9 research outputs found

    Deconstructing dams and disease: predictions for salmon disease risk following Klamath River dam removals

    Get PDF
    The health of fish populations and the river systems they inhabit have broad ecological, cultural, recreational, and economic relevance. This is exemplified by the iconic anadromous salmonid fishes native to the West Coast of North America. Salmon populations have been constrained since the mid nineteenth century by dam construction and water reallocation. In the Klamath River (Oregon and California, USA), a series of dams built in the early-mid 20th century cut the basin in two and blocked anadromous fish access to more than 600 river kilometers. This dramatic loss of habitat, coupled with infectious diseases and resulting epizootics, have impacted the wellbeing of these salmonid populations. In 2023-2024, the Klamath River will undergo the largest river restoration project in US history. Removal of the four lowermost dams will cause profound physical changes to the river, including flow, water temperature, and channel geomorphology. The dam removals will reconnect the lower and upper portions of the basin, and provide fish passage after a century of segregation. Reestablishment of upstream and downstream fish movements will also alter the occupancy and abundance of the salmonid hosts and their pathogens. The increased habitat availability and longer migration routes will increase duration of pathogen exposure and potential impacts on juvenile survival and adult pre-spawn mortality. However, restoration of more natural flow and sediment regimes will decrease overall fish disease risk by disrupting complex parasite life cycles. To better understand these multifarious, competing factors, we review the salmonid species in the Klamath River, and provide an overview of their historical pathogen challenges and associated diseases and use this as a framework to predict the effects of dam removals on disease dynamics. Our review and predictions are a synthesis of expertise from tribal biologists, fish health specialists and fish biologists, many of whom have lived and worked on the Klamath River for decades. We conclude with recommendations for expansion of current pathogen monitoring and research efforts to measure changes in host-pathogen dynamics basin-wide

    Distribution and Abundance of Freshwater Mussels in the mid Klamath Subbasin, California

    Get PDF
    19 pagesFreshwater mussels (Bivalvia: Unionoida) are an integral component of freshwater ecosystems. Historically, they were an important part of the diet and material culture of indigenous peoples, including until recently the Karuk Tribe of California. This study represents the first systematic survey of freshwater mussels in the Klamath River Basin of northwestern California, where little is known about mussel distribution, abundance, habitat associations, or conservation status. We snorkel surveyed 82 sites on the mid Klamath River and sections of nine major tributaries to assess abundance, distribution, and habitat use of mussels at three different spatial scales. We identified all three western North American mussel genera (Margaritifera, Gonidea, and Anodonta) in the Klamath River, with Gonidea abundant and widely distributed within the mainstem, and Anodonta and Margaritifera present in low numbers and restricted in distribution. At the landscape scale we observed a negative relationship between mussel abundance and measures of hydrological variability. At the mesohabitat scale, bank type, channel unit type, and their interaction were important predictors of mussel distribution. At the microhabitat scale, bank type, substrate type, and flow refuge presence were important predictors of mussel distribution. Together, our results suggest the common influence of hydraulics and substrate stability as drivers of mussel distribution in the Klamath, which agrees with the findings of other recent studies of mussel distribution. Our results also illuminate where habitat protection and restoration efforts should be directed within the mid Klamath subbasin to aid in mussel conservation

    Klamath River Thermal Refuge Provides Juvenile Salmon Reduced Exposure to the Parasite <i>Ceratonova shasta</i>

    No full text
    <p>Salmon in the Klamath River of northern California contend with water temperatures that reach stressful and sometimes lethal levels during summer, forcing them to seek thermal refuge at coolwater tributary junctions. During migration, these fish also encounter a range of pathogens that affect their survival. A significant myxozoan parasite, <i>Ceratonova shasta</i>, causes enteronecrosis in salmon, and this disease increases in severity as temperature and parasite dose increase. In complementary laboratory and field studies, we examined how the use of a thermal refuge (an area at least 2°C colder than the main stem) affects progression of enteronecrosis in juvenile Chinook Salmon <i>Oncorhynchus tshawytscha</i> and Coho Salmon <i>O. kisutch</i>. We compared fish use, water temperature, and <i>C. shasta</i> concentration in a refuge at the Beaver Creek–Klamath River confluence during the summer in 2008 and 2010. Salmonid numbers ranged from 190 to 2,125, and temperatures were 2–8°C cooler than in the main stem. In June and July of 2008, parasite levels in the refuge were lower than in the main stem, where they exceeded 100 spores/L. In 2010, main-stem parasite levels did not exceed 10 spores/L, and levels in the refuge were lower in June. In the laboratory, we compared the effect of fluctuating and constant temperature treatments on mortality rates of Chinook Salmon and Coho Salmon exposed to <i>C. shasta</i>. Under most experimental conditions, fluctuating temperature, within the range experienced by fish using thermal refuges (15.5–21°C), had no significant effect on disease progression compared with a constant midrange temperature (18.5°C) with equivalent degree-day accumulation. We propose that in the Klamath River thermal refuges can function as disease refuges from enteronecrosis by (1) providing areas of decreased <i>C. shasta</i> exposure and/or (2) alleviating disease effects as a result of relatively lower water temperatures. The trend of increasing water temperatures suggests that juvenile salmon will rely even more on these critical habitats in the future.</p> <p>Received October 9, 2015; accepted February 25, 2016 Published online June 22, 2016</p

