128 research outputs found

    Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    Search for proton decay into three charged leptons in 0.37 megaton-years exposure of the Super-Kamiokande

    Get PDF
    A search for proton decay into three charged leptons has been performed by using 0.37 Mton⋅years of data collected in Super-Kamiokande. All possible combinations of electrons, muons, and their antiparticles consistent with charge conservation were considered as decay modes. No significant excess of events has been found over the background, and lower limits on the proton lifetime divided by the branching ratio have been obtained. The limits range between 9.2×10^33 and 3.4×10^34 years at 90% confidence level, improving by more than an order of magnitude upon limits from previous experiments. A first limit has been set for the p→μ^−e^+e^+ mode

    Search for astronomical neutrinos from blazar TXS 0506+056 in Super-Kamiokande

    Get PDF
    We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively

    Atmospheric neutrino oscillation analysis with improved event reconstruction in Super-Kamiokande IV

    Get PDF
    A new event reconstruction algorithm based on a maximum likelihood method has been developed for Super-Kamiokande. Its improved kinematic and particle identification capabilities enable the analysis of atmospheric neutrino data in a detector volume 32% larger than previous analyses and increase the sensitivity to the neutrino mass hierarchy. Analysis of a 253.9 kton⋅ ⋅ year exposure of the Super-Kamiokande IV atmospheric neutrino data has yielded a weak preference for the normal hierarchy, disfavoring the inverted hierarchy at 74% assuming oscillations at the best fit of the analysis

    Solar neutrino measurements using the full data period of Super-Kamiokande-IV

    Full text link
    An analysis of solar neutrino data from the fourth phase of Super-Kamiokande~(SK-IV) from October 2008 to May 2018 is performed and the results are presented. The observation time of the data set of SK-IV corresponds to 29702970~days and the total live time for all four phases is 58055805~days. For more precise solar neutrino measurements, several improvements are applied in this analysis: lowering the data acquisition threshold in May 2015, further reduction of the spallation background using neutron clustering events, precise energy reconstruction considering the time variation of the PMT gain. The observed number of solar neutrino events in 3.493.49--19.4919.49 MeV electron kinetic energy region during SK-IV is 65,443388+390(stat.)±925(syst.)65,443^{+390}_{-388}\,(\mathrm{stat.})\pm 925\,(\mathrm{syst.}) events. Corresponding 8B\mathrm{^{8}B} solar neutrino flux is (2.314±0.014(stat.)±0.040(syst.))×106 cm2s1(2.314 \pm 0.014\, \rm{(stat.)} \pm 0.040 \, \rm{(syst.)}) \times 10^{6}~\mathrm{cm^{-2}\,s^{-1}}, assuming a pure electron-neutrino flavor component without neutrino oscillations. The flux combined with all SK phases up to SK-IV is (2.336±0.011(stat.)±0.043(syst.))×106 cm2s1(2.336 \pm 0.011\, \rm{(stat.)} \pm 0.043 \, \rm{(syst.)}) \times 10^{6}~\mathrm{cm^{-2}\,s^{-1}}. Based on the neutrino oscillation analysis from all solar experiments, including the SK 58055805~days data set, the best-fit neutrino oscillation parameters are sin2θ12,solar=0.306±0.013\rm{sin^{2} \theta_{12,\,solar}} = 0.306 \pm 0.013 and Δm21,solar2=(6.100.81+0.95)×105 eV2\Delta m^{2}_{21,\,\mathrm{solar}} = (6.10^{+ 0.95}_{-0.81}) \times 10^{-5}~\rm{eV}^{2}, with a deviation of about 1.5σ\sigma from the Δm212\Delta m^{2}_{21} parameter obtained by KamLAND. The best-fit neutrino oscillation parameters obtained from all solar experiments and KamLAND are sin2θ12,global=0.307±0.012\sin^{2} \theta_{12,\,\mathrm{global}} = 0.307 \pm 0.012 and Δm21,global2=(7.500.18+0.19)×105 eV2\Delta m^{2}_{21,\,\mathrm{global}} = (7.50^{+ 0.19}_{-0.18}) \times 10^{-5}~\rm{eV}^{2}.Comment: 47 pages, 61 figure

    Search for Cosmic-ray Boosted Sub-GeV Dark Matter using Recoil Protons at Super-Kamiokande

    Full text link
    We report a search for cosmic-ray boosted dark matter with protons using the 0.37 megaton×\timesyears data collected at Super-Kamiokande experiment during the 1996-2018 period (SKI-IV phase). We searched for an excess of proton recoils above the atmospheric neutrino background from the vicinity of the Galactic Center. No such excess is observed, and limits are calculated for two reference models of dark matter with either a constant interaction cross-section or through a scalar mediator. This is the first experimental search for boosted dark matter with hadrons using directional information. The results present the most stringent limits on cosmic-ray boosted dark matter and exclude the dark matter-nucleon elastic scattering cross-section between 1033 cm210^{-33}\text{ cm}^{-2} and 1027 cm210^{-27}\text{ cm}^{-2} for dark matter mass from 10 MeV/c2c^2 to 1 GeV/c2c^2.Comment: With 1-page appendi

    Measurements of the charge ratio and polarization of cosmic-ray muons with the Super-Kamiokande detector

    Full text link
    We present the results of the charge ratio (RR) and polarization (P0μP^{\mu}_{0}) measurements using the decay electron events collected from 2008 September to 2022 June by the Super-Kamiokande detector. Because of its underground location and long operation, we performed high precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be R=1.32±0.02R=1.32 \pm 0.02 (stat.+syst.)(\mathrm{stat.}{+}\mathrm{syst.}) at EμcosθZenith=0.70.2+0.3E_{\mu}\cos \theta_{\mathrm{Zenith}}=0.7^{+0.3}_{-0.2} TeV\mathrm{TeV}, where EμE_{\mu} is the muon energy and θZenith\theta_{\mathrm{Zenith}} is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while this suggests a tension with the πK\pi K model of 1.9σ1.9\sigma. We also measured the muon polarization at the production location to be P0μ=0.52±0.02P^{\mu}_{0}=0.52 \pm 0.02 (stat.+syst.)(\mathrm{stat.}{+}\mathrm{syst.}) at the muon momentum of 0.90.1+0.60.9^{+0.6}_{-0.1} TeV/c\mathrm{TeV}/c at the surface of the mountain; this also suggests a tension with the Honda flux model of 1.5σ1.5\sigma. This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near 1 TeV/c1~\mathrm{TeV}/c. These measurement results are useful to improve the atmospheric neutrino simulations.Comment: 29 pages, 45 figure

    Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water

    Get PDF
    We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection and higher signal efficiency thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd with a 22.5×55222.5\times552 ktonday\rm kton\cdot day exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure-water (22.5×2970ktonday22.5 \times 2970 \rm kton\cdot day) owing to the enhanced neutron tagging
    corecore