746 research outputs found
On deriving p-mode parameters for inclined solar-like stars
Thanks to their high quality, new and upcoming asteroseismic observations -
with CoRoT, Kepler, and from the ground... - can benefit from the experience
gained with helioseismology. We focus in this paper on solar-like oscillations,
for which the inclination of the rotation axis is unknown. We present a
theoretical study of the errors of p-mode parameters determined by means of a
maximum-likelihood estimator, and we also analyze correlations and biases. We
have used different, complementary approaches: we have performed either
semi-analytical computation of the Hessian matrix, fitting of single mean
profiles, or Monte Carlo simulations. We give first analytical approximations
for the errors of frequency, inclination and rotational splitting. The
determination of the inclination is very challenging for the common case of
slow rotators (like the Sun), making difficult the determination of a reliable
rotational splitting. Moreover, due to the numerous correlations, biases - more
or less significant - can appear in the determination of various parameters in
the case of bad inclination fittings, especially when a locking at 90 degrees
occurs. This issue concerning inclination locking is also discussed.
Nevertheless, the central frequency and some derived parameters such as the
total power of the mode are free of such biases.Comment: 9 pages, 6 figures, to appear in A&
On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors
Aims. Deriving accurate frequencies, amplitudes, and mode lifetimes from
stochastically driven pulsation is challenging, more so, if one demands that
realistic error estimates be given for all model fitting parameters. As has
been shown by other authors, the traditional method of fitting Lorentzian
profiles to the power spectrum of time-resolved photometric or spectroscopic
data via the Maximum Likelihood Estimation (MLE) procedure delivers good
approximations for these quantities. We, however, show that a conservative
Bayesian approach allows one to treat the detection of modes with minimal
assumptions (i.e., about the existence and identity of the modes).
Methods. We derive a conservative Bayesian treatment for the probability of
Lorentzian profiles being present in a power spectrum and describe an efficient
implementation that evaluates the probability density distribution of
parameters by using a Markov-Chain Monte Carlo (MCMC) technique.
Results. Potentially superior to "best-fit" procedure like MLE, which only
provides formal uncertainties, our method samples and approximates the actual
probability distributions for all parameters involved. Moreover, it avoids
shortcomings that make the MLE treatment susceptible to the built-in
assumptions of a model that is fitted to the data. This is especially relevant
when analyzing solar-type pulsation in stars other than the Sun where the
observations are of lower quality and can be over-interpreted. As an example,
we apply our technique to CoRoT observations of the solar-type pulsator HD
49933.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
Exoplanets or Dynamic Atmospheres? The Radial Velocity and Line Shape Variations of 51 Pegasi and Tau Bootis
Because of our relatively low spectral resolution, we compare our
observations with Gray's line bisector data by fitting observed line profiles
to an expansion in terms of orthogonal (Hermite) functions. To obtain an
accurate comparison, we model the emergent line profiles from rotating and
pulsating stars, taking the instrumental point spread function into account. We
describe this modeling process in detail.
We find no evidence for line profile or strength variations at the radial
velocity period in either 51 Peg or in Tau Boo. For 51 Peg, our upper limit for
line shape variations with 4.23-day periodicity is small enough to exclude with
10 sigma confidence the bisector curvature signal reported by Gray & Hatzes;
the bisector span and relative line depth signals reported by Gray (1997) are
also not seen, but in this case with marginal (2 sigma) confidence. We cannot,
however, exclude pulsations as the source of 51 Peg's radial velocity
variation, because our models imply that line shape variations associated with
pulsations should be much smaller than those computed by Gray & Hatzes; these
smaller signals are below the detection limits both for Gray & Hatzes' data and
for our own.
