9,128 research outputs found

    Study of ball bearing torque under elastohydrodynamic lubrication

    Get PDF
    Spinning and rolling torques were measured in an angular-contact ball bearing with and without a cage under several lubrication regimes in a modified NASA spinning torque apparatus. Two lubricants were used, a di-2 ethylhexyl sebacate and a synthetic paraffinic oil, at shaft speeds of 1000, 2000, and 3000 rpm and bearing loads from 10 lbs to 90 lbs. An analytical model was developed from previous spinning friction models to include rolling with spinning under lubrication regimes from thin film to flooded conditions. The bearing torque values have a wide variation, under any condition of speed and load, depending on the amount of lubricant present in the bearing. The analytical model compared favorably with experimental results under several lubrication regimes

    New generalized rheological model for lubrication of a ball spinning in a nonconforming groove

    Get PDF
    The elastohydrodynamic theory for predicting the spinning friction of a ball in a nonconforming groove was modified to incorporate a rheological model. The rheological model is based on the exponential pressure viscosity relation for low shear stresses, but at high shear rates and pressures, the relation is altered to one in which the shear stress is porportional to the normal stress. The model was fitted to experimental spinning torques for four different lubricants: a synthetic paraffinic lubricant, di-2-ethylhexyl sebacate, a super-refined naphthenic mineral oil, and a polyphenyl ether (5P4E). Good agreement between the model and experiment was found

    A note on the dyonic D6-brane

    Get PDF
    We study the dyon electric charge of D6-branes as eleven dimensional KK-monopoles. We observe that the dyon charge is intimately related with the existence of gauge connections and antisymmetric fields on the brane world volume.Comment: 8 pages, Contribution to the 6th International Workshop on Conformal Field Theory and Integrable Models, Landau Institute, Sept. 2002, to honour A. Belavin on the occasion of his 60th birthda

    Radiation exposure for manned Mars surface missions

    Get PDF
    The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection

    Estimates of galactic cosmic ray shielding requirements during solar minimum

    Get PDF
    Estimates of radiation risk from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different arbitrary constituents per layer. Calculated galactic cosmic ray fluxes, dose and dose equivalents behind various thicknesses of aluminum, water and liquid hydrogen shielding are presented for the solar minimum period. Estimates of risk to the skin and the blood-forming organs (BFO) are made using 0-cm and 5-cm depth dose/dose equivalent values, respectively, for water. These results indicate that at least 3.5 g/sq cm (3.5 cm) of water, or 6.5 g/sq cm (2.4 cm) of aluminum, or 1.0 g/sq cm (14 cm) of liquid hydrogen shielding is required to reduce the annual exposure below the currently recommended BFO limit of 0.5 Sv. Because of large uncertainties in fragmentation parameters and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as a factor of 2 or more. The effects of these potential exposure uncertainties or shield thickness requirements are analyzed

    Space station structures and dynamics test program

    Get PDF
    The design, construction, and operation of a low-Earth orbit space station poses challenges for development and implementation of technology. One specific challenge is the development of a dynamics test program for defining the space station design requirements, and identifying and characterizing phenomena affecting the space station's design and development. The test proposal, as outlined, is a comprehensive structural dynamics program to be launched in support of the space station (SS). Development of a parametric data base and verification of the mathematical models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The four test phases planned are discussed: testing of SS applicable structural concepts; testing of SS prototypes; testing of actual SS structural hardware; and on-orbit testing of SS construction

    Pressure and force data for a flat wing and a warped conical wing having a shockless recompression at Mach 1.62

    Get PDF
    A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs

    Revisiting the Rigidly Rotating Magnetosphere model for sigma Ori E. I. Observations and Data Analysis

    Full text link
    We have obtained 18 new high-resolution spectropolarimetric observations of the B2Vp star sigma Ori E with both the Narval and ESPaDOnS spectropolarimeters. The aim of these observations is to test, with modern data, the assumptions of the Rigidly Rotating Magnetosphere (RRM) model of Townsend & Owocki (2005), applied to the specific case of sigma Ori E by Townsend et al. (2005). This model includes a substantially offset dipole magnetic field configuration, and approximately reproduces previous observational variations in longitudinal field strength, photometric brightness, and Halpha emission. We analyze new spectroscopy, including H I, He I, C II, Si III and Fe III lines, confirming the diversity of variability in photospheric lines, as well as the double S-wave variation of circumstellar hydrogen. Using the multiline analysis method of Least-Squares Deconvolution (LSD), new, more precise longitudinal magnetic field measurements reveal a substantial variance between the shapes of the observed and RRM model time-varying field. The phase resolved Stokes V profiles of He I 5876 A and 6678 A lines are fit poorly by synthetic profiles computed from the magnetic topology assumed by Townsend et al. (2005). These results challenge the offset dipole field configuration assumed in the application of the RRM model to sigma Ori E, and indicate that future models of its magnetic field should also include complex, higher-order components.Comment: 13 pages, 8 figures. Accepted for publication in MNRA

    The role of thermal and lubricant boundary layers in the transient thermal analysis of spur gears

    Get PDF
    An improved convection heat-transfer model has been developed for the prediction of the transient tooth surface temperature of spur gears. The dissipative quality of the lubricating fluid is shown to be limited to the capacity extent of the thermal boundary layer. This phenomenon can be of significance in the determination of the thermal limit of gears accelerating to the point where gear scoring occurs. Steady-state temperature prediction is improved considerably through the use of a variable integration time step that substantially reduces computer time. Computer-generated plots of temperature contours enable the user to animate the propagation of the thermal wave as the gears come into and out of contact, thus contributing to better understanding of this complex problem. This model has a much better capability at predicting gear-tooth temperatures than previous models
    corecore