120 research outputs found

    Determining the chiral condensate from the distribution of the winding number beyond topological susceptibility

    Get PDF
    The first two non-trivial moments of the distribution of the topological charge (or gluonic winding number), i.e., the topological susceptibility and the fourth cumulant, can be computed in lattice QCD simulations and exploited to constrain the pattern of chiral symmetry breaking. We compute these two topological observables at next-to-leading order in three-flavour Chiral Perturbation Theory, and we discuss the role played by the eta propagation in these expressions. For hierarchies of light-quark masses close to the physical situation, we show that the fourth cumulant has a much better sensitivity than the topological susceptibility to the three-flavour quark condensate, and thus constitutes a relevant tool to determine the pattern of chiral symmetry breaking in the limit of three massless flavours. We provide the complete formulae for the two topological observables in the isospin limit, and predict their values in the particular setting of the recent analysis of the RBC/UKQCD collaboration. We show that a combination of the topological susceptibility and the fourth cumulant is able to pin down the three-flavour condensate in a particularly clean way in the case of three degenerate quarks.Comment: 31 pages, 7 figures. Accepted for publication in EPJ

    Chiral dynamics with strange quarks in the light of recent lattice simulations

    Get PDF
    Several lattice collaborations performing simulations with 2+1 light dynamical quarks have experienced difficulties in fitting their data with standard Nf=3 chiral expansions at next-to-leading order, yielding low values of the quark condensate and/or the decay constant in the Nf=3 chiral limit. A reordering of these expansions seems required to analyse these data in a consistent way. We discuss such a reordering, known as Resummed Chiral Perturbation Theory, in the case of pseudoscalar masses and decay constants, pion and kaon electromagnetic form factors and Kl3} form factors. We show that it provides a good fit of the recent results of two lattice collaborations (PACS-CS and RBC/UKQCD). We describe the emerging picture for the pattern of chiral symmetry breaking, marked by a strong dependence of the observables on the strange quark mass and thus a significant difference between chiral symmetry breaking in the Nf=2 and Nf=3 chiral limits. We discuss the consequences for the ratio of decay constants F_K/F_pi and the Kl3 form factor at vanishing momentum transfer.Comment: 31 pages. Published versio
    • …
    corecore