36,717 research outputs found

    Fitness trackers

    Get PDF

    Fitness trackers

    Get PDF

    Gaze-based teleprosthetic enables intuitive continuous control of complex robot arm use: Writing & drawing

    Get PDF
    Eye tracking is a powerful mean for assistive technologies for people with movement disorders, paralysis and amputees. We present a highly intuitive eye tracking-controlled robot arm operating in 3-dimensional space based on the user's gaze target point that enables tele-writing and drawing. The usability and intuitive usage was assessed by a “tele” writing experiment with 8 subjects that learned to operate the system within minutes of first time use. These subjects were naive to the system and the task and had to write three letters on a white board with a white board pen attached to the robot arm's endpoint. The instructions are to imagine they were writing text with the pen and look where the pen would be going, they had to write the letters as fast and as accurate as possible, given a letter size template. Subjects were able to perform the task with facility and accuracy, and movements of the arm did not interfere with subjects ability to control their visual attention so as to enable smooth writing. On the basis of five consecutive trials there was a significant decrease in the total time used and the total number of commands sent to move the robot arm from the first to the second trial but no further improvement thereafter, suggesting that within writing 6 letters subjects had mastered the ability to control the system. Our work demonstrates that eye tracking is a powerful means to control robot arms in closed-loop and real-time, outperforming other invasive and non-invasive approaches to Brain-Machine-Interfaces in terms of calibration time (<;2 minutes), training time (<;10 minutes), interface technology costs. We suggests that gaze-based decoding of action intention may well become one of the most efficient ways to interface with robotic actuators - i.e. Brain-Robot-Interfaces - and become useful beyond paralysed and amputee users also for the general teleoperation of robotic and exoskeleton in human augmentation

    MobiFace: A Novel Dataset for Mobile Face Tracking in the Wild

    Full text link
    Face tracking serves as the crucial initial step in mobile applications trying to analyse target faces over time in mobile settings. However, this problem has received little attention, mainly due to the scarcity of dedicated face tracking benchmarks. In this work, we introduce MobiFace, the first dataset for single face tracking in mobile situations. It consists of 80 unedited live-streaming mobile videos captured by 70 different smartphone users in fully unconstrained environments. Over 95K95K bounding boxes are manually labelled. The videos are carefully selected to cover typical smartphone usage. The videos are also annotated with 14 attributes, including 6 newly proposed attributes and 8 commonly seen in object tracking. 36 state-of-the-art trackers, including facial landmark trackers, generic object trackers and trackers that we have fine-tuned or improved, are evaluated. The results suggest that mobile face tracking cannot be solved through existing approaches. In addition, we show that fine-tuning on the MobiFace training data significantly boosts the performance of deep learning-based trackers, suggesting that MobiFace captures the unique characteristics of mobile face tracking. Our goal is to offer the community a diverse dataset to enable the design and evaluation of mobile face trackers. The dataset, annotations and the evaluation server will be on \url{https://mobiface.github.io/}.Comment: To appear on The 14th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2019

    Cross-coupled doa trackers

    Get PDF
    A new robust, low complexity algorithm for multiuser tracking is proposed, modifying the two-stage parallel architecture of the estimate-maximize (EM) algorithm. The algorithm copes with spatially colored noise, large differences in source powers, multipath, and crossing trajectories. Following a discussion on stability, the simulations demonstrate an asymptotic and tracking behavior that neither the EM nor a nonparallelized tracker can emulate.Peer ReviewedPostprint (published version

    EchoFusion: Tracking and Reconstruction of Objects in 4D Freehand Ultrasound Imaging without External Trackers

    Get PDF
    Ultrasound (US) is the most widely used fetal imaging technique. However, US images have limited capture range, and suffer from view dependent artefacts such as acoustic shadows. Compounding of overlapping 3D US acquisitions into a high-resolution volume can extend the field of view and remove image artefacts, which is useful for retrospective analysis including population based studies. However, such volume reconstructions require information about relative transformations between probe positions from which the individual volumes were acquired. In prenatal US scans, the fetus can move independently from the mother, making external trackers such as electromagnetic or optical tracking unable to track the motion between probe position and the moving fetus. We provide a novel methodology for image-based tracking and volume reconstruction by combining recent advances in deep learning and simultaneous localisation and mapping (SLAM). Tracking semantics are established through the use of a Residual 3D U-Net and the output is fed to the SLAM algorithm. As a proof of concept, experiments are conducted on US volumes taken from a whole body fetal phantom, and from the heads of real fetuses. For the fetal head segmentation, we also introduce a novel weak annotation approach to minimise the required manual effort for ground truth annotation. We evaluate our method qualitatively, and quantitatively with respect to tissue discrimination accuracy and tracking robustness.Comment: MICCAI Workshop on Perinatal, Preterm and Paediatric Image analysis (PIPPI), 201

    Long-life 3-axis satellite attitude sensing, phase 1

    Get PDF
    The purpose was to investigate the feasibility of new, moderate-cost, high reliability navigation sensors for high-altitude satellites, using stellar sources to obviate the use of gyroscopic devices. The primary investigation focused on the need for developing a star tracker model to replace an old star tracker which is still needed for current probe and satellite programs. One innovative element of the proposed star tracker was the design, development, and testing of technology components related to a phase scrambler plate. The purpose of the phase scrambler plate is to convert the impulse response of the optical system from a point image to a uniformly bright, square, angularly large, in-focus image of the star source. A collimated star source was built and tested. A breadboard star tracker with an 8 x 8 degree field of view was designed and built. It was tested in normal quad-cell mode (without the phase scrambler plate) and with the phase scrambler plate. Although the phase scrambler plate was crudely made, the performance of the star tracker breadboard was greatly improved using the phase scrambler plate, instead of system defocus. If further developed, the phase scrambler plate may be added as a low-cost retroconversion to any objective lens to greatly improve quad-cell or CCD array tracking; applications include star trackers, laser metrology, laser machining optics, and surveying instrumentation
    corecore