43 research outputs found

    Stat3: linking inflammation to epithelial cancer - more than a "gut" feeling?

    Get PDF
    Inflammation is an important environmental factor that promotes tumourigenesis and the progression of established cancerous lesions, and recent studies have started to dissect the mechanisms linking the two pathologies. These inflammatory and infectious conditions trigger immune and stromal cell release of soluble mediators which facilitate survival and proliferation of tumour cells in a paracrine manner. In addition, (epi-)genetic mutations affecting oncogenes, tumour-suppressor genes, chromosomal rearrangements and amplifications trigger the release of inflammatory mediators within the tumour microenvironment to promote neoplastic growth in an autocrine manner. These two pathways converge in tumour cells and result in activation of the latent signal transducer and activator of transcription 3 (Stat3) which mediates a transcriptional response favouring survival, proliferation and angiogenesis. The abundance of cytokines that activate Stat3 within the tumour microenvironment, which comprises of members of the interleukin (IL) IL6, IL10 and IL17/23 families, underpins a signaling network that simultaneously promotes the growth of neoplastic epithelium, fuels inflammation and suppresses the host's anti-tumour immune response. Accordingly, aberrant and persistent Stat3 activation is a frequent observation in human cancers of epithelial origin and is often associated with poor outcome

    The Interleukin-11/IL-11 receptor promotes glioblastoma survival and invasion under glucose-starved conditions through enhanced glutaminolysis

    Get PDF
    Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11

    Type 2 Innate Lymphoid Cells Protect against Colorectal Cancer Progression and Predict Improved Patient Survival.

    Get PDF
    Chronic inflammation of the gastrointestinal (GI) tract contributes to colorectal cancer (CRC) progression. While the role of adaptive T cells in CRC is now well established, the role of innate immune cells, specifically innate lymphoid cells (ILCs), is not well understood. To define the role of ILCs in CRC we employed complementary heterotopic and chemically-induced CRC mouse models. We discovered that ILCs were abundant in CRC tumours and contributed to anti-tumour immunity. We focused on ILC2 and showed that ILC2-deficient mice developed a higher tumour burden compared with littermate wild-type controls. We generated an ILC2 gene signature and using machine learning models revealed that CRC patients with a high intratumor ILC2 gene signature had a favourable clinical prognosis. Collectively, our results highlight a critical role for ILC2 in CRC, suggesting a potential new avenue to improve clinical outcomes through ILC2-agonist based therapeutic approaches

    Interleukin-11 Is the Dominant IL-6 Family Cytokine during Gastrointestinal Tumorigenesis and Can Be Targeted Therapeutically

    Get PDF
    SummaryAmong the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer “hallmarks” through downstream activation of the gp130/STAT3 signaling pathway. However, we show that the related cytokine IL-11 has a stronger correlation with elevated STAT3 activation in human gastrointestinal cancers. Using genetic mouse models, we reveal that IL-11 has a more prominent role compared to IL-6 during the progression of sporadic and inflammation-associated colon and gastric cancers. Accordingly, in these models and in human tumor cell line xenograft models, pharmacologic inhibition of IL-11 signaling alleviated STAT3 activation, suppressed tumor cell proliferation, and reduced the invasive capacity and growth of tumors. Our results identify IL-11 signaling as a potential therapeutic target for the treatment of gastrointestinal cancers

    gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis

    Get PDF
    Although gastrointestinal cancers are frequently associated with chronic inflammation, the underlying molecular links have not been comprehensively deciphered. Using loss- and gain-of-function mice in a colitis-associated cancer model, we establish here a link comprising the gp130/Stat3 transcription factor signaling axis. Mutagen-induced tumor growth and multiplicity are reduced following intestinal epithelial cell (IEC)-specific Stat3 ablation, while its hyperactivation promotes tumor incidence and growth. Conversely, IEC-specific Stat3 deficiency enhances susceptibility to chemically induced epithelial damage and subsequent mucosal inflammation, while excessive Stat3 activation confers resistance to colitis. Stat3 has the capacity to mediate IL-6- and IL-11-dependent IEC survival and to promote proliferation through G1 and G2/M cell-cycle progression as the common tumor cell-autonomous mechanism that bridges chronic inflammation to tumor promotion

