265 research outputs found

    GLAST Tracker

    Get PDF
    The Large Area Telescope (LAT) on board the Gamma-ray Large-Area Space Telescope (GLAST) is a pair-conversion gamma-ray detector designed to explore the gamma-ray universe in the 20 MeV-300 GeV energy band. The Tracker subsystem of the LAT will perform tracking of electron and positrons to determine the origin of the gamma-ray. The design and performance of the GLAST LAT Tracker are described in this paper.Comment: 5 pages, 5 figues, Invited talk at Vertex 2005, Chuzenji Lake, Nikko, Japan, November 7-November 11, 2005, To be published in Nuclear Instruments and Methods

    The CMS Silicon Strip Tracker: System Tests and Test Beam Results

    Full text link
    With a total area of 210 squaremeters and about 15000 single silicon modules the silicon strip tracker of the CMS experiment at the LHC will be the largest silicon strip detector ever built. While the performance of the individual mechanical and electronic components has already been tested extensively, their interplay in larger integrated substructures also has to be studied before mass production can be launched, in order to ensure the envisaged performance of the overall system. This is the main purpose of the system tests, during which hardware components as final as possible are being integrated into substructures of the tracker subsystems. System tests are currently being carried out for all subsystems of the tracker. In addition, silicon modules and electronic components have been operated and studied in a particle beam environment. In this report results from the CMS silicon tracker system tests and a test beam experiment at CERN are presented.Comment: 5 pages; presented at the 8th ICATPP Conference, Como, Italy, October 6-10, 2003; to be published by World Scientifi

    The CMS Outer Tracker Upgrade for the HL-LHC

    Get PDF

    Evaluation of Planar Silicon Pixel Sensors with the RD53A Readout Chip for the Phase-2 Upgrade of the CMS Inner Tracker

    Full text link
    The Large Hadron Collider (LHC) at CERN will undergo an upgrade in order to increase its luminosity to 7.5×10347.5 \times 10^{34} cm2^{-2}s1^{-1}. The increased luminosity during this High-Luminosity running phase (HL-LHC), starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50μ50 \mu m ×  50μ \times \; 50 \mum and rectangular 100μ100 \mu m ×  25μ \times \; 25 \mum pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS at the HL-LHC. A spatial resolution of approximately 3.4μ\mum (2μ\mum) is obtained using the modules with 50μ50 \mu m ×  50μ \times \; 50 \mum (100μ100 \mu m ×  25μ \times \; 25 \mum) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq=5.3×1015\Phi_{\rm eq} = 5.3 \times 10^{15} cm2^{-2}, a resolution of 9.4μ\mum is achieved at a bias voltage of 800 V using a module with 50μ50 \mu m ×  50μ \times \; 50 \mum pixel size. All modules retain a hit efficiency in excess of 99\% after irradiation to fluences up to 2.1×10162.1 \times 10^{16} cm2^{-2}. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper

    Evaluation of HPK n+n^+-pp planar pixel sensors for the CMS Phase-2 upgrade

    Full text link
    To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5×10347.5\times 10^{34} cm2^{-2}s1^{-1} in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionizing energy loss of up to Φeq=3.5×1016\Phi_{\text{eq}} = 3.5\times 10^{16} cm2^{-2} . This paper focuses on planar pixel sensor design and qualification up to a fluence of Φeq=1.4×1016\Phi_{\text{eq}} = 1.4\times 10^{16} cm2^{-2}. For the development of appropriate planar pixel sensors an R\&D program was initiated, which includes n+n^+-pp sensors on 150 mm (6'') wafers with an active thickness of 150 μm\mu m with pixel sizes of 100×25100\times 25 μm2\mu m^2 and 50×5050\times 50 μm2\mu m^2 manufactured by Hamamatsu. Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was an extensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly with ROC4Sens readout chips. It demonstrates that multiple designs fulfill the requirements in terms of breakdown voltage, leakage current and efficiency. The single point resolution for 50×5050\times 50 μm2\mu m^2 pixels is measured as 4.0 μm\mu m for non-irradiated samples, and 6.3 μm\mu m after irradiation to Φeq=7.2×1015\Phi_{\text{eq}} = 7.2\times 10^{15} cm2^{-2}

    ATLAS silicon module assembly and qualification tests at IFIC Valencia

    Full text link
    ATLAS experiment, designed to probe the interactions of particles emerging out of proton proton collisions at energies of up to 14 TeV, will assume operation at the Large Hadron Collider (LHC) at CERN in 2007. This paper discusses the assembly and the quality control tests of forward detector modules for the ATLAS silicon microstrip detector assembled at the Instituto de Fisica Corpuscular (IFIC) in Valencia. The construction and testing procedures are outlined and the laboratory equipment is briefly described. Emphasis is given on the module quality achieved in terms of mechanical and electrical stability.Comment: 23 pages, 38 EPS figures, uses JINST LaTeX clas

    Commissioning and performance of the LHCb Silicon Tracker

    Full text link
    The LHCb Silicon Tracker is a silicon micro-strip detector with a sensitive area of 12 m2 and a total of 272k readout channels. The Silicon Tracker consists of two parts that use different detector modules. The detector installation was completed by early summer 2008 and the commissioning without beam has reached its final stage, successfully overcoming most of the encountered problems. Currently, the detector has more than 99% of the channels fully functioning. Commissioning with particles has started using beam-induced events from the LHC injection tests in 2008 and 2009. These events allowed initial studies of the detector performance. Especially, the detector modules could be aligned with an accuracy of about 20μm. Furthermore, with the first beam collisions that took place end of 2009 we could further study the performance and improve the alignment of the detector

    The CMS Phase-1 Pixel Detector Upgrade

    Full text link
    The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013-2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking

    The Economics of 1.5°C Climate Change

    Get PDF
    The economic case for limiting warming to 1.5°C is unclear, due to manifold uncertainties. However, it cannot be ruled out that the 1.5°C target passes a cost-benefit test. Costs are almost certainly high: The median global carbon price in 1.5°C scenarios implemented by various energy models is more than US$100 per metric ton of CO2 in 2020, for example. Benefits estimates range from much lower than this to much higher. Some of these uncertainties may reduce in the future, raising the question of how to hedge in the near term. Maintaining an option on limiting warming to 1.5°C means targeting it now. Setting off with higher emissions will make 1.5°C unattainable quickly without recourse to expensive large-scale carbon dioxide removal (CDR), or solar radiation management (SRM), which can be cheap but poses ambiguous risks society seems unwilling to take. Carbon pricing could reduce mitigation costs substantially compared with ramping up the current patchwork of regulatory instruments. Nonetheless, a mix of policies is justified and technology-specific approaches may be required. It is particularly important to step up mitigation finance to developing countries, where emissions abatement is relatively cheap
    corecore