735 research outputs found

    Fisheries Stakeholders and Their Livelihoods in Tamil Nadu and Puducherry

    Get PDF
    Fisheries Management for Sustainable Livelihoods (FIMSUL), is a project implemented by the Food and Agriculture Organization of the United Nations (FAO) with the Government of Tamil Nadu and Puducherry in India under the World Bank Trust Fund. The project aims at establishing frameworks, processes and building capacities of various stakeholders especially the Government, to facilitate the planning, design and implementation of appropriate fisheries development and management policies. The project includes a series of stakeholder consultations and consensus building apart from detailed review and analysis in the areas of stakeholders, livelihoods, policy, legal and institutional frame work and fisheries management. Based on this, the project comes up with various options. Stakeholder and livelihoods analysis is an essential part of the project. Hence, the team developed a detailed methodology for stakeholder consultations which includes district level stake holder consultation, focus group discussions, household interviews and validation meetings. The stakeholder and livelihoods analysis following the above steps were done through six NGO partners working along the coast of Tamil Nadu and Puducherry who were initially trained on the methodology. The NGO partners : PLANT, GUIDE, FERAL, SIFFS, DHAN Foundation and TMSSS, especially a team of dedicated staff engaged by them had done an excellent work in completing comprehensive field exercises and bringing out 12 district/regional reports. These are published separately. This report is a compilation, and complete analysis of the stakeholders and livelihoods based on all the field level consultations.This report is expected to be an important reference to primary stakeholders' perspective of the important stakeholders in the sector, the livelihoods and livelihoods changes, the adaptive and coping mechanism, the relationships between the stakeholders and their hopes and aspirations. For any development intervention for any sector or stakeholder group, region-wise in marine fisheries in Tamil Nadu and Puducherry, the information from this report could be an important starting point

    Simulating CCDs for the Chandra Advanced CCD Imaging Spectrometer

    Full text link
    We have implemented a Monte Carlo algorithm to model and predict the response of various kinds of CCDs to X-ray photons and minimally-ionizing particles and have applied this model to the CCDs in the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer. This algorithm draws on empirical results and predicts the response of all basic types of X-ray CCD devices. It relies on new solutions of the diffusion equation, including recombination, to predict the radial charge cloud distribution in field-free regions of CCDs. By adjusting the size of the charge clouds, we can reproduce the event grade distribution seen in calibration data. Using a model of the channel stops developed here and an insightful treatment of the insulating layer under the gate structure developed at MIT, we are able to reproduce all notable features in ACIS calibration spectra. The simulator is used to reproduce ground and flight calibration data from ACIS, thus confirming its fidelity. It can then be used for a variety of calibration tasks, such as generating spectral response matrices for spectral fitting of astrophysical sources, quantum efficiency estimation, and modeling of photon pile-up.Comment: 42 pages, 22 figures; accepted for publication in Nuclear Instruments and Methods in Physics Research, Section A; paper with high-quality figures can be found at ftp://ftp.astro.psu.edu/pub/townsley/simulator.p

    Parsec-scale X-ray Flows in High-mass Star-forming Regions

    Full text link
    The Chandra X-ray Observatory is providing remarkable new views of massive star-forming regions, revealing all stages in the life cycle of high-mass stars and their effects on their surroundings. We present a Chandra tour of several high-mass star-forming regions, highlighting physical processes that characterize the life of a cluster of high-mass stars, from deeply-embedded cores too young to have established an HII region to superbubbles so large that they shape our views of galaxies. Along the way we see that X-ray observations reveal hundreds of stellar sources powering great HII region complexes, suffused by both hard and soft diffuse X-ray structures caused by fast O-star winds thermalized in wind-wind collisions or by termination shocks against the surrounding media. Finally, we examine the effects of the deaths of high-mass stars that remained close to their birthplaces, exploding as supernovae within the superbubbles that these clusters created. We present new X-ray results on W51 IRS2E and 30 Doradus and we introduce new data on Trumpler 14 in Carina and the W3 HII region complexes W3 Main and W3(OH).Comment: 6 pages, 3 figures, to appear in the proceedings of IAU Symposium 227,"Massive Star Birth - A Crossroads of Astrophysics," eds. R. Cesaroni, E. Churchwell, M. Felli, and C.M. Walmsle

    Mitigating Charge Transfer Inefficiency in the Chandra X-ray Observatory's ACIS Instrument

    Get PDF
    The ACIS front-illuminated CCDs onboard the Chandra X-ray Observatory were damaged in the extreme environment of the Earth's radiation belts, resulting in enhanced charge transfer inefficiency (CTI). This produces a row dependence in gain, event grade, and energy resolution. We model the CTI as a function of input photon energy, including the effects of de-trapping (charge trailing), shielding within an event (charge in the leading pixels of the 3X3 event island protect the rest of the island by filling traps), and non-uniform spatial distribution of traps. This technique cannot fully recover the degraded energy resolution, but it reduces the position dependence of gain and grade distributions. By correcting the grade distributions as well as the event amplitudes, we can improve the instrument's quantum efficiency. We outline our model for CTI correction and discuss how the corrector can improve astrophysical results derived from ACIS data.Comment: Accepted by ApJ Letters; see http://www.astro.psu.edu/users/townsley/cti

