31 research outputs found

    Treatment with 5-Fluorouracil and Celecoxib Displays Synergistic Regression of Ultraviolet Light B-Induced Skin Tumors

    Get PDF
    Standard chemotherapeutic agents used for the treatment of pre-cancerous skin lesions and non-melanoma skin cancers are not completely effective. Several studies have suggested that repeated inflammatory sunburn reactions, which include the induction of cyclooxygenase-2 (COX-2) and the subsequent production of prostaglandins, play a role in skin cancer development. COX-2 inhibition has been demonstrated to be a potent means of preventing skin cancer development in mice; however, COX-2 inhibitors alone are not effective as chemotherapeutic agents. Data in a variety of cancer types suggest greater efficacy in treating tumors with combination chemotherapies. Therefore, we hypothesized that a combination of the chemotherapeutic agent 5-fluorouracil (5-FU) and the COX-2 inhibitor and anti-inflammatory drug celecoxib would act synergistically to regress tumors in a murine model of ultraviolet light B- (UVB-) induced carcinogenesis. We found that topical treatment with 5-FU and celecoxib together was up to 70% more effective in reducing the number of UVB-induced skin tumors than 5-FU treatment alone. Our data suggest that more effective chemotherapy regimens can be developed to treat the millions of pre-cancerous and cancerous skin lesions that arise every year, which could ultimately lead to a significant reduction in costs and cosmetic defects (scarring) associated with surgical interventions

    Blockade of Mast Cell Activation Reduces Cutaneous Scar Formation

    Get PDF
    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1a, IL-1b, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase b1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound

    Sequence- and target-independent angiogenesis suppression by siRNA via TLR3

    Get PDF
    Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro- and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-α/β activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-γ and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3–RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world’s population, and that siRNAs might induce unanticipated vascular or immune effects

    Inflammation as an orchestrator of cutaneous scar formation: a review of the literature

    No full text
    Inflammation is a key phase in the cutaneous wound repair process. The activation of inflammatory cells is critical for preventing infection in contaminated wounds and results in the release of an array of mediators, some of which stimulate the activity of keratinocytes, endothelial cells, and fibroblasts to aid in the repair process. However, there is an abundance of data suggesting that the strength of the inflammatory response early in the healing process correlates directly with the amount of scar tissue that will eventually form. This review will summarize the literature related to inflammation and cutaneous scar formation, highlight recent discoveries, and discuss potential treatment modalities that target inflammation to minimize scarring

    Multiple Roles for VEGF in Non-Melanoma Skin Cancer: Angiogenesis and Beyond

    Get PDF
    Vascular endothelial growth factor (VEGF) is known to play a critical role in the development of non-melanoma skin cancers. VEGF is a potent pro-angiogenic factor and it is elevated in mouse and human skin tumors. The use of transgenic and knockout mice has shown that VEGF is essential for tumor development in multiple models of skin carcinogenesis and, until recently, the mechanism of action has been primarily attributed to the induction of angiogenesis. However, additional roles for VEGF have now been discovered. Keratinocytes can respond directly to VEGF, which could influence skin carcinogenesis by altering proliferation, survival, and stemness. In vivo studies have shown that loss of epidermal VEGFR-1 or neuropillin-1 inhibits carcinogenesis, indicating that VEGF can directly affect tumor cells. Additionally, VEGF has been shown to promote tumor growth by recruiting macrophages to skin tumors, which likely occurs through VEGFR-1. Overall, these new studies show that VEGF carries out functions beyond its well-established effects on angiogenesis and highlight the need to consider these alternative activities when developing new treatments for non-melanoma skin cancer

    A Review of the Evidence for and against a Role for Mast Cells in Cutaneous Scarring and Fibrosis