Tau Boo's large radial velocity amplitude and v*sin(i) make it easier to test
for pulsations in this star. Again we find no evidence for periodic line-shape
changes, at a level that rules out pulsations as the source of the radial
velocity variability. We conclude that the planet hypothesis remains the most
likely explanation for the existing data.Comment: 44 pages, 19 figures, plain TeX, accepted to ApJS (companion to
letter astro-ph/9712279
Calculation of Spectral Darkening and Visibility Functions for Solar Oscillations
Calculations of spectral darkening and visibility functions for the
brightness oscillations of the Sun resulting from global solar oscillations are
presented. This has been done for a broad range of the visible and infrared
continuum spectrum. The procedure for the calculations of these functions
includes the numerical computation of depth-dependent derivatives of the
opacity caused by p modes in the photosphere. A radiative-transport code was
used for this purpose to get the disturbances of the opacities from temperature
and density fluctuations. The visibility and darkening functions are obtained
for adiabatic oscillations under the assumption that the temperature
disturbances are proportional to the undisturbed temperature of the
photosphere. The latter assumption is the only way to explore any opacity
effects since the eigenfunctions of p-mode oscillations have not been obtained
so far. This investigation reveals that opacity effects have to be taken into
account because they dominate the violet and infrared part of the spectrum.
Because of this dominance, the visibility functions are negative for those
parts of the spectrum. Furthermore, the darkening functions show a
wavelength-dependent change of sign for some wavelengths owing to these opacity
effects. However, the visibility and darkening functions under the assumptions
used contradict the observations of global p-mode oscillations, but it is
beyond doubt that the opacity effects influence the brightness fluctuations of
the Sun resulting from global oscillations
Polysorbate 80 Inhibition of Pseudomonas aeruginosa Biofilm Formation and Its Cleavage by the Secreted Lipase LipA
Surface-associated bacterial communities known as biofilms are an important source of nosocomial infections. Microorganisms such as Pseudomonas aeruginosa can colonize the abiotic surfaces of medical implants, leading to chronic infections that are difficult to eradicate. Our study demonstrates that polysorbate 80 (PS80), a surfactant commonly added to food and medicines, is able to inhibit biofilm formation by P. aeruginosa on a variety of surfaces, including contact lenses
Toxicokinetics of bisphenol-S and its glucuronide in plasma and urine following oral and dermal exposure in volunteers for the interpretation of biomonitoring data
The measurement of bisphenol-S (BPS) and its glucurono-conjugate (BPSG) in urine may be used for the biomonitoring of exposure in populations. However, this requires a thorough knowledge of their toxicokinetics. The time courses of BPS and BPSG were assessed in accessible biological matrices of orally and dermally exposed volunteers. Under the approval of the Research Ethics Committee of the University of Montreal, six volunteers were orally exposed to a BPS-d8 deuterated dose of 0.1 mg/kg body weight (bw). One month later, 1 mg/kg bw of BPS-d8 were applied on 40 cm2 of the forearm and then washed 6 h after application. Blood samples were taken prior to dosing and at fixed time periods over 48 h after treatment; complete urine voids were collected pre-exposure and at pre-established intervals over 72 h postdosing. Following oral exposure, the plasma concentrationâtime courses of BPS-d8 and BPSG-d8 over 48 h evolved in parallel, and showed a rapid appearance and elimination. Average peak values (±SD) were reached at 0.7 ± 0.1 and 1.1 ± 0.4 h postdosing and mean (±SD) apparent elimination half-lives (tÂœ) of 7.9 ± 1.1 and 9.3 ± 7.0 h were calculated from the terminal phase of BPS-d8 and BPSG-d8 in plasma, respectively. The fraction of BPS-d8 reaching the systemic circulation unchanged (i.e. bioavailability) was further estimated at 62 ± 5% on average (±SD) and the systemic plasma clearance at 0.57 ± 0.07 L/kg bw/h. Plasma concentrationâtime courses and urinary excretion rate profiles roughly evolved in parallel for both substances, as expected. The average percent (±SD) of the administered dose recovered in urine as BPS-d8 and BPSG-d8 over the 0â72 h period postdosing was 1.72 ± 1.3 and 54 ± 10%. Following dermal application, plasma levels were under the lower limit of quantification (LLOQ) at most time points. However, peak values were reached between 5 and 8 h depending on individuals, suggesting a slower absorption rate compared to oral exposure. Similarly, limited amounts of BPS-d8 and its conjugate were recovered in urine and peak excretion rates were reached between 5 and 11 h postdosing. The average percent (±SD) of the administered dose recovered in urine as BPS-d8 and BPSG-d8 was about 0.004 ± 0.003 and 0.09 ± 0.07%, respectively. This study provided greater precision on the kinetics of this contaminant in humans and, in particular, evidenced major differences between BPA and BPS kinetics with much higher systemic levels of active BPS than BPA, an observation explained by a higher oral bioavailability of BPS than BPA. These data should also be useful in developing a toxicokinetic model for a better interpretation of biomonitoring data
