Electrostatic velocity filtering and guiding is an established technique to
produce high fluxes of cold polar molecules. In this paper we clarify different
aspects of this technique by comparing experiments to detailed calculations. In
the experiment, we produce cold guided beams of the three water isotopologs
H2O, D2O and HDO. Their different rotational constants and orientations of
electric dipole moments lead to remarkably different Stark shift properties,
despite the molecules being very similar in a chemical sense. Therefore, the
signals of the guided water isotopologs differ on an absolute scale and also
exhibit characteristic electrode voltage dependencies. We find excellent
agreement between the relative guided fractions and voltage dependencies of the
investigated isotopologs and predictions made by our theoretical model of
electrostatic velocity filtering.Comment: 14 pages, 13 figures; small changes to the text, updated reference