60 research outputs found

    Citation models and research evaluation

    Full text link
    Citations in science are being studied from several perspectives. On the one hand, there are approaches such as scientometrics and the science of science, which take a more quantitative perspective. In this chapter I briefly review some of the literature on citations, citation distributions and models of citations. These citations feature prominently in another part of the literature which is dealing with research evaluation and the role of metrics and indicators in that process. Here I briefly review part of the discussion in research evaluation. This also touches on the subject of how citations relate to peer review. Finally, I try to integrate the two literatures with the aim of clarifying what I believe the two can learn from each other. The fundamental problem in research evaluation is that research quality is unobservable. This has consequences for conclusions that we can draw from quantitative studies of citations and citation models. The term "indicators" is a relevant concept in this context, which I try to clarify. Causality is important for properly understanding indicators, especially when indicators are used in practice: when we act on indicators, we enter causal territory. Even when an indicator might have been valid, through its very use, the consequences of its use may invalidate it. By combining citation models with proper causal reasoning and acknowledging the fundamental problem about unobservable research quality, we may hope to make progress.Comment: This is a draft. The final version will be available in Handbook of Computational Social Science edited by Taha Yasseri, forthcoming 2023, Edward Elgar Publishing Lt

    Inferring the causal effect of journals on citations

    Get PDF
    Articles in high-impact journals are, on average, more frequently cited. But are they cited more often because those articles are somehow more "citable"? Or are they cited more often simply because they are published in a high-impact journal? Although some evidence suggests the latter, the causal relationship is not clear. We here compare citations of preprints to citations of the published version to uncover the causal mechanism. We build on an earlier model of citation dynamics to infer the causal effect of journals on citations. We find that high-impact journals select articles that tend to attract more citations. At the same time, we find that high-impact journals augment the citation rate of published articles. Our results yield a deeper understanding of the role of journals in the research system. The use of journal metrics in research evaluation has been increasingly criticized in recent years and article-level citations are sometimes suggested as an alternative. Our results show that removing impact factors from evaluation does not negate the influence of journals. This insight has important implications for changing practices of research evaluation

    Significant Scales in Community Structure

    Get PDF
    Many complex networks show signs of modular structure, uncovered by community detection. Although many methods succeed in revealing various partitions, it remains difficult to detect at what scale some partition is significant. This problem shows foremost in multi-resolution methods. We here introduce an efficient method for scanning for resolutions in one such method. Additionally, we introduce the notion of "significance" of a partition, based on subgraph probabilities. Significance is independent of the exact method used, so could also be applied in other methods, and can be interpreted as the gain in encoding a graph by making use of a partition. Using significance, we can determine "good" resolution parameters, which we demonstrate on benchmark networks. Moreover, optimizing significance itself also shows excellent performance. We demonstrate our method on voting data from the European Parliament. Our analysis suggests the European Parliament has become increasingly ideologically divided and that nationality plays no role.Comment: To appear in Scientific Report

    Detecting communities using asymptotical Surprise

    Full text link
    Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity, and may find communities where modularity fails to discern any structure

    Narrow scope for resolution-limit-free community detection

    Full text link
    Detecting communities in large networks has drawn much attention over the years. While modularity remains one of the more popular methods of community detection, the so-called resolution limit remains a significant drawback. To overcome this issue, it was recently suggested that instead of comparing the network to a random null model, as is done in modularity, it should be compared to a constant factor. However, it is unclear what is meant exactly by "resolution-limit-free", that is, not suffering from the resolution limit. Furthermore, the question remains what other methods could be classified as resolution-limit-free. In this paper we suggest a rigorous definition and derive some basic properties of resolution-limit-free methods. More importantly, we are able to prove exactly which class of community detection methods are resolution-limit-free. Furthermore, we analyze which methods are not resolution-limit-free, suggesting there is only a limited scope for resolution-limit-free community detection methods. Finally, we provide such a natural formulation, and show it performs superbly

    Metrics and peer review agreement at the institutional level

    Full text link
    In the past decades, many countries have started to fund academic institutions based on the evaluation of their scientific performance. In this context, peer review is often used to assess scientific performance. Bibliometric indicators have been suggested as an alternative. A recurrent question in this context is whether peer review and metrics tend to yield similar outcomes. In this paper, we study the agreement between bibliometric indicators and peer review at the institutional level. Additionally, we also quantify the internal agreement of peer review at the institutional level. We find that the level of agreement is generally higher at the institutional level than at the publication level. Overall, the agreement between metrics and peer review is on par with the internal agreement among two reviewers for certain fields of science. This suggests that for some fields, bibliometric indicators may possibly be considered as an alternative to peer review for national research assessment exercises

    Community detection in networks with positive and negative links

    Full text link
    Detecting communities in complex networks accurately is a prime challenge, preceding further analyses of network characteristics and dynamics. Until now, community detection took into account only positively valued links, while many actual networks also feature negative links. We extend an existing Potts model to incorporate negative links as well, resulting in a method similar to the clustering of signed graphs, as dealt with in social balance theory, but more general. To illustrate our method, we applied it to a network of international alliances and disputes. Using data from 1993--2001, it turns out that the world can be divided into six power blocs similar to Huntington's civilizations, with some notable exceptions.Comment: 7 pages, 2 figures. Revised versio

    Router-level community structure of the Internet Autonomous Systems

    Get PDF
    The Internet is composed of routing devices connected between them and organized into independent administrative entities: the Autonomous Systems. The existence of different types of Autonomous Systems (like large connectivity providers, Internet Service Providers or universities) together with geographical and economical constraints, turns the Internet into a complex modular and hierarchical network. This organization is reflected in many properties of the Internet topology, like its high degree of clustering and its robustness. In this work, we study the modular structure of the Internet router-level graph in order to assess to what extent the Autonomous Systems satisfy some of the known notions of community structure. We show that the modular structure of the Internet is much richer than what can be captured by the current community detection methods, which are severely affected by resolution limits and by the heterogeneity of the Autonomous Systems. Here we overcome this issue by using a multiresolution detection algorithm combined with a small sample of nodes. We also discuss recent work on community structure in the light of our results

    Perspectives on scientific error

    Get PDF
    Theoretical arguments and empirical investigations indicate that a high proportion of published findings do not replicate and are likely false. The current position paper provides a broad perspective on scientific error, which may lead to replication failures. This broad perspective focuses on reform history and on opportunities for future reform. We organize our perspective along four main themes: institutional reform, methodological reform, statistical reform and publishing reform. For each theme, we illustrate potential errors by narrating the story of a fictional researcher during the research cycle. We discuss future opportunities for reform. The resulting agenda provides a resource to usher in an era that is marked by a research culture that is less error-prone and a scientific publication landscape with fewer spurious findings
    • …
    corecore