734 research outputs found

    Recent astronomical results from the infrared spatial interferometer and their implications for LOUISA

    Get PDF
    A new heterodyne interferometer for the atmospheric window from 9 to 12 microns was developed during the past five years. This instrument, called the Infrared Spatial Interferometer (ISI), was designed to use earth rotation aperture synthesis techniques developed in radio interferometry. It was moved to Mt. Wilson, California, in January 1988 and first fringes were obtained in June of that year. Systematic observations of some of the brighter late-type stars began shortly after the first fringes were obtained. We describe the basic principles and design of the ISI and give an overview of some of the initial results obtained from these observations. The implications of our work to the proposed Lunar Optical/UV/IR Synthesis Array (LOUISA) are discussed. We also analyze the conditions for the maximum signal-to-noise ratio of such an interferometer as a function of wavelength. The optimum wavelength is found to depend on the assumed scaling relation between telescope area and wavelength

    Optical frequency waveguide and transmission system Patent

    Get PDF
    Optical communication system with gas filled waveguide for laser beam transmissio

    Laser machining apparatus Patent

    Get PDF
    Laser machining device with dielectric functioning as beam waveguide for mechanical and medical application

    Optical frequency waveguide Patent

    Get PDF
    Self-generating optical frequency waveguid

    Observations of far-infrared fine structure lines: o III88.35 micrometer and oI 63.2 micrometer

    Get PDF
    Observations of the O III 88.35 micrometer line and the O I63.2 micrometer were made with a far infrared spectrometer. The sources M17, NGC 7538, and W51 were mapped in the O III line with 1 arc minute resolution and the emission is found to be quite widespread. In all cases the peak of the emission coincides with the maximum radio continuum. The far infrared continuum was mapped simultaneously and in M17, NGC 7538, and W51 the continuum peak is found to be distinct from the center of ionization. The O III line was also detected in W3, W49, and in a number of positions in the Orion nebula. Upper limits were obtained on NGS 7027, NGC 6572, DR21, G29.9-0.0 and M82. The 63.2 micrometer O I line was detected in M17, M42, and marginally in DR21. A partial map of M42 in this line shows that most of the emission observed arises from the Trapezium and from the bright optical bar to the southeast

    Detection of interstellar NH sub 3 in the far-warm and dense gas in Orion-KL

    Get PDF
    The detection of the (J,K) = a(4,3) yields s(3,3) rotation inversion transition of ammonia at 124.6 microns toward the center of the Orion-KL region is reported. The line is in emission and has a FWHM or = to 30 km s 0.15. The far IR ammonia line emission probably comes mainly from the 'hot core', a compact region of warm, very dense gas previously identified by the radio inversion lines of NH3. The a(4,3) yields s(3,3) line is very optically thick, and since it is seen in emission, radiative excitation of the (4,3) NH3 level by far IR emission from dust within the source can be ruled out. Radiative excitation via the 10 microns of vibrational transitions of NH3 also seems unlikely. Hence, the (4,3) level is probably collisionally excited and the gas in the hot core region is warmer than the dust. Since the far IR line emission is highly trapped, densities of approximately 10 to the 7th power cu cm are high enough to explain the observations. Shock heating by the mass outflow from IRc2 may account for the high gas temperatures in the hot core region

    Detection of shocked atomic gas in the Kleinmann-Low nebula

    Get PDF
    The 63 micrometer (3)p(1)-(3)P(2) fine structure line emission of neutral atomic oxygen at the center of the Orion nebula with a resolution of 30" is presented. There are three main emission peaks. One is associated with the region of strongest thermal radio continuum radiation close to the Trapezium cluster, and probably arises at the interface between the HII region and the dense Orion molecular cloud. The other two line emission peaks, associated with the Kleinmann Low nebula, are similar in both distribution and velocity to those of the 2 micrometer S(1) line of molecular hydrogen and of the high velocity wings of rotational CO emission. The OI emission from the KL nebula can be produced in the shocked gas associated with the mass outflows in this region and is an important coolant of the shocked gas

    Cold guided beams of water isotopologs

    Full text link
    Electrostatic velocity filtering and guiding is an established technique to produce high fluxes of cold polar molecules. In this paper we clarify different aspects of this technique by comparing experiments to detailed calculations. In the experiment, we produce cold guided beams of the three water isotopologs H2O, D2O and HDO. Their different rotational constants and orientations of electric dipole moments lead to remarkably different Stark shift properties, despite the molecules being very similar in a chemical sense. Therefore, the signals of the guided water isotopologs differ on an absolute scale and also exhibit characteristic electrode voltage dependencies. We find excellent agreement between the relative guided fractions and voltage dependencies of the investigated isotopologs and predictions made by our theoretical model of electrostatic velocity filtering.Comment: 14 pages, 13 figures; small changes to the text, updated reference

    Enhanced sensitivity to time-variation of m_p/m_e in the inversion spectrum of ammonia

    Full text link
    We calculate the sensitivity of the inversion spectrum of ammonia to possible time-variation of the ratio of the proton mass to the electron mass, mu=m_p/m_e. For the inversion transition (lambda= 1.25 cm^{-1}) the relative frequency shift is significantly enhanced: delta(omega)/omega=-4.46, delta(mu)/mu. This enhancement allows one to increase sensitivity to the time-variation of mu using NH_3 spectra for high redshift objects. We use published data on microwave spectra of the object B0218+357 to place the limit delta(mu)/mu =(0.6 +/- 1.9) 10^{-6} at redshift z=0.6847; this limit is several times better than the limits obtained by different methods and may be significantly improved. Assuming linear time dependence we obtain dot{mu}/mu=(-1 +/- 3) 10^{-16} yr^{-1}

    The Keck Aperture Masking Experiment: spectro-interferometry of 3 Mira Variables from 1.1 to 3.8 microns

    Full text link
    We present results from a spectro-interferometric study of the Miras o Cet, R Leo and W Hya obtained with the Keck Aperture Masking Experiment from 1998 Sep to 2002 Jul. The spectrally dispersed visibility data permit fitting with circularly symmetric brightness profiles such as a simple uniform disk. The stellar angular diameter obtained over up to ~ 450 spectral channels spaning the region 1.1-3.8 microns is presented. Use of a simple uniform disk brightness model facilitates comparison between epochs and with existing data and theoretical models. Strong size variations with wavelength were recorded for all stars, probing zones of H2O, CO, OH, and dust formation. Comparison with contemporaneous spectra extracted from our data show a strong anti-correlation between the observed angular diameter and flux. These variations consolidate the notion of a complex stellar atmosphere consisting of molecular shells with time-dependent densities and temperatures. Our findings are compared with existing data and pulsation models. The models were found to reproduce the functional form of the wavelength vs. angular diameter curve well, although some departures are noted in the 2.8-3.5 micron range.Comment: 10 pages, 10 figures Accepted to Ap
    • …
    corecore