    The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma

    Get PDF
    Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2-ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success.Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples.We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour-associated macrophages in Losartan or vehicle-treated mammary tumors.Analysis of AT1R expression with radiolabelled ligand binding assays in human breast cancer biopsies showed high AT1R levels in 30% of invasive ductal carcinomas analysed. Furthermore, analysis of the TCGA database identified that high AT1R expression to be associated with luminal breast cancer subtype.Our in vivo data and analysis of human invasive ductal carcinoma samples identify the AT1R is a potential therapeutic target in breast cancer, with the availability of a range of well-tolerated inhibitors currently used in clinics. We describe a novel signalling pathway critical in breast tumorigenesis, that may provide new therapeutic avenues to complement current treatments.This research was supported by grants from the National Breast Cancer Foundation and the CASS Foundation (ALC). We acknowledge the support of Victorian Government’s Operational Infrastructure Support Program and the National Health and Medical Research Council (NHMRC) of Australia Grants. ALC is supported by an NHMRC Career Development Fellowship (ID 1062247). We also acknowledge funding from the Sydney Breast Cancer Foundation (S.A.O’T), the RT Hall Foundation (S.A.O’T), Tag Family Foundation (S.A.O’T), and the O’Sullivan family (S.A.O’T)

    A study of the efficacy of organ cultures to examine wood formation in Pinus radiata D. Don

    Get PDF
    Pinus radiata D. Don is an economically important plantation species to New Zealand that is susceptible to the wood quality flaw 'intra-ring checking'. Intra-ring checking is a term used to describe radial fractures that can occur in the earlywood portion of a growth ring, altering the appearance and resilience of the wood, thereby decreasing its economic value. This thesis presents a study that was part of a broad, ongoing collaborative investigation directed at understanding wood quality issues, with the long term goal of enhancement of future radiata pine crops. These investigations are funded by the Wood Quality Initiative Ltd., and involve basic science, field trials and engineering studies related to intra-ring checking. Specifically, the present study was designed to establish the effects of the mineral nutrients boron, calcium and magnesium on wood formation, to determine whether they are associated with intra-ring checking. This research was carried out in three stages. Firstly, the ultra-structural and biochemical properties of wood with intra-ring checking were examined to determine if specific features of the cell wall were associated with the incidence of intra-ring checks. Electron microscopy techniques revealed that the CML/S1 region of the cell wall often showed a decrease in CML lignin staining and S1 striations in wood with intra-ring checks. However, Klason and acetyl bromide assays did not show a change in lignin content. In order to understand how changes in the CML/S1 region of the cell wall may occur, methods were required that would allow for the observation of wood formation in a controlled environment. In the second stage of this study, an organ culture technique was successfully developed to allow for the growth of radiata pine cambial tissue, sandwiched between phloem and xylem, on a defined nutrient medium. This nutrient medium was manipulated, using ion-binding resins, to control the amount of boron, calcium and magnesium available to the growing tissues, to determine if variations in wood formation could be induced. In the final stage of this research, an extensive comparative examination of different techniques that could be used for the observation and measurement of selected wood properties was undertaken, in order to determine the efficacy of the organ cultures to study wood formation in an altered nutrient environment. Wood properties were examined for various stages of xylogenesis, beginning with cell division and expansion, followed by cell wall deposition, and lastly with the onset of lignification in order to define the success of the culture technique. Electron microscopy investigations suggested that in the presence of very little boron the CML/S1 wall showed darker striation deposits, while an increase in calcium availability, resulted in a more defined CML/S1/S2 wall region compared to the controls. Further examination of the cell walls suggested that pectin esterification and possibly lignification could also be increased by limited boron availability. However, in many of the observed and measured parameters of wood properties, a great deal of complex 'between-tree' and 'within-culture' variation was observed. The results show that elucidation of the association between nutrient availability and the incidence of intra-ring checking can not be established from this organ culture study. In a concurrent study, the preliminary investigation of arabinogalactan-proteins (AGPs) in radiata pine was undertaken. Radiata pine AGPs were positioned in the compound middle lamella of xylem cells, suggesting potential roles in cell-cell adhesion or cell-cell signalling. For the first time, radiata pine AGPs were isolated and characterized in terms of their protein and carbohydrate composition, both of which yielded features typical of AGPs in other plant species. Unique to radiata pine AGPs was the presence of a large proportion of 5-linked arabinose. While the precise function(s) of AGPs are unknown, the results obtained in this research have established a basis for further investigation into the potential for their involvement in wood formation. Overall, new tools have been established to facilitate future research on radiata pine, a commercially important species, and novel results have been obtained concerning the mechanisms of wood formation therein
    corecore