84 research outputs found

    S-Glutathionylation of Protein Disulfide Isomerase Regulates Estrogen Receptor α Stability and Function

    Get PDF
    S-Glutathionylation of cysteine residues within target proteins is a posttranslational modification that alters structure and function. We have shown that S-glutathionylation of protein disulfide isomerase (PDI) disrupts protein folding and leads to the activation of the unfolded protein response (UPR). PDI is a molecular chaperone for estrogen receptor alpha (ERα). Our present data show in breast cancer cells that S-glutathionylation of PDI interferes with its chaperone activity and abolishes its capacity to form a complex with ERα. Such drug treatment also reverses estradiol-induced upregulation of c-Myc, cyclinD1, and P21Cip, gene products involved in cell proliferation. Expression of an S-glutathionylation refractory PDI mutant diminishes the toxic effects of PABA/NO. Thus, redox regulation of PDI causes its S-glutathionylation, thereby mediating cell death through activation of the UPR and abrogation of ERα stability and signaling

    S-glutathionylation of buccal cell proteins as biomarkers of exposure to hydrogen peroxide

    Get PDF
    AbstractBackgroundExogenous or endogenous hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that can lead to oxidation of cellular nucleophiles, particularly cysteines in proteins. Commercial mouthwashes containing H2O2 provide the opportunity to determine clinically whether changes in S-glutathionylation of susceptible proteins in buccal mucosa cells can be used as biomarkers of ROS exposure.MethodsUsing an exploratory clinical protocol, 18 disease-free volunteers rinsed with a mouthwash containing 1.5% H2O2 (442mM) over four consecutive days. Exfoliated buccal cell samples were collected prior and post-treatment and proteomics were used to identify S-glutathionylated proteins.ResultsFour consecutive daily treatments with the H2O2-containing mouthwash induced significant dose and time-dependent increases in S-glutathionylation of buccal cell proteins, stable for at least 30min following treatments. Elevated levels of S-glutathionylation were maintained with subsequent daily exposure. Increased S-glutathionylation preceded and correlated with transcriptional activation of ROS sensitive genes, such as ATF3, and with the presence of 8-hydroxy deoxyguanosine. Data from a human buccal cell line TR146 were consistent with the trial results. We identified twelve proteins that were S-glutathionylated following H2O2 exposure.ConclusionsBuccal cells can predict exposure to ROS through increased levels of S-glutathionylation of proteins. These post-translationally modified proteins serve as biomarkers for the effects of H2O2 in the oral cavity and in the future, may be adaptable as extrapolated pharmacodynamic biomarkers for assessing the impact of other systemic drugs that cause ROS and/or impact redox homeostasis.General significanceS-glutathionylation of buccal cell proteins can be used as a quantitative measure of exposure to ROS

    Diazeniumdiolate Mediated Nitrosative Stress Alters Nitric Oxide Homeostasis through Intracellular Calcium and S-Glutathionylation of Nitric Oxide Synthetase

    Get PDF
    Background: PABA/NO is a diazeniumdiolate that acts as a direct nitrogen monoxide (NO) donor and is in development as an anticancer drug. Its mechanism of action and effect on cells is not yet fully understood. Methodology/Principal Findings: We used HPLC and mass spectrometry to identify a primary nitroaromatic glutathione metabolite of PABA/NO and used fluorescent assays to characterize drug effects on calcium and NO homeostasis, relating these to endothelial nitric oxide synthase (eNOS) activity. Unexpectedly, the glutathione conjugate was found to be a competitive inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+-ATPase (SERCA) presumably at the same site as thapsigargin, increasing intracellular Ca 2+ release and causing auto-regulation of eNOS through S-glutathionylation. Conclusions/Significance: The initial direct release of NO after PABA/NO was followed by an eNOS-mediated generation of NO as a consequence of drug-induced increase in Ca 2+ flux and calmodulin (CaM) activation. PABA/NO has a unique dual mechanism of action with direct intracellular NO generation combined with metabolite driven regulation of eNO

    MGST1, a GSH transferase/peroxidase essential for development and hematopoietic stem cell differentiation.

