1,330 research outputs found

    Broadband VLA Spectral Line Survey of a Sample of Ionized Jet Candidates

    Full text link
    The study of the interaction between ionized jets, molecular outflows and their environments is critical to understanding high-mass star formation, especially because jets and outflows are thought to be key in the transfer of angular momentum outwards from accretion disks. We report a low-spectral resolution VLA survey for hydrogen radio recombination lines, OH, NH3_3, and CH3_3OH lines toward a sample of 58 high-mass star forming regions that contain numerous ionized jet candidates. The observations are from a survey designed to detect radio continuum; the novel aspect of this work is to search for spectral lines in broadband VLA data (we provide the script developed in this work to facilitate exploration of other datasets). We report detection of 25\,GHz CH3_3OH transitions toward ten sources; five of them also show NH3_3 emission. We found that most of the sources detected in CH3_3OH and NH3_3 have been classified as ionized jets or jet candidates and that the emission lines are coincident with, or very near (0.1\lesssim 0.1 pc) these sources, hence, these molecular lines could be used as probes of the environment near the launching site of jets/outflows. No radio recombination lines were detected, but we found that the RMS noise of stacked spectra decreases following the radiometer equation. Therefore, detecting radio recombination lines in a sample of brighter free-free continuum sources should be possible. This work demonstrates the potential of broadband VLA continuum observations as low-resolution spectral line scans.Comment: 38 pages, 19 figures. Accepted for publication in The Astrophysical Journal Supplement Serie

    Stability of the Horizontal Curvature of the LHC Cryodipoles During Cold Tests

    Get PDF
    The LHC will be composed of 1232 horizontally curved, 15 meter long, superconducting dipole magnets cooled at 1.9 K. They are supported within their vacuum vessel by three Glass Fiber Reinforced Epoxy (GFRE) support posts. Each cryodipole is individually cold tested at CERN before its installation and interconnection in the LHC 27 km circumference tunnel. As the magnet geometry under cryogenic operation is extremely important for the LHC machine aperture, a new method has been developed at CERN in order to monitor the magnet curvature change between warm and cold states. It enabled us to conclude that there is no permanent horizontal curvature change of the LHC dipole magnet between warm and cold states, although a systematic horizontal transient deformation during cool-down was detected. This deformation generates loads in the dipole supporting system; further investigation permitted us to infer this behavior to the asymmetric thermal contraction of the rigid magnet thermal shield during cool-down. Controlling the helium flow rate in the thermal shield of the cryomagnet enabled us to reduce the maximal deformation by a factor of approximately two, thus increasing significantly the mechanical safety margin of the supporting system during the CERN cold tests

    Evidence of strong antiferromagnetic coupling between localized and itinerant electrons in ferromagnetic Sr2FeMoO6

    Full text link
    Magnetic dc susceptibility (χ\chi) and electron spin resonance (ESR) measurements in the paramagnetic regime, are presented. We found a Curie-Weiss (CW) behavior for χ\chi(T) with a ferromagnetic Θ=446(5)\Theta = 446(5) K and μeff=4.72(9)μB/f.u.\mu_{eff} = 4.72(9) \mu_{B}/f.u., this being lower than that expected for either Fe3+(5.9μB)Fe^{3+}(5.9\mu_{B}) or Fe2+(4.9μB)Fe^{2+}(4.9\mu_{B}) ions. The ESR g-factor g=2.01(2)g = 2.01(2), is associated with Fe3+Fe^{3+}. We obtained an excellent description of the experiments in terms of two interacting sublattices: the localized Fe3+Fe^{3+} (3d53d^{5}) cores and the delocalized electrons. The coupled equations were solved in a mean-field approximation, assuming for the itinerant electrons a bare susceptibility independent on TT. We obtained χe0=3.7\chi_{e}^{0} = 3.7 10410^{-4} emu/mol. We show that the reduction of μeff\mu_{eff} for Fe3+Fe^{3+} arises from the strong antiferromagnetic (AFM) interaction between the two sublattices. At variance with classical ferrimagnets, we found that Θ\Theta is ferromagnetic. Within the same model, we show that the ESR spectrum can be described by Bloch-Hasegawa type equations. Bottleneck is evidenced by the absence of a gg-shift. Surprisingly, as observed in CMR manganites, no narrowing effects of the ESR linewidth is detected in spite of the presence of the strong magnetic coupling. These results provide evidence that the magnetic order in Sr2FeMoO6Sr_{2}FeMoO_{6} does not originates in superexchange interactions, but from a novel mechanism recently proposed for double perovskites

