1,310 research outputs found

    Observational evidence for buffeting induced kink waves in solar magnetic elements

    Full text link
    The role of diffuse photospheric magnetic elements in the energy budget of the upper layers of the Sun's atmosphere has been the recent subject of many studies. This was made possible by the availability of high temporal and spatial resolution observations of the solar photosphere, allowing large numbers of magnetic elements to be tracked to study their dynamics. In this work we exploit a long temporal series of seeing-free magnetograms of the solar photosphere to study the effect of the turbulent convection in the excitation of kink oscillations in magnetic elements. We make use of the empirical mode decomposition technique (EMD) in order to study the transverse oscillations of several magnetic flux tubes. This technique permits the analysis of non-stationary time series like those associated to the horizontal velocities of these flux tubes which are continuously advected and dispersed by granular flows. Our primary findings reveal the excitation of low frequency modes of kink oscillations, which are sub-harmonics of a fundamental mode with a 7.6±0.27.6 \pm 0.2 minute periodicity. These results constitute a strong case for observational proof of the excitation of kink waves by the buffeting of the convection cells in the solar photosphere, and are discussed in light of their possible role in the energy budget of the upper Sun's atmosphere.Comment: A&A accepte

    The evolution of the spatially-resolved metal abundance in galaxy clusters up to z=1.4

    Get PDF
    We present the combined analysis of the metal content of 83 objects in the redshift range 0.09-1.39, and spatially-resolved in the 3 bins (0-0.15, 0.15-0.4, >0.4) R500, as obtained with similar analysis using XMM-Newton data in Leccardi & Molendi (2008) and Baldi et al. (2012). We use the pseudo-entropy ratio to separate the Cool-Core (CC) cluster population, where the central gas density tends to be relatively higher, cooler and more metal rich, from the Non-Cool-Core systems. The average, redshift-independent, metal abundance measured in the 3 radial bins decrease moving outwards, with a mean metallicity in the core that is even 3 (two) times higher than the value of 0.16 times the solar abundance in Anders & Grevesse (1989) estimated at r>0.4 R500 in CC (NCC) objects. We find that the values of the emission-weighted metallicity are well-fitted by the relation Z(z)=Z0(1+z)−γZ(z) = Z_0 (1+z)^{-\gamma} at given radius. A significant scatter, intrinsic to the observed distribution and of the order of 0.05-0.15, is observed below 0.4 R500. The nominal best-fit value of γ\gamma is significantly different from zero in the inner cluster regions (γ=1.6±0.2\gamma = 1.6 \pm 0.2) and in CC clusters only. These results are confirmed also with a bootstrap analysis, which provides a still significant negative evolution in the core of CC systems (P>99.9 per cent). No redshift-evolution is observed when regions above the core (r > 0.15 R500) are considered. A reasonable good fit of both the radial and redshift dependence is provided from the functional form Z(r,z)=Z0(1+(r/0.15R500)2)−β(1+z)−γZ(r,z)=Z_0 (1+(r/0.15 R500)^2)^{-\beta} (1+z)^{-\gamma}, with (Z0,β,γ)=(0.83±0.13,0.55±0.07,1.7±0.6)(Z_0, \beta, \gamma) = (0.83 \pm 0.13, 0.55 \pm 0.07, 1.7 \pm 0.6) in CC clusters and (0.39±0.04,0.37±0.15,0.5±0.5)(0.39 \pm 0.04, 0.37 \pm 0.15, 0.5 \pm 0.5) for NCC systems. Our results represent the most extensive study of the spatially-resolved metal distribution in the cluster plasma as function of redshift.Comment: 5 pages. Research Note accepted for publication in A&

    A Chandra archival study of the temperature and metal abundance profiles in hot Galaxy Clusters at 0.1 < z < 0.3

    Get PDF
    We present the analysis of the temperature and metallicity profiles of 12 galaxy clusters in the redshift range 0.1--0.3 selected from the Chandra archive with at least ~20,000 net ACIS counts and kT>6 keV. We divide the sample between 7 Cooling-Core (CC) and 5 Non-Cooling-Core (NCC) clusters according to their central cooling time. We find that single power-laws can describe properly both the temperature and metallicity profiles at radii larger than 0.1 r_180 in both CC and NCC systems, showing the NCC objects steeper profiles outwards. A significant deviation is only present in the inner 0.1 r_180. We perform a comparison of our sample with the De Grandi & Molendi BeppoSAX sample of local CC and NCC clusters, finding a complete agreement in the CC cluster profile and a marginally higher value (at ~1sigma) in the inner regions of the NCC clusters. The slope of the power-law describing kT(r) within 0.1 r_180 correlates strongly with the ratio between the cooling time and the age of the Universe at the cluster redshift, being the slope >0 and tau_c/tau_age<=0.6 in CC systems.Comment: 12 pages, 6 figures, Accepted for publication by the Astrophysical Journa

    Where does the gas fueling star formation in BCGs originate?