    Mortality reduction by post-dilution online-haemodiafiltration : A cause-specific analysis

    No full text
    Background. From an individual participant data (IPD) meta-analysis from four randomized controlled trials comparing haemodialysis (HD) with post-dilution online-haemodiafiltration (ol-HDF), previously it appeared that HDF decreases all-cause mortality by 14% (95% confidence interval 25; 1) and fatal cardiovascular disease (CVD) by 23% (39; 3). Significant differences were not found for fatal infections and sudden death. So far, it is unclear, however, whether the reduced mortality risk of HDF is only due to a decrease in CVD events and if so, which CVD in particular is prevented, if compared with HD. Methods. The IPD base was used for the present study. Hazard ratios and 95% confidence intervals for cause-specific mortality overall and in thirds of the convection volume were calculated using the Cox proportional hazard regression models. Annualized mortality and numbers needed to treat (NNT) were calculated as well. Results. Besides 554 patients dying from CVD, fatal infections and sudden death, 215 participants died from 'other causes', such as withdrawal from treatment and malignancies. In this group, the mortality risk was comparable between HD and ol-HDF patients, both overall and in thirds of the convection volume. Subdivision of CVD mortality in fatal cardiac, non-cardiac and unclassified CVD showed that ol-HDF was only associated with a lower risk of cardiac casualties [0.64 (0.61; 0.90)]. Annual mortality rates also suggest that the reduction in CVD death is mainly due to a decrease in cardiac fatalities, including both ischaemic heart disease and congestion. Overall, 32 and 75 patients, respectively, need to be treated by high-volume HDF (HV-HDF) to prevent one all-cause and one CVD death, respectively, per year. Conclusion. The beneficial effect of ol-HDF on all-cause and CVD mortality appears to be mainly due to a reduction in fatal cardiac events, including ischaemic heart disease as well as congestion. In HV-HDF, the NNT to prevent one CVD death is 75 per year

    Mortality reduction by post-dilution online-haemodiafiltration : A cause-specific analysis

    No full text
    Background. From an individual participant data (IPD) meta-analysis from four randomized controlled trials comparing haemodialysis (HD) with post-dilution online-haemodiafiltration (ol-HDF), previously it appeared that HDF decreases all-cause mortality by 14% (95% confidence interval 25; 1) and fatal cardiovascular disease (CVD) by 23% (39; 3). Significant differences were not found for fatal infections and sudden death. So far, it is unclear, however, whether the reduced mortality risk of HDF is only due to a decrease in CVD events and if so, which CVD in particular is prevented, if compared with HD. Methods. The IPD base was used for the present study. Hazard ratios and 95% confidence intervals for cause-specific mortality overall and in thirds of the convection volume were calculated using the Cox proportional hazard regression models. Annualized mortality and numbers needed to treat (NNT) were calculated as well. Results. Besides 554 patients dying from CVD, fatal infections and sudden death, 215 participants died from 'other causes', such as withdrawal from treatment and malignancies. In this group, the mortality risk was comparable between HD and ol-HDF patients, both overall and in thirds of the convection volume. Subdivision of CVD mortality in fatal cardiac, non-cardiac and unclassified CVD showed that ol-HDF was only associated with a lower risk of cardiac casualties [0.64 (0.61; 0.90)]. Annual mortality rates also suggest that the reduction in CVD death is mainly due to a decrease in cardiac fatalities, including both ischaemic heart disease and congestion. Overall, 32 and 75 patients, respectively, need to be treated by high-volume HDF (HV-HDF) to prevent one all-cause and one CVD death, respectively, per year. Conclusion. The beneficial effect of ol-HDF on all-cause and CVD mortality appears to be mainly due to a reduction in fatal cardiac events, including ischaemic heart disease as well as congestion. In HV-HDF, the NNT to prevent one CVD death is 75 per year

    Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals

    No full text
    corecore