2 research outputs found

    Finite element simulation of the healthy and degenerated lumbar spine : interplay between muscle activity and intervertebral disc multiphysics

    Get PDF
    The human spine provides mechanical support to the trunk while it protects the spinal cord and nerves from the external loads transferred during daily activities. Such loads are largely controlled by the spine muscles and influence the biophysical regulation of the intervertebral discs (IVD). Numerical models have been important tools for the translation of the external forces into internal loads that otherwise cannot be easily measured directly. This PhD thesis used the predictive ability of constitutive equations to reflect the mechanical properties of the lumbar IVD and muscles and explore the IVD-muscle interplay on the healthy and degenerated spine. A review of the state-of-the-art reported for the estimation of spine loads was performed, and the Hill驴s mus cle model and the poro-hyperelastic formulations used for IVD modeling were particularly detailed. A new constitutive equation assembly was proposed involving one active parameter controlled via strain-based criteria, and four passive parameters. For the latters, literature-based values were initially defined, and a parametric study was designed for the active parameter by proposing stretch-related activation thresholds. An optimization scheme was then developed to define a full set of calibrated values per fascicle using force estimations from a reported rigid body model based on measured kinematics of the vertebrae. To test the robustness of the method, a generic L3-S1 finite element (FE) model was developed that included 46 muscle fascicles and all passive issues. Simulation of forward flexion showed that the predicted muscle forces increased in caudal direction. The intradiscal pressure (IDP) predictions correlated with previous in vivo measurements showing the ability of the model to capture realistic internal loads. To simulate standing, the gravity loads were defined by considering the heterogeneous distribution of body volumes along the trunk. This simulation was also coupled to a previous 8-hour free IVD swelling to mimic the overnight disc hydration. Disc swelling led to muscle activation and force distributions that seemed particularly appropriate to counterbalance the gravity loads, pointing out the likely existence of a functional balance between stretch-induced muscle activation and IVD multiphysics. A geometrical extension was then performed to incorporate all relevant tissues of the full lumbar spine including in total 96 fascicles. The effect of previous rest (PR) and muscle presence (MS) on internal loads was explored in standing and lying. Muscle force predictions in standing showed that with PR, the total loads transferred were altered from compressive to tensile. Overnight, the computed IDP increase reproduced previous in vivo data. Both PR and MS affected the vertebrae motion particularly between L1-L2. When degenerated discs properties were used, a general IDP decrease and up to 14 times higher activation was predicted in standing with PR.At last, the previous workflow was repeated using a patient L1-S1 FE model with patient-specific (P-SP) and condition-depended material properties. In standing, asymmetric fascicle activation with increased shortening at the left side and lateral bending was predicted. The decreased swelling capacity of the degenerated discs was associated to an increased muscle activation needed to balance the gravity loads that tended to flex forward the trunk. Comparisons of the IDP results in both models with healthy discs showed that introducing P-SP geometries gave better correlations with in vivo data. Given the difficulties to evaluate the predicted muscle forces experimentally, such outcome further contributed to the validation of the method. Despite its limitations, this approach allowed to explicitly and rationally explore the interactions between muscle function and passive tissue biomechanics in the lumbar spine. The information provided could help clinical decision for patients whom source of back pain is unclearLa columna vertebral proporciona suport mec脿nic al tors alhora que protegeix la medul路la espinal i els nervis de les forces externes transferides durant les activitats di脿ries. Aquestes forces s贸n controlades en gran part pels m煤sculs espinals i influeixen en la regulaci贸 biof铆sica dels discos intervertebrals (IVD).Els models num猫rics han estat eines importants per a la traducci贸 de les forces externes en c脿rregues internes que d'altra manera no poden ser f脿cilment mesurades directament.Aquesta tesi utilitza