62 research outputs found
The impact of nonlinear dynamics on the resilience of a grocery supply chain
Purpose of this paper: In an effort to improve operational and logistical efficiencies, UK grocery retailers combined primary and secondary distribution increasing the importance of designing resilient replenishment systems in the distribution centre. This paper has the purpose to analyse the resilience performance of the distribution centre stock ordering system within a grocery retailer. Design/methodology/approach: A system dynamics approach is used for framing and building a credible representation of the real system. Mathematical analysis of the nonlinear model based on nonlinear control engineering techniques in combination with system dynamics simulation have been used to understand the behaviour of stock and shipment output responses in the distribution centre given step and periodic demand signals. Findings: Preliminary mathematical analysis through nonlinear control theory techniques has been undertaken in order to gain initial insights in the understanding of the replenishment control model. This practice allowed the researcher to identify specific behaviour change in the DC stock and shipment responses, which are key indicators for assessing supply chain resilience, without going through a time-consuming simulation process. Transfer function analysis and describing function serve as a guideline for undertaking system dynamics simulation. Value: This paper aims to fill the gap in the literature of supply chain resilience by using quantitative system dynamics methods to assess the resilience performance of a grocery retailer. In this way, we also supplement the literature with empirical data. Moreover, we explore different analytical methods since simulation is the predominant method for quantitative analysis of system dynamics. Research limitations/implications (if applicable): This research is limited to the dynamics of single-echelon supply chain systems. Although the EPOS sales data and the store replenishment system have been considered in the validation process, this study has focused on analysing the resilience performance of the DC replenishment system only. Considering the multi-echelon supply chain is intended for further research activities. Practical implications (if applicable): The findings suggest that the distribution centre replenishment system can be re-designed in order to improve the supply chain resilience performance. The ‘As Is’ scenario produces slow response of stock levels and inventory targets are never recovered due to a permanent offset
Establishing a framework for the effective design of resilient supply chains with inherent non-linearities
Purpose of this paper: Previous control theory research on supply chain dynamics has predominantly taken a linear perspective of the real world, whereas nonlinearities have usually been studied via a simulation approach. Nonlinearities can naturally occur in supply chains through the existence of physical and economic constraints, for example, capacity limitations. Since the ability to flex capacity is an important aspect of supply chain resilience, there is a need to rigorously study such nonlinearities. Hence, the purpose of this paper is to propose a framework for the dynamic design of supply chains so that they are resilient to nonlinear system structures
The value of coordination in a two echelon supply chain: Sharing information, policies and parameters.
We study a coordination scheme in a two echelon supply chain. It involves sharing details of replenishment rules, lead-times, demand patterns and tuning the replenishment rules to exploit the supply chain's cost structure. We examine four different coordination strategies; naïve operation, local optimisation, global optimisation and altruistic behaviour on behalf of the retailer. We assume the retailer and the manufacturer use the Order-Up-To policy to determine replenishment orders and end consumers demand is a stationary i.i.d. random variable. We derive the variance of the retailer's order rate and inventory levels and the variance of the manufacturer's order rate and inventory levels. We initially assume that costs in the supply chain are directly proportional to these variances (and later the standard deviations) and investigate the options available to the supply chain members for minimising costs. Our results show that if the retailer takes responsibility for supply chain cost reduction and acts altruistically by dampening his order variability, then the performance enhancement is robust to both the actual costs in the supply chain and to a naïve or uncooperative manufacturer. Superior performance is achievable if firms coordinate their actions and if they find ways to re-allocate the supply chain gain.Bullwhip; Global optimisation; Inventory variance; Local optimisation; Supply chains; Studies; Coordination; Supply chain; IT; Replenishment rule; Rules; Demand; Patterns; Cost; Structure; Strategy; Retailer; Policy; Order; Variance; Inventory; Costs; Options; Variability; Performance; Performance enhancement; Firms;
Dampening variability by using smoothing replenishment rules.
A major cause of supply chain deficiencies is the bullwhip effect which can be substantial even over a single echelon. This effect refers to the tendency of the variance of the replenishment orders to increase as it moves up a supply chain. Supply chain managers experience this variance amplification in both inventory levels and replenishment orders. As a result, companies face shortages or bloated inventories, run-away transportation and warehousing costs and major production adjustment costs. In this article we analyse a major cause of the bullwhip effect and suggest a remedy. We focus on a smoothing replenishment rule that is able to reduce the bullwhip effect across a single echelon. In general, dampening variability in orders may have a negative impact on customer service due to inventory variance increases. We therefore quantify the variance of the net stock and compute the required safety stock as a function of the smoothing required. Our analysis shows that bullwhip can be satisfactorily managed without unduly increasing stock levels to maintain target fill rates.Bullwhip effect; Companies; Cost; Costs; Impact; Inventory; Managers; Order; Replenishment rule; Rules; Safety stock; Supply chain; Supply chain management; Variability; Variance; Variance reduction;
A technique to develop simplified and linearised models of complex dynamic supply chain systems
There is a need to identify and categorise different types of nonlinearities that commonly appear in supply chain dynamics models, as well as establishing suitable methods for linearising and analysing each type of nonlinearity. In this paper simplification methods to reduce model complexity and to assist in gaining system dynamics insights are suggested. Hence, an outcome is the development of more accurate simplified linear representations of complex nonlinear supply chain models. We use the highly cited Forrester production-distribution model as a benchmark supply chain system to study nonlinear control structures and apply appropriate analytical control theory methods. We then compare performances of the linearised model with numerical solutions of the original nonlinear model and with other previous research on the same model. Findings suggest that more accurate linear approximations can be found. These simplified and linearised models enhance the understanding of the system dynamics and transient responses, especially for inventory and shipment responses. A systematic method is provided for the rigorous analysis and design of nonlinear supply chain dynamics models, especially when overly simplistic linear relationship assumptions are not possible or appropriate. This is a precursor to robust control system optimisation
Is the Kaiser Permanente model superior in terms of clinical integration?: a comparative study of Kaiser Permanente, Northern California and the Danish healthcare system
<p>Abstract</p> <p>Background</p> <p>Integration of medical care across clinicians and settings could enhance the quality of care for patients. To date, there is limited data on the levels of integration in practice. Our objective was to compare primary care clinicians' perceptions of clinical integration and three sub-aspects in two healthcare systems: Kaiser Permanente, Northern California (KPNC) and the Danish healthcare system (DHS). Further, we examined the associations between specific organizational factors and clinical integration within each system.</p> <p>Methods</p> <p>Comparable questionnaires were sent to a random sample of primary care clinicians in KPNC (n = 1103) and general practitioners in DHS (n = 700). Data were analysed using multiple logistic regression models.</p> <p>Results</p> <p>More clinicians in KPNC perceived to be part of a clinical integrated environment than did general practitioners in the DHS (OR = 3.06, 95% CI: 2.28, 4.12). Further, more KPNC clinicians reported timeliness of information transfer (OR = 2.25, 95% CI: 1.62, 3.13), agreement on roles and responsibilities (OR = 1.79, 95% CI: 1.30, 2.47) and established coordination mechanisms in place to ensure effective handoffs (OR = 6.80, 95% CI: 4.60, 10.06). None of the considered organizational factors in the sub-country analysis explained a substantial proportion of the variation in clinical integration.</p> <p>Conclusions</p> <p>More primary care clinicians in KPNC reported clinical integration than did general practitioners in the DHS. Focused measures of clinical integration are needed to develop the field of clinical integration and to create the scientific foundation to guide managers searching for evidence based approaches.</p
- …