    Asymmetric Primitive-Model Electrolytes: Debye-Huckel Theory, Criticality and Energy Bounds

    Full text link
    Debye-Huckel (DH) theory is extended to treat two-component size- and charge-asymmetric primitive models, focussing primarily on the 1:1 additive hard-sphere electrolyte with, say, negative ion diameters, a--, larger than the positive ion diameters, a++. The treatment highlights the crucial importance of the charge-unbalanced ``border zones'' around each ion into which other ions of only one species may penetrate. Extensions of the DH approach which describe the border zones in a physically reasonable way are exact at high TT and low density, ρ\rho, and, furthermore, are also in substantial agreement with recent simulation predictions for \emph{trends} in the critical parameters, TcT_c and ρc\rho_c, with increasing size asymmetry. Conversely, the simplest linear asymmetric DH description, which fails to account for physically expected behavior in the border zones at low TT, can violate a new lower bound on the energy (which applies generally to models asymmetric in both charge and size). Other recent theories, including those based on the mean spherical approximation, have predicted trends in the critical parameters quite opposite to those established by the simulations.Comment: to appear in Physical Review

    Unmanned aerial vehicles (UAVs) as a tool for hazard assessment: The 2021 eruption of Cumbre Vieja volcano, La Palma Island (Spain)

    Get PDF
    Monitoring for assessment of natural disasters, such as volcanic eruptions, presents a methodological challenge for the scientific community. Here, we present Unmanned Aerial Vehicles (UAVs) as a feasible, precise, rapid and safe tool for real time monitoring of the impacts of a volcanic event during the Cumbre Vieja eruption on La Palma Island, Spain (2021). UAV surveys with optical RGB (Red-Green-Blue), thermal and multispectral sensors, and a water sampling device, were carried out in different areas affected by the lava flow, including the upper volcanic edifice and the lava delta formed on the coastal fringe of the island. Our results have provided useful information for the monitoring of the advance of the lava flow and its environmental consequences during the volcanic emergency. Our data shows how La Palma island's growth, with the formation of a new lava delta of 28 ha and a total volume of lava injected into the sea of 5,138,852 m3. Moreover, our Digital Elevation Model (DEM) simulated, with a 70 % accuracy, the probabilistic simulation of the possible path followed by the lava flow in the vicinity of the fissure from which the magma emanates. In addition, significant changes of seawater physical-chemical parameters were registered in coastal surface waters by the in situ seawater samples collected with the automatic water sampling device of our UAV. The first meters of the water column, due to the instant evaporation of the seawater in contact with the hot lava, produce an increase of temperature and salinity of up to 4–5 °C and up to 5 units, respectively.En prensa3,25

    Acrylic bone cements modified with graphene oxide: Mechanical, physical, and antibacterial properties

    Get PDF
    Bacterial infections are a common complication after total joint replacements (TJRs), the treatment of which is usually based on the application of antibiotic-loaded cements; however, owing to the increase in antibiotic-resistant microorganisms, the possibility of studying new antibacterial agents in acrylic bone cements (ABCs) is open. In this study, the antibacterial effect of formulations of ABCs loaded with graphene oxide (GO) between 0 and 0.5 wt. % was evaluated against Gram-positive bacteria: Bacillus cereus and Staphylococcus aureus, and Gram-negative ones: Salmonella enterica and Escherichia coli. It was found that the effect of GO was dependent on the concentration and type of bacteria: GO loadings ≥0.2 wt. % presented total inhibition of Gram-negative bacteria, while GO loadings ≥0.3 wt. % was necessary to achieve the same effect with Gram-positives bacteria. Additionally, the evaluation of some physical and mechanical properties showed that the presence of GO in cement formulations increased wettability by 17%, reduced maximum temperature during polymerization by 19%, increased setting time by 40%, and increased compressive and flexural mechanical properties by up to 17%, all of which are desirable behaviors in ABCs. The formulation of ABC loading with 0.3 wt. % GO showed great potential for use as a bone cement with antibacterial properties

