11 research outputs found

    Complete Genome Sequence of Staphylococcus epidermidis ATCC 12228 Chromosome and Plasmids Generated by Long-Read Sequencing

    Get PDF
    Staphylococcus epidermidis ATCC 12228 was sequenced using a long-read method to generate a complete genome sequence, including some plasmid sequences. Some differences from the previously generated short-read sequence of this nonpathogenic and non-biofilm-forming strain were noted. The assembly size was 2,570,371 bp with a total G+C% content of 32.08%

    Genome Sequences for Three Strains of Kocuria rosea, Including the Type Strain

    Get PDF
    Genomes from three strains of Kocuria rosea were sequenced. K. rosea ATCC 186, the type strain, was 3,958,612 bp in length with a total G+C content of 72.70%. When assembled, K. rosea ATCC 516 was 3,862,128 bp with a 72.82% G+C content. K. rosea ATCC 49321 was 4,018,783 bp in size with a 72.49% G+C content

    A Genome Sequence of Oceanimonas doudoroffii ATCC 27123T

    Get PDF
    Oceanimonas doudoroffii ATCC 27123T is an obligately aerobic Gram-negative rod of the class Gammaproteobacteria. It was first isolated from surface seawater off the coast of Oahu, HI, USA, in 1972. The predicted genome size is 3,832,938 bp (G+C content, 60.03%), which contains 3,524 predicted coding sequences

    Draft Genome Sequence of the Marine Bacterium Oceanimonas baumannii ATCC 700832T

    Get PDF
    The aerobic phenol-degrading Gram-negative rod Oceanimonas baumannii ATCC 700832T was first isolated from estuary mud from the River Wear, United Kingdom, in 1983. Information on the draft genome sequence for O. baumannii ATCC 700832T is included in this announcement. The predicted genome size is 3,809,332 bp, with 55.88% G+C content

    Draft Genome Sequence of the Salt Water Bacterium Oceanospirillum linum ATCC 11336T

    Get PDF
    Oceanospirillum linum ATCC 11336T is an aerobic, bipolar-tufted gammaproteobacterium first isolated in the Long Island Sound in the 1950s. This announcement offers a genome sequence for O. linum ATCC 11336T, which has a predicted genome size of 3,782,189 bp (49.13% G+C content) containing 3,540 genes and 3,361 coding sequences

    Genome Sequencing of a Marine Spirillum, Oceanospirillum multiglobuliferum ATCC 33336T, from Japan

    Get PDF
    Oceanospirillum multiglobuliferum ATCC 33336T is a motile gammaproteobacterium with bipolar tufted flagella, noted for its low salt tolerance compared to other marine spirilla. This strain was originally isolated from the putrid infusions of Crassostrea gigas near Hiroshima, Japan. This paper presents a draft genome sequence for O. multiglobuliferum ATCC 33336T

    Draft Genome Sequence of the Psychrotolerant Bacterium Kurthia sibirica ATCC 49154T

    Get PDF
    The aerobic, Gram-positive, psychrotolerant bacterium Kurthia sibirica was first isolated from the stomach and intestinal contents of the Magadan mammoth recovered from the permafrost in eastern Siberia in 1977. K. sibirica was sequenced, and the predicted genome size is 3,496,665 bp, with 36.42% G+C content

    Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle

    Get PDF
    Abstract Background Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set–point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. Results We quantified anti–p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni’s corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25−50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). Conclusions Data obtained represent a step forward to understand the biology of BLV–bovine interaction, and provide genetic information potentially applicable to selective breeding programs
    corecore