1,177 research outputs found
Improving the system capacity of broadband services using multiple high-altitude platforms
A method of significantly improving the capacity of high-altitude platform (HAP) communications networks operating in the millimeter-wave bands is presented. It is shown how constellations of HAPs can share a common frequency allocation by exploiting the directionality of the user antenna. The system capacity of such constellations is critically affected by the minimum angular separation of the HAPs and the sidelobe level of the user antenna. For typical antenna beamwidths of approximately 5/spl deg/ an inter-HAP spacing of 4 km is sufficient to deliver optimum performance. The aggregate bandwidth efficiency is evaluated, both theoretically using the Shannon equation, and using practical modulation and coding schemes, for multiple HAP configurations delivering either single or multiple cells. For the user antenna beamwidths used, it is shown that capacity increases are commensurate with the increase in the number of platforms, up to 10 HAPs. For increases beyond this the choice of constellation strategy becomes increasingly important
Optimizing an array of antennas for cellular coverage from a high altitude platform
In a wireless communications network served by a high altitude platform (HAP) the cochannel interference is a function of the antenna beamwidth, angular separation and. sidelobe level. At the millimeter wave frequencies proposed for HAPs, an array of aperture type antennas on the platform is a practicable solution for serving the cells. We present a method for predicting cochannel interference based on curve-fit approximations for radiation patterns of elliptic beams which illuminate cell edges with optimum power, and a means of estimating optimum beamwidths for each cell of a regular hexagonal layout. The method is then applied to a 121 cell architecture. Where sidelobes are modeled As a flat floor at 40-dB below peak directivity, a cell cluster size of four yields carrier-to-interference ratios (CIRs), which vary from 15 dB at cell edges to 27 dB at cell centers. On adopting a cluster size of seven, these figures increase, respectively, to 19 and 30 dB. On reducing the sidelobe level, the. improvement in CIR can be quantified. The method also readily allows for regions of overlapping channel coverage to be shown
Recommended from our members
Topological analysis of the vasculature of angiopoietin-expressing tumours through scale-space tracing
This work describes the topological analysis of the vasculature of tumours. The analysis is performed with a scale-space technique, which traces the centrelines of vessels as topological ridges of the image intensities and then obtains a series of measurements, which are used to compare the vasculatures. Besides the measurements directly associated with the centrelines, the scales obtained allow the estimation of width andthusareacoveredwithvessels. Tumours of SW1222 human colorectal carcinoma xenografts were observed when growing in dorsal skin-fold window chambers in mice. Three variants of the tumours expressing either endogenous levels of angiopoietins (WT) or over-expressing either angiopoietin-1 (Ang-1) or angiopoietin-2 (Ang-2) were assessed with/without vascular targeted therapy. The scale-space technique was able to discriminate between the vasculatures of the three different tumour types prior to treatment. Results also suggested that over-expression of Ang-2 was associated with susceptibility of the tumour vasculature to the vascular disrupting agent, combretastatin A4 phosphate (CA4P). Substantiation of this finding would point to the potential of tumour Ang-2 expression as a predictive bio-marker for response to CA4P
Quantum transport of two-dimensional Dirac fermions in SrMnBi2
We report two-dimensional quantum transport in SrMnBi single crystals.
The linear energy dispersion leads to the unusual nonsaturated linear
magnetoresistance since all Dirac fermions occupy the lowest Landau level in
the quantum limit. The transverse magnetoresistance exhibits a crossover at a
critical field from semiclassical weak-field dependence to the
high-field linear-field dependence. With increase in the temperature, the
critical field increases and the temperature dependence of
satisfies quadratic behavior which is attributed to the Landau level splitting
of the linear energy dispersion. The effective magnetoresistant mobility
cm/Vs is derived. Angular dependent magnetoresistance
and quantum oscillations suggest dominant two-dimensional (2D) Fermi surfaces.
Our results illustrate the dominant 2D Dirac fermion states in SrMnBi and
imply that bulk crystals with Bi square nets can be used to study low
dimensional electronic transport commonly found in 2D materials like graphene.Comment: 5 papges, 4 figure
Two dimensional Dirac fermions and quantum magnetoresistance in CaMnBi
We report two dimensional Dirac fermions and quantum magnetoresistance in
single crystals of CaMnBi. The non-zero Berry's phase, small cyclotron
resonant mass and first-principle band structure suggest the existence of the
Dirac fermions in the Bi square nets. The in-plane transverse magnetoresistance
exhibits a crossover at a critical field from semiclassical weak-field
dependence to the high-field unsaturated linear magnetoresistance ( in 9 T at 2 K) due to the quantum limit of the Dirac fermions. The
temperature dependence of satisfies quadratic behavior, which is
attributed to the splitting of linear energy dispersion in high field. Our
results demonstrate the existence of two dimensional Dirac fermions in
CaMnBi with Bi square nets.Comment: 5 pages, 4 figure
Estradiol, progesterone, testosterone profiles in human follicular fluid and cultured granulosa cells from luteinized pre-ovulatory follicles
BACKGROUND: The production of sex steroids by follicular cells is proposed to be influenced by the maturity of the incumbent oocyte. Thus steroid levels may reflect suitability of an oocyte for IVF. We examined follicular fluids and granulosa cell production of steroid from IVF patients in order to test the relationship between steroid levels and fertilization.
METHODS: Follicular fluid and granulosa cells were extracted from 206 follicles of 35 women undergoing controlled ovarian stimulation. Follicular fluid was assayed for estradiol, progesterone and testosterone. Granulosa cells were cultured from individual follicles and their culture media assayed for production of these hormones after 24 hrs in vitro. Levels of steroids were correlated with follicular diameter, oocyte recovery and subsequent fertilization.
RESULTS: Follicular fluid levels of progesterone were 6100 times higher than that of estradiol, and 16,900 times higher that of testosterone. Despite the size of follicle triggered after controlled luteinization, the levels of progesterone and testosterone were maintained at relatively constant levels (median 98.1 micromoles/L for progesterone, and 5.8 nanomoles/L for testosterone). However, estradiol levels were slightly lower in the larger follicles (follicular diameter 10-15 mm, median 25.3 nanomoles/L; follicles > = 15 mm, median 15.1 nanomoles/L; linear correlation r = -0.47, p < 0.0001). With respect to oocyte recovery, no steroid showed a significant association in follicular fluid levels. Similarly no difference in follicular fluid steroid levels was found for those oocytes that did or did not fertilize. Significant quantities of progesterone were produced by the granulosa cells but production was constant regardless of the size of follicle from which the cells originated. Estradiol levels were only detectable in 10 of 121 cultures examined, and testosterone in none. Interestingly, when an oocyte was present follicular estradiol levels correlated with progesterone levels. However, when absent, follicular estradiol levels correlated with testosterone levels but not with progesterone.
CONCLUSIONS: The principle steroid product of luteinized pre-ovulatory granulosa is progesterone, a differentiation triggered by the gonadotropin surge. However, absolute steroid levels are associated with follicular size, not oocyte maturation/ability to fertilize
Multiband effects on beta-FeSe single crystals
We present the upper critical fields Hc2(T) and Hall effect in beta-FeSe
single crystals. The Hc2(T) increases as the temperature is lowered for field
applied parallel and perpendicular to (101), the natural growth facet of the
crystal. The Hc2(T) for both field directions and the anisotropy at low
temperature increase under pressure. Hole carriers are dominant at high
magnetic fields. However, the contribution of electron-type carriers is
significant at low fields and low temperature. Our results show that multiband
effects dominate Hc2(T) and electronic transport in the normal state
- …