
interactions were randomized by having half of the participants experiencing personalized
gestures first, and the other half predefined gestures first. Finally, at time t3, the users were
asked if they preferred the personalized interaction or the predefined one.

The set of gestures used in the experiment were limited to seven to make the personal-
ization procedure less complex. Moreover, these gestures were chosen according to their
simplicity. One of the gestures was utilized only before t1 to not bias the users. Hence, the
pool of available gestures in the personalization sequence was six for all participants. See
the Supplementary Materials (File S1) for a list of the gestures.

6. Results and Discussion

The tests created for M2O2P aimed to evaluate the functionality, human factors, and
gesture personalization. Section 6.1 introduces the test results of the evaluation in the
user tests and additional information about the gesture recognition accuracy. Section 6.2
explains how the component compares to other similar applications.

6.1. Test Results

The tests to evaluate the M2O2P in the smart factory setting, the user tests, were
executed with 10 participants with a low to medium level of engineering background, with
a mean age of 31.05 years, and a standard deviation of 11.89. The tests were conducted
according to the protocol outlined in Section 5. The testing was meant to identify the data
to support our hypothesis, that personalization can reduce the workload of operators.

First, the results from the SUS of the overall system were analyzed; the scores are
shown in Figure 12. The component obtained an A- grading, M = 79.25 SD = 8.34. To ensure
that the score is acceptable by a wider user pool, Welch’s t-test was conducted after having
checked the test preconditions. The t-test was used to compare the obtained results with
the average score that the SUS usually obtains (M = 68), as suggested by [72]. The test
yielded p < 0.05 (CI = 95%), therefore it is possible to consider the tool as a good interface
for the greatest number of users.
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score was 79.25.

Second, the results from the NASA-TLX were examined to measure the differences
across the two interactions. The results from the user test are shown in Figure 13.
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Figure 13. Results from the NASA TLX for the two interactions. The interaction with personalized
gestures showed a lower workload compared with the predefined gestures.

From the plot, it is possible to denote that there is a difference between the two
interactions and the personalized interaction reported a lower average workload. Therefore,
a Mann–Whitney U test was conducted since the normality assumption for the t-test was
rejected p > 0.05 (CI = 95%). The test yielded p > 0.05 (CI = 95%), therefore a statistical
significance between the two populations was not found and the hypothesis of a lower
workload for the personalized interaction needs to be rejected. However, considering that the
performed task was the same, an analysis of each of the NASA TLX factors was conducted.
Such an analysis yielded that a statistical difference was found with the Mann–Whitney U
test p < 0.05 (CI = 95%) on the measurements of mental and physical workload, as shown
in Figure 14. Therefore, despite the test not showing that the overall workload was lower, a
significant difference was found on the mental and physical levels and our hypothesis can be
accepted with this limitation. Furthermore, the result suggests that the personalized gestures
can be a good method to reduce those two strains on the operator. However, further
investigations should be conducted to understand how this applies to other use cases.

Finally, in the last section, the users were asked if they liked being able to personalize
the gestures and if they had to calibrate the glove. Nine out of the ten users preferred the
interaction with the personalized gestures. Therefore, in gestural communication applica-
tions, the personalization option of the gestures should be considered when creating such
solutions. Second, out of the 10 users, none had to perform a re-calibration, thus suggesting
that a well-calibrated glove can work universally with multiple users. However, the tasks
in the use case did not have much object manipulation, and therefore the thresholds can
be calibrated to be looser than the tasks including an object manipulation. Therefore,
even though no re-calibration was needed in this use case, it might be necessary in some
other cases.
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To further investigate the need for calibration, and simultaneously assess the gesture
recognition accuracy provided by the M2O2P application, a stand-alone test case for the
application was included. The test in question was conducted for the work done in [73],
which also features the M2O2P as the main human–robot interface. The test was carried out
with one participant to exclude the variability between the different users and ensure that
the gestures are done correctly. Such a test evaluates the accuracy of the application, yet it
does not provide information on how the accuracy would change for the individual users.

The test was done using the testing section of the Web UI. The user calibrated the glove
prior the test and replicated all 21 gestures in 10 iterations, taking the glove off between
every iteration. The test simulated a scenario where an individual user needs to take the
glove off, for example, at the end of the workday, and continue using it in the next. The
gesture in question was replicated, and when the user thought the gesture was correct,
the UI was inspected to verify if the gesture was right or not. The results of the test are
presented in Table 3.

Table 3. Results of gesture recognition accuracy [73].

Problematic Gesture Number of Problematic Interactions

Middle and ring straight 1
Index and ring straight 1

Number of successful interactions: 208
Number of problematic interactions: 2

Accuracy of the gesture recognition without
readjusting fingers: 99.05%

For this test, there were two problematic gestures which were faced. In both cases, the
user did the gesture, but it was not recognized before the gesture was slightly readjusted.
Furthermore, in both problematic cases, the finger that needed readjustment was the ring
finger, and the gesture was recognized right after the readjustment. The accuracy of the
gesture recognition was as high as 99.05%, which is compared to similar applications in
Section 6.2.

