96 research outputs found

    Adding attenuation corrected images in myocardial perfusion imaging reduces the need for a rest study.

    Get PDF
    The American Society of Nuclear Cardiology and the Society of Nuclear Medicine conclude that incorporation of attenuation corrected (AC) images in myocardial perfusion scintigraphy (MPS) will improve diagnostic accuracy. The aim was to investigate the value of adding AC stress-only images for the decision whether a rest study is necessary or not

    Referring physicians underestimate the extent of abnormalities in final reports from myocardial perfusion imaging

    Get PDF
    BACKGROUND: It is important that referring physicians and other treating clinicians properly understand the final reports from diagnostic tests. The aim of the study was to investigate whether referring physicians interpret a final report for a myocardial perfusion scintigraphy (MPS) test in the same way that the reading nuclear medicine physician intended. METHODS: After viewing final reports containing only typical clinical verbiage and images, physicians in nuclear medicine and referring physicians (physicians in cardiology, internal medicine, and general practitioners) independently classified 60 MPS tests for the presence versus absence of ischemia/infarction according to objective grades of 1–5 (1 = No ischemia/infarction, 2 = Probably no ischemia/infarction 3 = Equivocal, 4 = Probable ischemia/infarction, and 5 = Certain ischemia/infarction). When ischemia and/or infarction were thought to be present in the left ventricle, all physicians were also asked to mark the involved segments based on the 17-segment model. RESULTS: There was good diagnostic agreement between physicians in nuclear medicine and referring physicians when assessing the general presence versus absence of both ischemia and infarction (median squared kappa coefficient of 0.92 for both). However, when using the 17-segment model, compared to the physicians in nuclear medicine, 12 of 23 referring physicians underestimated the extent of ischemic area while 6 underestimated and 1 overestimated the extent of infarcted area. CONCLUSIONS: Whereas referring physicians gain a good understanding of the general presence versus absence of ischemia and infarction from MPS test reports, they often underestimate the extent of any ischemic or infarcted areas. This may have adverse clinical consequences and thus the language in final reports from MPS tests might be further improved and standardized

    Perfusion vector - a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients

    Get PDF
    The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method for further assisting the visual interpretation and to test the concept using simulated MPS images as well as patients

    Bone scan index and progression-free survival data for progressive metastatic castration-resistant prostate cancer patients who received ODM-201 in the ARADES multicentre study

    Get PDF
    Background: ODM-201, a new-generation androgen receptor inhibitor, has shown clinical efficacy in prostate cancer (PCa). Quantitative methods are needed to accurately assess changes in bone as a measurement of treatment response. The Bone Scan Index (BSI) reflects the percentage of skeletal mass a given tumour affects. Objective: To evaluate the predictive value of the BSI in metastatic castration-resistant PCa (mCRPC) patients undergoing treatment with ODM-201. Design, setting, and participants: From a total of 134 mCRPC patients who participated in the Activity and Safety of ODM-201 in Patients with Progressive Metastatic Castration-resistant Prostate Cancer clinical trial and received ODM-201, we retrospectively selected all those patients who had bone scan image data of sufficient quality to allow for both baseline and 12-wk follow-up BSI-assessments (n = 47). We used the automated EXINI bone BSI software (EXINI Diagnostics AB, Lund, Sweden) to obtain BSI data. Outcome measurements and statistical analysis: We used the Cox proportional hazards model and Kaplan-Meier estimates to investigate the association among BSI, traditional clinical parameters, disease progression, and radiographic progression-free survival (rPFS). Results and limitations: In the BSI assessments, at follow-up, patients who had a decrease or at most a 20% increase from BSI baseline had a significantly longer time to progression in bone (median not reached vs 23 wk, hazard ratio [HR]: 0.20; 95% confidence interval [CI], 0.07–0.58; p = 0.003) and rPFS (median: 50 wk vs 14 wk; HR: 0.35; 95% CI, 0.17–0.74; p = 0.006) than those who had a BSI increase >20% during treatment. Conclusions: The on-treatment change in BSI was significantly associated with rPFS in mCRPC patients, and an increase >20% in BSI predicted reduced rPFS. BSI for quantification of bone metastases may be a valuable complementary method for evaluation of treatment response in mCRPC patients. Patient summary: An increase in Bone Scan Index (BSI) was associated with shorter time to disease progression in patients treated with ODM-201. BSI may be a valuable method of complementing treatment response evaluation in patients with advanced prostate cancer

    Area of ischemia assessed by physicians and software packages from myocardial perfusion scintigrams.

    Get PDF
    The European Society of Cardiology recommends that patients with >10% area of ischemia should receive revascularization. We investigated inter-observer variability for the extent of ischemic defects reported by different physicians and by different software tools, and if inter-observer variability was reduced when the physicians were provided with a computerized suggestion of the defects

    Small average differences in attenuation corrected images between men and women in myocardial perfusion scintigraphy: a novel normal stress database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The American Society of Nuclear Cardiology and the Society of Nuclear Medicine state that incorporation of attenuation-corrected (AC) images in myocardial perfusion scintigraphy (MPS) will improve image quality, interpretive certainty, and diagnostic accuracy. However, commonly used software packages for MPS usually include normal stress databases for non-attenuation corrected (NC) images but not for attenuation-corrected (AC) images. The aim of the study was to develop and compare different normal stress databases for MPS in relation to NC vs. AC images, male vs. female gender, and presence vs. absence of obesity. The principal hypothesis was that differences in mean count values between men and women would be smaller with AC than NC images, thereby allowing for construction and use of gender-independent AC stress database.</p> <p>Methods</p> <p>Normal stress perfusion databases were developed with data from 126 male and 205 female patients with normal MPS. The following comparisons were performed for all patients and separately for normal weight vs. obese patients: men vs. women for AC; men vs. women for NC; AC vs. NC for men; and AC vs. NC for women.</p> <p>Results</p> <p>When comparing AC for men vs. women, only minor differences in mean count values were observed, and there were no differences for normal weight vs. obese patients. For all other analyses major differences were found, particularly for the inferior wall.</p> <p>Conclusions</p> <p>The results support the hypothesis that it is possible to use not only gender independent but also weight independent AC stress databases.</p

    Reporting nuclear cardiology: a joint position paper by the European Association of Nuclear Medicine (EANM) and the European Association of Cardiovascular Imaging (EACVI)

    Get PDF
    The report of an imaging procedure is a critical component of an examination, being the final and often the only communication from the interpreting physician to the referring or treating physician. Very limited evidence and few recommendations or guidelines on reporting imaging studies are available; therefore, an European position statement on how to report nuclear cardiology might be useful. The current paper combines the limited existing evidence with expert consensus, previously published recommendations as well as current clinical practices. For all the applications discussed in this paper (myocardial perfusion, viability, innervation, and function as acquired by single photon emission computed tomography and positron emission tomography or hybrid imaging), headings cover laboratory and patient demographics, clinical indication, tracer administration and image acquisition, findings, and conclusion of the report. The statement also discusses recommended terminology in nuclear cardiology, image display, and preliminary reports. It is hoped that this statement may lead to more attention to create well-written and standardized nuclear cardiology reports and eventually lead to improved clinical outcom

    Avledningssystem

    No full text
    • …
    corecore