35 research outputs found

    Murine CD8 +

    No full text

    Selective role of calcineurin in haematopoiesis and lymphopoiesis

    No full text
    The calcineurin/NFAT (nuclear factor of activated T-cells) signalling pathway is essential for many aspects of vertebrate development and is the target of the widely used immunosuppressive drugs FK506 and cyclosporine A. The basis for the therapeutic specificity of these drugs has remained unclear, as calcineurin is expressed ubiquitously. By inactivating calcineurin during haematopoietic development, we found that although this signalling pathway has an important, non-redundant role in the regulation of lymphocyte developmental checkpoints, it is not essential for the development of blood myeloid lineages. These studies have shown that the specificity of calcineurin inhibitors arises from the selective use of calcineurin at distinct developmental stages. The requirement for calcineurin/NFAT in the development of the adaptive but not of the innate immune system is consistent with the idea that the evolutionary appearance of this pathway was involved in the emergence of vertebrates

    A targeted amplicon next-generation sequencing assay for tryptase genotyping to support personalized therapy in mast cell-related disorders.

    No full text
    Tryptase, the most abundant mast cell granule protein, is elevated in severe asthma patients independent of type 2 inflammation status. Higher active β tryptase allele counts are associated with higher levels of peripheral tryptase and lower clinical benefit from anti-IgE therapies. Tryptase is a therapeutic target of interest in severe asthma and chronic spontaneous urticaria. Active and inactive allele counts may enable stratification to assess response to therapies in asthmatic patient subpopulations. Tryptase gene loci TPSAB1 and TPSB2 have high levels of sequence identity, which makes genotyping a challenging task. Here, we report a targeted next-generation sequencing (NGS) assay and downstream bioinformatics analysis for determining polymorphisms at tryptase TPSAB1 and TPSB2 loci. Machine learning modeling using multiple polymorphisms in the tryptase loci was used to improve the accuracy of genotyping calls. The assay was tested and qualified on DNA extracted from whole blood of healthy donors and asthma patients, achieving accuracy of 96%, 96% and 94% for estimation of inactive α and βΙΙΙFS tryptase alleles and α duplication on TPSAB1, respectively. The reported NGS assay is a cost-effective method that is more efficient than Sanger sequencing and provides coverage to evaluate known as well as unreported tryptase polymorphisms

    A phase I, randomized, observer-blinded, single and multiple ascending-dose study to investigate the safety, pharmacokinetics, and immunogenicity of BITS7201A, a bispecific antibody targeting IL-13 and IL-17, in healthy volunteers

    No full text
    Abstract Background Inhibition of interleukin (IL)-13, a Type 2 inflammatory mediator in asthma, improves lung function and reduces exacerbations; however, more effective therapies are needed. A subset of asthma patients also exhibits elevated IL-17, which is associated with greater disease severity, neutrophilic inflammation, and steroid resistance. BITS7201A is a novel, humanized bispecific antibody that binds and neutralizes both IL-13 and IL-17. Methods Safety, pharmacokinetics, and immunogenicity of BITS7201A were evaluated in a phase 1 study. Part A was a single ascending-dose design with 5 cohorts: 30-, 90-, and 300-mg subcutaneous (SC), and 300- and 750-mg intravenous (IV). Part B was a multiple ascending-dose design with 3 cohorts: 150-, 300-, and 600-mg SC every 4 weeks × 3 doses. Both parts enrolled approximately 8 healthy volunteers into each cohort (6 active: 2 placebo). Part B included an additional cohort of patients with mild asthma (600-mg SC). Results Forty-one subjects (31 active, 10 placebo) and 26 subjects (20 active, 6 placebo) were enrolled into Parts A and B, respectively. The cohort with mild asthma patients was terminated after enrollment of a single patient. No deaths, serious adverse events, or dose-limiting adverse events occurred. In Part A, 12 active (39%) and 5 placebo subjects (50%), and in Part B, 6 active (30%) and 3 placebo subjects (50%) experienced at least 1 treatment-emergent adverse event (TEAE). The most common AEs were fatigue (n = 3) and influenza-like illness (n = 2). One injection-site reaction was reported. Two subjects with elevated blood eosinophil counts at baseline had transient elevations in blood eosinophils (≥Grade 2, > 1500 cells/μL). In Parts A and B, 16 of 30 (53%) and 16 of 17 (94%) active subjects, respectively, tested positive for anti-drug antibodies (ADAs). No anaphylaxis or hypersensitivity events occurred. BITS7201A exhibited single- and multiple-dose pharmacokinetic characteristics consistent with an IgG monoclonal antibody; exposure generally increased dose-proportionally. Postdose elevations of the serum pharmacodynamic biomarkers, IL-17AA and IL-17FF, occurred, confirming target engagement. Conclusions BITS7201A was well tolerated, but was associated with a high incidence of ADA formation. Trial registration ClinicalTrials.gov, NCT02748642; registered April 6, 2016 (retrospectively registered)

    Population Pharmacokinetics and Exposure-Response Relationships of Astegolimab in Patients With Severe Asthma

    No full text
    Astegolimab is a fully human immunoglobulin G2 monoclonal antibody that binds to the ST2 receptor and blocks the interleukin-33 signaling. It was evaluated in patients with uncontrolled severe asthma in the phase 2b study (Zenyatta) at doses of 70, 210, and 490 mg subcutaneously every 4 weeks for 52 weeks. This work aimed to characterize astegolimab pharmacokinetics, identify influential covariates contributing to its interindividual variability, and make a descriptive assessment of the exposure-response relationships. A population pharmacokinetic model was developed using data from 368 patients in the Zenyatta study. Predicted average steady-state concentration was used in the subsequent exposure-response analyses, which evaluated efficacy (asthma exacerbation rate) and biomarker end points including forced expiratory volume in 1 second, fraction exhaled nitric oxide, blood eosinophils, and soluble ST2. A 2-compartment disposition model with first-order elimination and first-order absorption best described the astegolimab pharmacokinetics. The relative bioavailability for the 70-mg dose was 15.3% lower. Baseline body weight, estimated glomerular filtration rate, and eosinophils were statistically correlated with pharmacokinetic parameters, but only body weight had a clinically meaningful influence on the steady-state exposure (ratios exceeding 0.8-1.25). The exposure-response of efficacy and biomarkers were generally flat with a weak trend in favor of the highest dose/exposure. This study characterized astegolimab pharmacokinetics in patients with asthma and showed typical pharmacokinetic behavior as a monoclonal antibody-based drug. The exposure-response analyses suggested the highest dose tested in the Zenyatta study (490 mg every 4 weeks) performed close to the maximum effect, and no additional response may be expected above it

    Accuracy of the PCR NGS tryptase genotyping workflow.

    No full text
    The genotyping workflow achieves an estimated accuracy of 95% across roughly 130 samples analyzed in 4 batches.</p
    corecore