    Chandra Observations of SNR 1987A

    Full text link
    We report on the results of our monitoring program of the X-ray remnant of supernova 1987A with the {\it Chandra X-Ray Observatory}. We have performed two new observations during the {\it Chandra} Cycle 3 period, bringing the total to six monitoring observations over the past three years. These six observations provide a detailed time history of the birth of a new supernova remnant in X-rays. The high angular resolution images indicate that soft X-ray bright knots are associated with the optical spots, while hard X-ray features are better correlated with radio images. We interpret this in terms of a model in which fast shocks propagating through the circumstellar HII region produce the hard X-ray and radio emission, while the soft X-ray and optical emission arise in slower shocks entering into dense knots in the circumstellar inner ring. New observations begin to show changes in the morphology that may herald a new stage in the development of this incipient supernova remnant. The observed X-ray fluxes increase by nearly a factor of three over the last 30 months. The X-ray remnant is expanding at a velocity of \sim5000 km s1^{-1}.Comment: 8 pages, 6 figures, 2 color figures, To appear in AdSpR (Proceedings 34th COSPAR Synposium E1.4 "High Energy Studies of Supernova Remnants and Neutron stars" For high resolution color figures contact [email protected]

    Structure and Feedback in 30 Doradus I: Observations

    Get PDF
    We have completed a a new optical imaging and spectrophotometric survey of a 140 x 80 pc2^2 region of 30 Doradus centered on R136, covering key optical diagnostic emission lines including \Ha, \Hb, \Hg, [O III] λλ\lambda\lambda4363, 4959, 5007, [N II] λλ\lambda\lambda6548, 6584, [S II] λλ\lambda\lambda6717, 6731 [S III] λ\lambda 6312 and in some locations [S III] λ\lambda9069. We present maps of fluxes and intensity ratios for these lines, and catalogs of isolated ionizing stars, elephant-trunk pillars, and edge-on ionization fronts. The final science-quality spectroscopic data products are available to the public. Our analysis of the new data finds that, while stellar winds and supernovae undoubtedly produce shocks and are responsible for shaping the nebula, there are no global spectral signatures to indicate that shocks are currently an important source of ionization. We conclude that the considerable region covered by our survey is well described by photoionization from the central cluster where the ionizing continuum is dominated by the most massive O stars. We show that if 30 Dor were viewed at a cosmological distance, its integrated light would be dominated by its extensive regions of lower surface-brightness rather than by the bright, eye-catching arcs.Comment: 42 pages, 16 figures, Accepted for publication in ApJ

    Discovery of a Nova-Like Cataclysmic Variable in the Kepler Mission Field

    Get PDF
    We announce the identification of a new cataclysmic variable star in the field of the Kepler Mission, KIC J192410.81+445934.9. This system was identified during a search for compact pulsators in the Kepler field. High-speed photometry reveals coherent large-amplitude variability with a period of 2.94 h. Rapid, large-amplitude quasi-periodic variations are also detected on time scales of ~1200 s and ~650 s. Time-resolved spectroscopy covering one half photometric period shows shallow, broad Balmer and He I absorption lines with bright emission cores as well as strong He II and Bowen blend emission. Radial velocity variations are also observed in the Balmer and He I emission lines that are consistent with the photometric period. We therefore conclude that KIC J192410.81+445934.9 is a nova-like variable of the UX UMa class in or near the period gap, and it may belong to the rapidly growing subclass of SW Sex systems. Based on 2MASS photometry and companion star models, we place a lower limit on the distance to the system of ~500 pc. Due to limitations of our discovery data, additional observations including spectroscopy and polarimetry are needed to confirm the nature of this object. Such data will help to further understanding of the behavior of nova-like variables in the critical period range of 3-4 h, where standard cataclysmic variable evolutionary theory finds major problems. The presence of this system in the Kepler mission field-of-view also presents a unique opportunity to obtain a continuous photometric data stream of unparalleled length and precision on a cataclysmic variable system.Comment: Accepted for publication in the Astronomical Journal. 8 pages, 7 figures, uses emulateapj

    Theoretical Modeling of the Thermal State of Accreting White Dwarfs Undergoing Classical Novae

    Full text link
    White dwarfs experience a thermal renaissance when they receive mass from a stellar companion in a binary. For accretion rates < 10^-8 Msun/yr, the freshly accumulated hydrogen/helium envelope ignites in a thermally unstable manner that results in a classical novae (CN) outburst and ejection of material. We have undertaken a theoretical study of the impact of the accumulating envelope on the thermal state of the underlying white dwarf (WD). This has allowed us to find the equilibrium WD core temperatures (T_c), the classical nova ignition masses (M_ign) and the thermal luminosities for WDs accreting at rates of 10^-11 - 10^-8 Msun/yr. These accretion rates are most appropriate to WDs in cataclysmic variables (CVs) of P_orb <~ 7 hr, many of which accrete sporadically as dwarf novae. We have included ^3He in the accreted material at levels appropriate for CVs and find that it significantly modifies the CN ignition mass. We compare our results with several others from the CN literature and find that the inclusion of ^3He leads to lower M_ign for >~ 10^-10 Msun/yr, and that for below this the particular author's assumption concerning T_c, which we calculate consistently, is a determining factor. Initial comparisons of our CN ignition masses with measured ejected masses find reasonable agreement and point to ejection of material comparable to that accreted.Comment: 14 pages, 11 figures; uses emulateapj; accepted by the Astrophysical Journal; revised for clarity, added short discussion of diffusio

    The Detonation Mechanism of the Pulsationally-Assisted Gravitationally-Confined Detonation Model of Type Ia Supernovae

    Full text link
    We describe the detonation mechanism comprising the "Pulsationally Assisted" Gravitationally Confined Detonation (GCD) model of Type Ia supernovae SNe Ia. This model is analogous to the previous GCD model reported in Jordan et al.(2008); however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and nickel-56 yields conform better to observational values than is the case for the "classical" GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three 3-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.Comment: 22 pages, 8 figures; Ap
    corecore