    Get PDF
    We show for the first time that, in contrast to other glutathione transferases and peroxidases, deletion of microsomal glutathione transferase 1 (MGST1) in mice is embryonic lethal. To elucidate why, we used zebrafish development as a model system and found that knockdown of MGST1 produced impaired hematopoiesis. We show that MGST1 is expressed early during zebrafish development and plays an important role in hematopoiesis. High expression of MGST1 was detected in regions of active hematopoiesis and co-expressed with markers for hematopoietic stem cells. Further, morpholino-mediated knock-down of MGST1 led to a significant reduction of differentiated hematopoietic cells both from the myeloid and the lymphoid lineages. In fact, hemoglobin was virtually absent in the knock-down fish as revealed by diaminofluorene staining. The impact of MGST1 on hematopoiesis was also shown in hematopoietic stem/progenitor cells (HSPC) isolated from mice, where it was expressed at high levels. Upon promoting HSPC differentiation, lentiviral shRNA MGST1 knockdown significantly reduced differentiated, dedicated cells of the hematopoietic system. Further, MGST1 knockdown resulted in a significant lowering of mitochondrial metabolism and an induction of glycolytic enzymes, energetic states closely coupled to HSPC dynamics. Thus, the non-selenium, glutathione dependent redox regulatory enzyme MGST1 is crucial for embryonic development and for hematopoiesis in vertebrates

    Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione-S-transferase π

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp(–/–) mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF

    Redox and Metabolic Circuits in Cancer

    No full text
    Living cells require a constant supply of energy for the orchestration of a variety of biological processes in fluctuating environmental conditions. In heterotrophic organisms, energy mainly derives from the oxidation of carbohydrates and lipids, whose chemical bonds breakdown allows electrons to generate ATP and to provide reducing equivalents needed to restore the antioxidant systems and prevent from damage induced by reactive oxygen and nitric oxide (NO)-derived species (ROS and RNS). Studies of the last two decades have highlighted that cancer cells reprogram the metabolic circuitries in order to sustain their high growth rate, invade other tissues, and escape death. Therefore, this broad metabolic reorganization is mandatory for neoplastic growth, allowing the generation of adequate amounts of ATP and metabolites, as well as the optimization of redox homeostasis in the changeable environmental conditions of the tumor mass. Among these, ROS, as well as NO and RNS, which are produced at high extent in the tumor microenvironment or intracellularly, have been demonstrated acting as positive modulators of cell growth and frequently associated with malignant phenotype. Metabolic changes are also emerging as primary drivers of neoplastic onset and growth, and alterations of mitochondrial metabolism and homeostasis are emerging as pivotal in driving tumorigenesis. Targeting the metabolic rewiring, as well as affecting the balance between production and scavenging of ROS and NO-derived species, which underpin cancer growth, opens the possibility of finding selective and effective anti-neoplastic approaches, and new compounds affecting metabolic and/or redox adaptation of cancer cells are emerging as promising chemotherapeutic tools. In this Research Topic we have elaborated on all these aspects and provided our contribution to this increasingly growing field of research with new results, opinions and general overviews about the extraordinary plasticity of cancer cells to change metabolism and redox homeostasis in order to overcome the adverse conditions and sustain their “individualistic” behavior under a teleonomic viewpoint

    The ABCA2 transporter: intracellular roles in trafficking and metabolism of LDL-derived cholesterol and sterol-related compounds.

    No full text
    ATP-binding cassette (ABC) transporters comprise a family of critical membrane bound proteins functioning in the translocation of molecules across cellular membranes. Substrates for transport include lipids, cholesterol and pharmacological agents. Mutations in ABC transporter genes cause a variety of human pathologies and elicit drug resistance phenotypes in cancer cells. ABCA2, the second member the A subfamily to be identified, was highly expressed in ovarian carcinoma cells resistant to the anti-cancer agent, estramustine, and more recently, in human vestibular schwannomas. Cells expressing elevated levels of ABCA2 show resistance to variety of compounds, including estradiol, mitoxantrone and a free radical initiator, 2,2\u27-azobis-(2-amidinopropane). ABCA2 is expressed in a variety of tissues, with greatest abundance in the central nervous system and macrophages. This transporter, along with other proteins that have a high degree of homology to ABCA2, including ABCA1 and ABCA7, are up-regulated in human macrophages during cholesterol import. Recent studies have shown ABCA2 also plays a role in the trafficking of low-density lipoprotein (LDL)-derived free cholesterol and to be coordinately expressed with sterol-responsive genes. A single nucleotide polymorphism in exon 14 of the ABCA2 gene was shown to be linked to early onset Alzheimer disease (AD) in humans, supporting an earlier study showing ABCA2 expression influences levels of APP and beta-amyloid peptide, the primary component of senile plaques. Studies thus far implicate ABCA2 as a sterol transporter, the deregulation of which may affect a cellular phenotype conducive to the pathogenesis of a variety of human diseases including AD, atherosclerosis and cancer
    corecore