    Get PDF
    We investigate the relationship between X-ray cooling and star formation in brightest cluster galaxies (BCGs). We present an X-ray spectral analysis of the inner regions, 10-40 kpc, of six nearby cool core clusters (z<0.35) observed with Chandra ACIS. This sample is selected on the basis of the high star formation rate (SFR) observed in the BCGs. We restrict our search for cooling gas to regions that are roughly cospatial with the starburst. We fit single- and multi-temperature mkcflow models to constrain the amount of isobarically cooling intracluster medium (ICM). We find that in all clusters, below a threshold temperature ranging between 0.9 and 3 keV, only upper limits can be obtained. In four out of six objects, the upper limits are significantly below the SFR and in two, namely A1835 and A1068, they are less than a tenth of the SFR. Our results suggests that a number of mechanisms conspire to hide the cooling signature in our spectra. In a few systems the lack of a cooling signature may be attributed to a relatively long delay time between the X-ray cooling and the star burst. However, for A1835 and A1068, where the X-ray cooling time is shorter than the timescale of the starburst, a possible explanation is that the region where gas cools out of the X-ray phase extends to very large radii, likely beyond the core of these systems.Comment: to appear in A&

    Apparent high metallicity in 3-4 keV galaxy clusters: the inverse iron-bias in action in the case of the merging cluster Abell 2028

    Get PDF
    Recent work based on a global measurement of the ICM properties find evidence for an increase of the iron abundance in galaxy clusters with temperature around 2-4 keV up to a value about 3 times larger than that typical of very hot clusters. We have started a study of the metal distribution in these objects from the sample of Baumgartner et al. (2005), aiming at resolving spatially the metal content of the ICM. We report here on a 42ks XMM observation of the first object of the sample, the cluster Abell 2028. The XMM observation reveals a complex structure of the cluster over scale of 300 kpc, showing an interaction between two sub-clusters in cometary-like configurations. At the leading edges of the two substructures cold fronts have been detected. The core of the main subcluster is likely hosting a cool corona. We show that a one-component fit for this region returns a biased high metallicity. This inverse iron bias is due to the behavior of the fitting code in shaping the Fe-L complex. In presence of a multi-temperature structure of the ICM, the best-fit metallicity is artificially higher when the projected spectrum is modeled with a single temperature component and it is not related to the presence of both Fe-L and Fe-K emission lines in the spectrum. After accounting for the bias, the overall abundance of the cluster is consistent with the one typical of hotter, more massive clusters. We caution the interpretation of high abundances inferred when fitting a single thermal component to spectra derived from relatively large apertures in 3-4 keV clusters, because the inverse iron bias can be present. Most of the inferences trying to relate high abundances in 3-4 keV clusters to fundamental physical processes will likely have to be revised.Comment: 13 pages, 8 figures.Accepted for publication in Astronomy and Astrophysycs. Minor changes to match published versio

    New XMM-Newton observation of the Phoenix cluster: properties of the cool core

    Get PDF
    (Abridged) We present a spectral analysis of a deep (220 ks) XMM-Newton observation of the Phoenix cluster (SPT-CL J2344-4243), which we also combine with Chandra archival ACIS-I data. We extract CCD and RGS X-ray spectra from the core region to search for the signature of cold gas, and constrain the mass deposition rate in the cooling flow which is thought to be responsible of the massive star formation episode observed in the BCG. We find an average mass deposition rate of M˙=620(−190+200)stat(−50+150)systM⊙\dot M = 620 (-190 +200)_{stat} (-50 +150)_{syst} M_\odot/yr in the temperature range 0.3-3.0 keV from MOS data. A temperature-resolved analysis shows that a significant amount of gas is deposited only above 1.8 keV, while upper limits of the order of hundreds of M⊙M_\odot/yr can be put in the 0.3-1.8 keV temperature range. From pn data we obtain M˙=210(−80+85)stat(−35+60)systM⊙\dot M = 210 (-80 +85)_{stat} ( -35 +60)_{syst} M_\odot/yr, and the upper limits from the temperature-resolved analysis are typically a factor of 3 lower than MOS data. In the RGS spectrum, no line emission from ionization states below Fe XXIII is seen above 12A˚12 \AA, and the amount of gas cooling below ∼3\sim 3 keV has a best-fit value M˙=122−122+343\dot M = 122_{-122}^{+343} M⊙M_{\odot}/yr. In addition, our analysis of the FIR SED of the BCG based on Herschel data provides SFR=(530±50)M⊙SFR = (530 \pm 50) M_\odot/yr, significantly lower than previous estimates by a factor 1.5. Current data are able to firmly identify substantial amount of cooling gas only above 1.8 keV in the core of the Phoenix cluster. While MOS data analysis is consistent with values as high as M˙∼1000\dot M \sim 1000 within 1σ1 \sigma, pn data provide M˙<500M⊙\dot M < 500 M_\odot yr−1^{-1} at 3σ3\sigma c.l. at temperature below 1.8 keV. At present, this discrepancy cannot be explained on the basis of known calibration uncertainties or other sources of statistical noise.Comment: A&A in press, typos corrected, revised text according to published versio

    Demography of obscured and unobscured AGN: prospects for a Wide Field X-ray Telescope

    Full text link
    We discuss some of the main open issues in the evolution of Active Galactic Nuclei which can be solved by the sensitive, wide area surveys to be performed by the proposed Wide Field X-ray Telescope mission.Comment: Proceedings of "The Wide Field X-ray Telescope Workshop", held in Bologna, Italy, Nov. 25-26 2009. To appear in Memorie della Societa' Astronomica Italiana 2010 (arXiv:1010.5889
    • …
    corecore