49 research outputs found

    Entrepreneurial sons, patriarchy and the Colonels' experiment in Thessaly, rural Greece

    Get PDF
    Existing studies within the field of institutional entrepreneurship explore how entrepreneurs influence change in economic institutions. This paper turns the attention of scholarly inquiry on the antecedents of deinstitutionalization and more specifically, the influence of entrepreneurship in shaping social institutions such as patriarchy. The paper draws from the findings of ethnographic work in two Greek lowland village communities during the military Dictatorship (1967–1974). Paradoxically this era associated with the spread of mechanization, cheap credit, revaluation of labour and clear means-ends relations, signalled entrepreneurial sons’ individuated dissent and activism who were now able to question the Patriarch’s authority, recognize opportunities and act as unintentional agents of deinstitutionalization. A ‘different’ model of institutional change is presented here, where politics intersects with entrepreneurs, in changing social institutions. This model discusses the external drivers of institutional atrophy and how handling dissensus (and its varieties over historical time) is instrumental in enabling institutional entrepreneurship

    Ag85B DNA vaccine suppresses airway inflammation in a murine model of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In allergic asthma, Th2 lymphocytes are believed to play important roles in orchestrating airway eosinophilia and inflammation. Resetting the Th1/Th2 imbalance may have a therapeutic role in asthma. The mycobacterium tuberculosis 30-kilodalton major secretory protein (antigen 85B, Ag85B) can protect animals from M. tuberculosis infection by inducing a Th1-dominant response.</p> <p>Methods</p> <p>In this study, the Ag85B gene was cloned into pMG plasmids to yield the pMG-Ag85B plasmid. The expression of Ag85B gene in murine bronchial epithelia cells was detected by Western blotting and immunohistochemical staining after intranasal immunization with reconstructed pMG-Ag85B plasmids. The protective effect of pMG-Ag85B plasmids immunization in airway inflammation was evaluated by histological examination and bronchoalveolar lavage (BAL). IL-4 and IFN-γ levels in the BAL and supernatant from splenocyte culture were determined using ELISA kits.</p> <p>Results</p> <p>The Ag85B gene was successfully expressed in murine bronchial epithelia cells by intranasal immunization with reconstructed pMG-Ag85B plasmids. Using a murine model of asthma induced by ovalbumin (OVA), pMG-Ag85B immunization significantly inhibited cellular infiltration across the airway epithelium with a 37% decrease in the total number of cells (9.6 ± 2.6 × 10<sup>5</sup>/ml vs. 15.2 ± 3.0 × 10<sup>5</sup>/ml, p < 0.05) and a 74% decrease in the number of eosinophils (1.4 ± 0.2 × 10<sup>5</sup>/ml vs. 5.4 ± 1.1 × 10<sup>5</sup>/ml, p < 0.01) compared with the OVA-sensitized control group. There was no difference in the number of neutrophils in BAL fluid between the pMG-Ag85B group, the OVA-sensitized control group and the empty pMG group. IL-4 production was significantly decreased in the BAL fluid (32.0 ± 7.6 pg/ml vs. 130.8 ± 32.6 pg/ml, p < 0.01) and in the splenocyte supernatant (5.1 ± 1.6 pg/ml vs. 10.1 ± 2.3 pg/ml, p < 0.05) in the pMG-Ag85B group compared with the OVA-sensitized control group, while IFN-γ production was increased in the BAL fluid (137.9 ± 25.6 pg/ml vs. 68.4 ± 15.3 pg/ml, p < 0.05) and in the splenocyte supernatant (20.1 ± 5.4 pg/ml vs. 11.3 ± 3.2 pg/ml, p < 0.05).</p> <p>Conclusion</p> <p>In a murine model of asthma induced by OVA, intranasal immunization with pMG-Ag85B significantly reduced allergic airway inflammation with less eosinophil infiltration. This protective effect was associated with decreased IL-4 and increased IFN-γ production in the BAL fluid and in the supernatant of cultured splenocytes.</p

    Induction and regulation of matrix metalloproteinase-12in human airway smooth muscle cells

    Get PDF
    BACKGROUND: The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases. METHODS: Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance. RESULTS: We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction. CONCLUSION: Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma

    Integral control for population management

    Get PDF
    We present a novel management methodology for restocking a declining population. The strategy uses integral control, a concept ubiquitous in control theory which has not been applied to population dynamics. Integral control is based on dynamic feedback-using measurements of the population to inform management strategies and is robust to model uncertainty, an important consideration for ecological models. We demonstrate from first principles why such an approach to population management is suitable via theory and examples
    corecore