Skin manifestations among GATA2-deficient patients
International audienceGATA2 mutations have been identified in various diseases, such as MonoMAC syndrome, Emberger syndrome, familial myelodysplastic syndrome, acute myeloid leukaemia and dendritic cell, monocyte, B-cell and natural killer-cell deficiency. These syndromes present a wide range of clinical features, dominated by severe infections and haematological disorders such as myelodysplastic syndrome. Up to 70% of patients with GATA2 mutations have dermatological features, mainly genital or extragenital warts, panniculitis or erythema nodosum and lymphoedema. We report three patients presenting with common dermatological and haematological features leading to the diagnosis of GATA2 deficiency, but also with skin manifestations that have not been previously described gingival hypertrophy, macroglossitis and glossitis and granulomatous lupoid facial lesions. Dermatologists can encounter patients with GATA2 mutations and should recognize this disorder
PHIL photoinjector test line
LAL is now equiped with its own platform for photoinjectors tests and
Research and Developement, named PHIL (PHotoInjectors at LAL). This facility
has two main purposes: push the limits of the photoinjectors performances
working on both the design and the associated technology and provide a low
energy (MeV) short pulses (ps) electron beam for the interested users. Another
very important goal of this machine will be to provide an opportunity to form
accelerator physics students, working in a high technology environment. To
achieve this goal a test line was realised equipped with an RF source, magnets
and beam diagnostics. In this article we will desrcibe the PHIL beamline and
its characteristics together with the description of the first two
photoinjector realised in LAL and tested: the ALPHAX and the PHIN RF Guns
Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters
Quantitative helio- and asteroseismology require very precise measurements of
the frequencies, amplitudes, and lifetimes of the global modes of stellar
oscillation. It is common knowledge that the precision of these measurements
depends on the total length (T), quality, and completeness of the observations.
Except in a few simple cases, the effect of gaps in the data on measurement
precision is poorly understood, in particular in Fourier space where the
convolution of the observable with the observation window introduces
correlations between different frequencies. Here we describe and implement a
rather general method to retrieve maximum likelihood estimates of the
oscillation parameters, taking into account the proper statistics of the
observations. Our fitting method applies in complex Fourier space and exploits
the phase information. We consider both solar-like stochastic oscillations and
long-lived harmonic oscillations, plus random noise. Using numerical
simulations, we demonstrate the existence of cases for which our improved
fitting method is less biased and has a greater precision than when the
frequency correlations are ignored. This is especially true of low
signal-to-noise solar-like oscillations. For example, we discuss a case where
the precision on the mode frequency estimate is increased by a factor of five,
for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a
proper treatment of the frequency correlations does not provide any significant
improvement; nevertheless we confirm that the mode frequency can be measured
from gapped data at a much better precision than the 1/T Rayleigh resolution.Comment: Accepted for publication in Solar Physics Topical Issue
"Helioseismology, Asteroseismology, and MHD Connections
Quantitative kinetics and enthalpy measurements of biphasic underflow chemical reactions by InfraRed Thermography
Abstract The scope of this paper is to present the experimental study of a well known chemical reaction in a biphasic millifluidic droplet flow by using InfraRed Thermography. This simple thermal evaluation enables the characterization of kinetics and enthalpy of exothermic chemical reactions. The originality of this work is the application of a very simple thermal model based on an homogenized thin body approximation to perform calorimetric estimations. This novel calorimeter needs a thermal calibration step to estimate the heat losses (W). Then, a correlation method is applied for the simultaneous estimation of the heat source (Ï) and the characteristic coefficient due the convective effects (H). Here the estimation of the characteristic coefficient H (s â1 ) is done at each flow rate ratio (R). This procedure is applied for several chemical reaction performed at different flow rate ratios. Then, the enthalpy is estimated with an error lower than 2%. In addition, the methodology to estimate the mixing kinetics of the reaction can be pointed out by the integrated flux over the time. Finally, a non contact thermal calorimeter based on millifluidic and IR thermography was developed. It is a convenient and powerful tool for the characterization of chemical reaction performed in a droplet flow
- âŠ