127 research outputs found

    Final S020 Skylab experiment report

    Get PDF
    After the loss of the meteroid shield required using the solar scientific airlock to erect the sun shade, methods were improvised to operate the S020 experiment on EVA's. Almost no data was obtained in the wavelength range 10 to 110 A. From 110 to 280 A the spectra were 10 to 100 time less intense than expected. A probable cause in loss of instrument sensitivity is the contamination of the filters by the spacecraft coolant. A list of observed lines in presented. Although less data was obtained than expected, several lines not previously observed were recorded; and the spectra serve to confirm many very faintly observed weak lines recorded from sounding rockets by other experiments

    On the Size of Structures in the Solar Corona

    Get PDF
    Fine-scale structure in the corona appears not to be well resolved by current imaging instruments. Assuming this to be true offers a simple geometric explanation for several current puzzles in coronal physics, including: the apparent uniform cross-section of bright threadlike structures in the corona; the low EUV contrast (long apparent scale height) between the top and bottom of active region loops; and the inconsistency between loop densities derived by spectral and photometric means. Treating coronal loops as a mixture of diffuse background and very dense, unresolved filamentary structures address these problems with a combination of high plasma density within the structures, which greatly increases the emissivity of the structures, and geometric effects that attenuate the apparent brightness of the feature at low altitudes. It also suggests a possible explanation for both the surprisingly high contrast of EUV coronal loops against the coronal background, and the uniform ``typical'' height of the bright portion of the corona (about 0.3 solar radii) in full-disk EUV images. Some ramifications of this picture are discussed, including an estimate (10-100 km) of the fundamental scale of strong heating events in the corona.Comment: To appear in APJ, June 2007; as accepted Feb 200

    Photographs of coronal streamers from a rocket on 9 May 1967

    Get PDF
    Analysis of coronal streamers photographed by white light coronagraphs flown on Aerobee 150 vehicl

    Recent Extreme Ultraviolet Solar Spectra and Spectroheliograms

    Get PDF
    Extreme ultraviolet solar spectra and spectroheliogram analyse

    Extreme ultraviolet heliograms and the sun's corona

    Get PDF
    Design of spectroheliograph to detect solar coron

    Down on de Banks ob de Mississippi Ribber / music by Chas Coleman; words by R. A. Browne

    Get PDF
    Cover: drawing of an African American male lying on a river bank, fishing line between his toes, waiting for a catch; description reads a Mississippi Cat-Fish Nig; Publisher: Frank Tousey\u27s Publishing House (New York)https://egrove.olemiss.edu/sharris_a/1026/thumbnail.jp

    The Temperature Dependence of Solar Active Region Outflows

    Full text link
    Spectroscopic observations with the EUV Imaging Spectrometer (EIS) on Hinode have revealed large areas of high speed outflows at the periphery of many solar active regions. These outflows are of interest because they may connect to the heliosphere and contribute to the solar wind. In this Letter we use slit rasters from EIS in combination with narrow band slot imaging to study the temperature dependence of an active region outflow and show that it is more complicated than previously thought. Outflows are observed primarily in emission lines from Fe XI - Fe XV. Observations at lower temperatures (Si VII), in contrast, show bright fan-like structures that are dominated by downflows. The morphology of the outflows is also different than that of the fans. This suggests that the fan loops, which often show apparent outflows in imaging data, are contained on closed field lines and are not directly related to the active region outflows.Comment: Movies are available online at: http://tcrb.nrl.navy.mil/~hwarren/temp/papers/flow_temperatures/ To be submitted to ApJ
    corecore