    Micronutrient Adequacy in Preschool Children Attending Family Child Care Homes

    Get PDF
    Limited data is available on the micronutrient intake and adequacy in preschool children enrolled in family child care homes (FCCH). The goal of this paper is to describe the micronutrient adequacy relative to age-specific recommendations of preschool-aged children (aged 2–5 years) attending FCCH in Rhode Island (RI). Dietary data among younger preschoolers (aged 2–3 years), n = 245) and older preschoolers (aged 4–5 years), n = 121) in 118 RI FCCH (N = 366 children) were analyzed. Nutrient adequacy was assessed as the amount of nutrient per 1000 kcal of the diet that would meet the Institute of Medicine nutrient requirements (critical nutrient density), and it was compared to the observed nutrient densities of the children. The sodium:potassium ratio was also calculated. For most micronutrients, the observed density met or exceeded the recommendation, meaning the children’s intake was adequate. However, a high proportion of children had nutrient densities under the recommendation for vitamins D, E, K, and potassium (86.1%, 89.1%, 70.8%, and 99.2% of children, respectively). The mean vitamin B12, potassium, and zinc densities were statistically higher in younger vs. older preschoolers (p \u3c 0.05 for all). Low densities in calcium and vitamins K and B5 were more frequent in older children vs. younger children (p \u3c 0.05). In addition, older preschoolers had a higher sodium:potassium ratio than younger children (p \u3c 0.05). The micronutrient intake density was adequate for most nutrients. However, intake of some nutrients was of concern. Further attention to training and compliance in FCCH may improve the diet quality of those cared for in these settings

    Effect of pretreatment with low-frequency ultrasound on quality parameters in gulupa (Passiflora edulis sims) pulp

    Get PDF
    The Gulupa (Passiflora edulis f. edulis Sims) is an expression of South America’s tropics’ biodiversity, and a source of B vitamins and amino acids. It is a climacteric export fruit for which it is necessary to incorporate emerging technologies for its conservation and transport. This work investigated the effect of ultrasound on gulupa pulp and verified the stability of the characters of interest in the shelf life of 20 days. Six treatments and a control sample were used, evaluated in triplicate, and varied in frequency (30 and 40 kHz) with an exposure time of 10, 20, and 30 min. A statistical analysis of unidirectional variances and Dunnett’s test was used. It was found that the ultrasound treatments did not affect the pH or the titratable acidity. Soluble solid results presented a significant increase (p < 0.05) (from 13.4 to 14.8% w/v) in the antioxidant capacity (from 1.13 to 1.54 µmol Trolox Equivalent (TE)/g by the ABTS•+ (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Cationic Radical Assay and from 3.3 to 3.7 µmol TE/g by the DPPH· (2,2-diphenyl-1-picrilhydrazil) Radical Scavenging Assay). During the shelf life, ascorbic acid was the parameter that varied most (p < 0.05). It decreased from 42.7 to 21.6 mg ascorbic acid/100 g of pulp in the control sample. However, a smaller decrease was observed (23.8–24.5 mg ascorbic acid/100 g of pulp) in the 40 kHz treatments. The smallest global color difference (∆E) for the control was found in the 40 kHz treatment at 30 min through the entire shelf life (day 0 to 20). Ultrasound treatment offers a new strategy to improve and extend the shelf life of chilled gulupa pulp

    Energy efficiency considerations in integrated IT and optical network resilient infrastructures

    Get PDF
    The European Integrated Project GEYSERS - Generalised Architecture for Dynamic Infrastructure Services - is concentrating on infrastructures incorporating integrated optical network and IT resources in support of the Future Internet with special emphasis on cloud computing. More specifically GEYSERS proposes the concept of Virtual Infrastructures over one or more interconnected Physical Infrastructures comprising both network and IT resources. Taking into consideration the energy consumption levels associated with the ICT today and the expansion of the Internet in size and complexity, that incurring increased energy consumption of both IT and network resources, energy efficient infrastructure design becomes critical. To address this need, in the framework of GEYSERS, we propose energy efficient design of infrastructures incorporating integrated optical network and IT resources, supporting resilient end-to-end services. Our modeling results quantify significant energy savings of the proposed solution by jointly optimizing the allocation of both network and IT resources
    corecore