62 research outputs found

    Optimising Large Animal Models of Sustained Atrial Fibrillation: Relevance of the Critical Mass Hypothesis

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-04-04, accepted 2021-05-24, epub 2021-06-15Publication status: PublishedBackground: Large animal models play an important role in our understanding of the pathophysiology of atrial fibrillation (AF). Our aim was to determine whether prospectively collected baseline variables could predict the development of sustained AF in sheep, thereby reducing the number of animals required in future studies. Our hypothesis was that the relationship between atrial dimensions, refractory periods and conduction velocity (otherwise known as the critical mass hypothesis) could be used for the first time to predict the development of sustained AF. Methods: Healthy adult Welsh mountain sheep underwent a baseline electrophysiology study followed by implantation of a neurostimulator connected via an endocardial pacing lead to the right atrial appendage. The device was programmed to deliver intermittent 50 Hz bursts of 30 s duration over an 8-week period whilst sheep were monitored for AF. Results: Eighteen sheep completed the protocol, of which 28% developed sustained AF. Logistic regression analysis showed only fibrillation number (calculated using the critical mass hypothesis as the left atrial diameter divided by the product of atrial conduction velocity and effective refractory period) was associated with an increased likelihood of developing sustained AF (Ln Odds Ratio 26.1 [95% confidence intervals 0.2–52.0] p = 0.048). A receiver-operator characteristic curve showed this could be used to predict which sheep developed sustained AF (C-statistic 0.82 [95% confidence intervals 0.59–1.04] p = 0.04). Conclusion: The critical mass hypothesis can be used to predict sustained AF in a tachypaced ovine model. These findings can be used to optimise the design of future studies involving large animals

    Author Correction: Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: registration 2021-11-25, collection 2021-12, pub-electronic 2021-12-08, online 2021-12-08Publication status: Publishe

    Aging and the cardiac collagex matrix: novel mediators of fibrotic remodeling

    Get PDF
    AbstractCardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways

    Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules:This organization is perturbed in heart failure

    No full text
    Rationale: The organization of the transverse-tubular (t-t) system and relationship to the sarcoplasmic reticulum (SR) underpins cardiac excitation–contraction coupling. The architecture of the SR, and relationship with the t-ts, is not well characterized at the whole-cell level. Furthermore, little is known regarding changes to SR ultrastructure in heart failure. Objective: The aim of this study was to unravel interspecies differences and commonalities between the relationship of SR and t-t networks within cardiac myocytes, as well as the modifications that occur in heart failure, using a novel high-resolution 3-dimensional (3D) imaging technique. Methods and Results: Using serial block face imaging coupled with scanning electron microscopy and image analysis, we have generated 3D reconstructions of whole cardiomyocytes from sheep and rat left ventricle, revealing that the SR forms a continuous network linking t-ts throughout the cell in both species. In sheep, but not rat, the SR has an intimate relationship with the sarcolemma forming junctional domains. 3D reconstructions also reveal details of the sheep t-t system. Using a model of tachypacing-induced heart failure, we show that there are populations of swollen and collapsed t-ts, patches of SR tangling, and disorder with rearrangement of the mitochondria. Conclusions: We provide the first high-resolution 3D structure of the SR network showing that it forms a cell-wide communication pipeline facilitating Ca 2+ diffusion, buffering, and synchronicity. The distribution of the SR within the cell is related to interspecies differences in excitation–contraction coupling, and we report the first detailed analysis of SR remodeling as a result of heart failure. </jats:sec
    • …
    corecore