Since the M2O2P features a GUI, the human operator could see that the gesture was
not recognized and could perform the readjustment. Moreover, since the ring finger was
causing the problems in the recognition of the gestures, the problem could be fixed by
recalibrating the upper threshold of the ring finger, leading to an improved recognition of
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the straight finger. The problems with the ring finger were not consistent, and therefore in
the test scenario, the glove was not re-calibrated in between the iterations.

6.2. Comparison

To compare the developed application to other methods, research papers with similar
objectives were reviewed. In [47], the authors did a comprehensive review about the
gesture recognition methods and technologies for HRC, but solely focused on vision-based
approaches. As referenced in the paper, two vision-based solutions and one survey focusing
on vision-based technology were reviewed for the glove-based gesture section. None of
them had researched the current possibilities of the glove-based input and mentioned the
cumbersomeness and complex calibration and the setup of the glove. When comparing
these two methods to each other and taking the perspective of cumbersomeness, it is
justified to claim that wearing a glove is more cumbersome than not wearing one. In
contrast to this, the vision-based gesture recognition system assumes that the gestures are
done facing the camera, which can be cumbersome for the users or in some use cases. With
a glove-based gesture recognition, this problem does not exist, and the gestures can be done
anywhere on the shop floor if the connection can be maintained. Since glove-based methods
read the gestures from the sensors and do not need to interpret the RGB/depth data before
acquiring the information, they offer also a significantly less computationally demanding
solution. Some of the glove-based applications can be complex to calibrate. However,
the calibration of the application depends on how the sensor values are interpreted and
processed, and therefore it is not universally true that all glove-based applications are
complex to calibrate. The reported test results of this paper show that calibration was not
needed for individual users.

In [74], authors proposed a gesture recognition method based on the neural network,
where 10 hand gestures are recorded by Kinect v2, augmented, and trained with the
neural network. The accuracy of the neural network was as high as 98.9%, but the system
requires that the user knows the gestures previously, and the gestures were recorded by
one individual, which might not guarantee that the system works with any hand.

In [75], the authors proposed an ML-based gesture recognition system that handles
static and dynamic gestures acquired from the IMU sensors worn by the human operator.
The operator wears five IMU sensors, two per each hand and one on the chest to recognize
the pose of the corresponding joint. Additionally, the human wears an ultra-wideband
(UWB) tag to track the position in the room. The method provides a high accuracy of 98%.
In a similar system in [76], the developed application uses an RGBD camera to recognize
dynamic hand gestures, such as letters and numbers, which are interpreted as gestures. The
average accuracy of the recognition system depending on illumination was relatively high
at 92%. The first dynamic gesture recognition system requires the human operator to wear
multiple sensors on different places on the body and can be cumbersome. Additionally, in
both solutions, the gestures require a somewhat large movement of the arms, which can
negatively affect the process flow.

In all the aforementioned solutions, the accuracy was lower than in the proposed
application. However, in those solutions the accuracy was measured either with a test
set of images or with multiple users, whereas the gesture recognition accuracy of M2O2P
was measured with one participant, hence the measured accuracy cannot be compared to
such solutions on a one-to-one basis. The intended use of the application is to have the
application calibrated for the user so that the accuracy of the measurement remains high.
When such an interaction method is proposed for the user, the application must work with a
high precision. A less accurate interaction method would lead to user frustration and users
would prefer more reliable input methods. Furthermore, there were no personalization
options provided by the applications, which by the results of this paper presents as an
option which should be considered in gesture interfaces.
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7. Conclusions

In this paper, we proposed a multi-modal interface for a natural input. The proposed
solution, M2O2P, provides a gestural interface for a human to communicate with other
systems using a smart glove. Since the sensor technology is expected to advance, the
M2O2P was designed to support the changing of the gesture recognition device. The
component reads the smart glove device, interprets the sensor values as states, gestures,
and, ultimately, as commands. The used algorithm for the gesture detection uses first order
logic with a predefined multi gesture set. This algorithm can be improved in future research
by adapting AI and ML techniques.

Furthermore, the solution provides a GUI for a more complete user experience by
providing essential information to the user, such as task description and an example of
the required gesture in GIF format, and functionalities such as calibration, testing, and
changing of the filtering mode of the application. Through the defined filtering mode, the
component can be utilized for completing tasks or for giving predefined commands for a
controlled device, such as a robot. M2O2P was developed to be a smart factory component
that has capabilities to be context-aware and be modularly integrated with other systems.

The accuracy of M2O2P was measured to be 99.05%, which is similar to what other
gesture recognition systems have reported. However, the evaluation of the accuracy was
done focusing on the accuracy of the application itself and with one participant and thus
do not provide a definite insight on how the glove would perform for individual users.
Furthermore, the M2O2P interface with personalized gestures showed a non-statistical
significance in the difference of the workload when compared to the predefined gestures.
However, this was found more related to the task rather than the interface, since the
physical and mental levels of the workload were found to be statistically lower with
the personalized gestures. Therefore, future studies should concentrate on integrating
personalization for ensuring that the mental and physical strain are the lowest. Additionally,
proper care should be taken in the overall design of the task when personalized gestures
are used. Finally, the results of the user study should be considered in the context of the
user population. Therefore, further studies with different populations might be needed to
further define the generalizations of the proposed methods.
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