    No full text
    Scars are generated in mature skin as a result of the normal repair process, but the replacement of normal tissue with scar tissue can lead to biomechanical and functional deficiencies in the skin as well as psychological and social issues for patients that negatively affect quality of life. Abnormal scars, such as hypertrophic scars and keloids, and cutaneous fibrosis that develops in diseases such as systemic sclerosis and graft-versus-host disease can be even more challenging for patients. There is a large body of literature suggesting that inflammation promotes the deposition of scar tissue by fibroblasts. Mast cells represent one inflammatory cell type in particular that has been implicated in skin scarring and fibrosis. Most published studies in this area support a pro-fibrotic role for mast cells in the skin, as many mast cell-derived mediators stimulate fibroblast activity and studies generally indicate higher numbers of mast cells and/or mast cell activation in scars and fibrotic skin. However, some studies in mast cell-deficient mice have suggested that these cells may not play a critical role in cutaneous scarring/fibrosis. Here, we will review the data for and against mast cells as key regulators of skin fibrosis and discuss scientific gaps in the field

    Macrophages in Healing Wounds: Paradoxes and Paradigms

    No full text
    Macrophages are prominent cells in normally healing adult skin wounds, yet their exact functions and functional significance to healing outcomes remain enigmatic. Many functional attributes are ascribed to wound macrophages, including host defense and support of the proliferation of new tissue to replace that lost by injury. Indeed, the depletion of macrophages is unmistakably detrimental to normal skin healing in adult mammals. Yet in certain systems, dermal wounds seem to heal well with limited or even no functional macrophages, creating an apparent paradox regarding the function of this cell in wounds. Recent advances in our understanding of wound macrophage phenotypes, along with new information about cellular plasticity in wounds, may provide some explanation for the apparently contradictory findings and suggest new paradigms regarding macrophage function in wounds. Continued study of this remarkable cell is needed to develop effective therapeutic options to improve healing outcomes

    Pre-emptive priming of human skin improves cutaneous scarring and is superior to immediate and delayed topical anti-scarring treatment post-wounding: a double-blind randomised placebo-controlled clinical trial

    No full text
    The concept of pre-emptive priming of skin pre-surgery offers a novel approach in optimizing cutaneous scarring outcome. We previously showed an anti-scarring topical (epigallocatechin-3-gallate (EGCG)) is effective in improving skin scarring when applied post-surgery. The objective was to deliver an active compound at the optimal time in order to maximize its impact and improve cutaneous scarring. Therefore, pre-emptive application of anti-scarring topical pre-surgery compared with post-surgery can potentially be superior on scarring outcome. This double-blinded randomized placebo-controlled trial compares the effects of pre-emptive priming of skin with an anti-scarring topical pre-surgery versus post-surgery. Healthy volunteers (n = 40) were split into 4-groups; each undergoing different modes of application versus placebo: Group-1 = priming (7Days) pre-injury, Group-2 = priming (3D) pre-injury, Group-3 = immediate (0D) day-of-injury, Group-4 = delayed application (14D) post-injury. Excisional skin-biopsies in upper-arms were evaluated weekly with multiple quantitative devices over 8-weeks. Histological, immunohistochemical, mRNA sequencing and QRT-PCR studies were performed on tissue-biopsies. EGCG reduced mast cells at weeks-4 and 8 by gene and protein analyses (p < 0.01). Group 1 was superior to other groups (p < 0.01) in both clinical (blood flow) and laboratory parameters (elastin and immune marker expression). Additionally, there was down-regulation of angiogenic-markers by mRNA-sequencing and of CD31 and VEGF-A at weeks-4 and 8 (p < 0.01) by immunohistochemistry and at week-4 (p < 0.05) by QRT-PCR. EGCG increased antioxidant levels (HO-1) at week-4 (p < 0.01) plus elastin at week-8 (p < 0.01). In conclusion, pre-emptive priming of skin pre-injury has significant beneficial effects on surgically induced skin scarring shown by reducing mast cells, blood flow and angiogenesis plus increasing elastin content. This clinical trial was registered with ISRCTN (ISRCTN70155584)
    corecore