la capacitat predictiva de les equacions constitutives per considerar les propietats mec脿niques dels discs lumbars i dels m煤sculs i explorar la interacci贸 IVD-m煤scul a la columna vertebral sana i degenerada. Es va realitzar una revisi贸 de l'estat de l'art dels m猫todes reportats per l'estimaci贸 de les c脿rregues, i es van detallar particularment el model muscular de Hill i les formulacions poro-hiperel脿stics utilitzades per a la modelitzaci贸 del disc. Es va proposar un model noved贸s d'equacions cons titutives implicant un par脿metre actiu controlat a trav茅s de criteris basats en la deformaci贸, i quatre par脿metres passius. Per aquests 煤ltims, es van definir uns valors inicialment basats en la literatura, mentre que pel par脿metre actiu es va realitzar un estudi param猫tric per proposar els llindars d'activaci贸 relacionats amb l'estirament.A continuaci贸,es va desenvolupar un esquema d'optimitzaci贸 per definir un conjunt complet de valors calibrats per fascicle utilitzant estimacions de forces d'un model de cos r铆gid de la literatura basat en la cinem脿tica de les v猫rtebres mesurada. Per comprovar la robustesa del m猫tode, es va desenvolupar un model L3-S1 d'elements finits (FE) incloent 46 fascicles musculars i tots els teixits passius. La simulaci贸 de flexi贸 anterior va mostrar que les forces musculars predites van augmentar en direcci贸 caudal. Les prediccions de pressi贸 intradiscal (IDP) es van correlacionar amb mesures "in vivo" mostrant aix铆 la capacitat del model per capturar les c脿rregues internes reals.Per simular la posici贸 dempeus , les c脿rregues de gravetat es van definir considerant la distribuci贸 heterog猫nia dels volums del cos al llarg del tronc. A m茅s, aquesta simulaci贸 es va acoblar amb un inflament previ del IVD de 8 hores per imitar la hidrataci贸 del disc durant la nit. L'inflament del disc va induir activaci贸 muscular i una distribuci贸 de forces que semblaven particularment apropiades per a contrarestar les c脿rregues de gravetat, assenyalant la probable exist猫ncia d'un equilibri funcional entre l'activaci贸 muscular i la multif铆sica del disc. Despr茅s es va realitzar una extensi贸 geom猫trica del model per incorporar tots els teixits pertinents de la columna lumbar completa incloent un total de 94 fascicles. L'efecte del rep貌s previ (PR) i la pres猫ncia de m煤scul (MS) sobre les c脿rregues internes va ser explorat en posici贸 dempeus i es tirada. Durant la nit, l'augment de l'IDP computat va confirmar dades anteriors "in vivo". Quan es van definir propietats degenerades als discs, es va predir una disminuci贸 general de l'IDP i una activaci贸 fins a 14 vegades m茅s alta en peu amb PR. Per 煤ltim, les simulacions es van repetir utilitzant un model L1-S1 FE de pacient amb propietats del material espec铆fics pel pacient (P-SP) i dependents de la condici贸 del teixit. Dempeus, es va predir una activaci贸 asim猫trica a la banda esquerra i inclinaci贸 lateral.La disminuci贸 de la capacitat d'inflament dels discs degenerats es va associar a un augment de l'activaci贸 muscular necess脿ria per equilibrar les forces de gravetat que tendeixen a flexionar el tronc. La bona correlaci贸 dels resultats de l'IDP en el model P-SP amb discos s ans amb dades "in vivo" va contribuir a la validaci贸 del m猫tode presentat. Malgrat les seves limitacions, aquest enfoc va permetre explorar de manera expl铆cita i racional les interaccions entre la funci贸 muscular i la biomec脿nica dels teixits passius i contribuir a l'enteniment de l'origen de mal d'esquena.Postprint (published version

    Muscle response to intervertebral disc degeneration in generic and patient-specific biomechanical models article: Toumanidou, Dao, Pozo, Frangi, Gonz谩lez-Ballester, Ho Ba Tho, Noailly

    No full text
    These data correspond to the simulations and computational results reported in the paper: "Rational explorations of the muscle response to intervertebral disc degeneration in generic and patient-specific lumbar spine biomechanical models", which is submitted for publication in Scientific Reports.<div><br></div><div>The Abaqus inp files (ASCII) include all the pre-processing, material parameter values and analysis information to reproduce our study and results. The Fortran subroutines (.for) describe the constitutive laws used to define the material properties of the intervertebral discs, ligaments and muscles for the generic and patient-specific model separately. The .dat files (ASCII) include all the Abaqus/Standard Analysis data of the simulations that were completed successfully, such as job time summary, problem size etc. </div><div><br></div><div>The file "description.doc" describes all Abaqus input files and Fortran programs used in this study.</div
    corecore