10,377 research outputs found

    Modelling nematohydrodynamics in liquid crystal devices

    Full text link
    We formulate a lattice Boltzmann algorithm which solves the hydrodynamic equations of motion for nematic liquid crystals. The applicability of the approach is demonstrated by presenting results for two liquid crystal devices where flow has an important role to play in the switching.Comment: 6 pages including 5 figure

    Hybrid A/D converter for 200 deg C operation

    Get PDF
    A 12 bit A/D converter was designed and developed which will operate at 200 C with .05 linearity, 1/accuracy, 350 WSec conversion time, and only 455 mW power consumption. This product also necessitated the development of a unique three metal system in which aluminum wire bonding is done utilizing aluminum bonding pads, gold wire bonding to all gold areas, and employment of a nickel interface between gold and aluminum connections. This system totally eliminates the formation of a intermetallics at the bonding interface which can lead to bond failure. This product represents an advancement in electronics as it proved the operation of integrated circuits at high temperature, as well as providing information about both the electrical and mechanical reliability of hybrid circuits at 200 C

    Quantum ergodicity for restrictions to hypersurfaces

    Full text link
    Quantum ergodicity theorem states that for quantum systems with ergodic classical flows, eigenstates are, in average, uniformly distributed on energy surfaces. We show that if N is a hypersurface in the position space satisfying a simple dynamical condition, the restrictions of eigenstates to N are also quantum ergodic.Comment: 22 pages, 1 figure; revised according to referee's comments. To appear in Nonlinearit

    The Twist of the Draped Interstellar Magnetic Field Ahead of the Heliopause: A Magnetic Reconnection Driven Rotational Discontinuity

    Full text link
    Based on the difference between the orientation of the interstellar BISMB_{ISM} and the solar magnetic fields, there was an expectation that the magnetic field direction would rotate dramatically across the heliopause (HP). However, the Voyager 1 spacecraft measured very little rotation across the HP. Previously we showed that the BISMB_{ISM} twists as it approaches the HP and acquires a strong T component (East-West). Here we establish that reconnection in the eastern flank of the heliosphere is responsible for the twist. On the eastern flank the solar magnetic field has twisted into the positive N direction and reconnects with the Southward pointing component of the BISMB_{ISM}. Reconnection drives a rotational discontinuity (RD) that twists the BISMB_{ISM} into the -T direction and propagates upstream in the interstellar medium towards the nose. The consequence is that the N component of BISMB_{ISM} is reduced in a finite width band upstream of the HP. Voyager 1 currently measures angles (ÎŽ=sin−1(BN/B)\delta=sin^{-1}(B_{N}/B)) close to solar values. We present MHD simulations to support this scenario, suppressing reconnection in the nose region while allowing it in the flanks, consistent with recent ideas about reconnection suppression from diamagnetic drifts. The jump in plasma ÎČ\beta (the plasma to magnetic pressure) across the nose of HP is much greater than in the flanks because the heliosheath ÎČ\beta is greater there than in the flanks. Large-scale reconnection is therefore suppressed in the nose but not at the flanks. Simulation data suggest that BISMB_{ISM} will return to its pristine value 10−15 AU10-15~AU past the HP.Comment: 19 pages, 5 figures, submitte

    Facial Expression Classification Using EEG and Gyroscope Signals

    Get PDF
    In this paper muscle and gyroscope signals provided by a low cost EEG headset were used to classify six different facial expressions. Muscle activities generated by facial expressions are seen in EEG data recorded from scalp. Using the already present EEG device to classify facial expressions allows for a new hybrid brain-computer interface (BCI) system without introducing new hardware such as separate electromyography (EMG) electrodes. To classify facial expressions, time domain and frequency domain EEG data with different sampling rates were used as inputs of the classifiers. The experimental results showed that with sampling rates and classification methods optimized for each participant and feature set, high accuracy classification of facial expressions was achieved. Moreover, adding information extracted from a gyroscope embedded into the used EEG headset increased the performance by an average of 9 to 16%

    Theory of correlations between ultra-cold bosons released from an optical lattice

    Full text link
    In this paper we develop a theoretical description of the correlations between ultra-cold bosons after free expansion from confinement in an optical lattice. We consider the system evolution during expansion and give criteria for a far field regime. We develop expressions for first and second order two-point correlations based on a variety of commonly used approximations to the many-body state of the system including Bogoliubov, meanfield decoupling, and particle-hole perturbative solution about the perfect Mott-insulator state. Using these approaches we examine the effects of quantum depletion and pairing on the system correlations. Comparison with the directly calculated correlation functions is used to justify a Gaussian form of our theory from which we develop a general three-dimensional formalism for inhomogeneous lattice systems suitable for numerical calculations of realistic experimental regimes.Comment: 18 pages, 11 figures. To appear in Phys. Rev. A. (few minor changes made and typos fixed

    Which Design and Biomaterial Factors Affect Clinical Wear Performance of Total Disc Replacements? A Systematic Review

    Get PDF
    Background Total disc replacement was clinically introduced to reduce pain and preserve segmental motion of the lumbar and cervical spine. Previous case studies have reported on the wear and adverse local tissue reactions around artificial prostheses, but it is unclear how design and biomaterials affect clinical outcomes. Questions/purposes Which design and material factors are associated with differences in clinical wear performance (implant wear and periprosthetic tissue response) of (1) lumbar and (2) cervical total disc replacements? Methods We performed a systematic review on the topics of implant wear and periprosthetic tissue response using an advanced search in MEDLINE and Scopus electronic databases. Of the 340 references identified, 33 were retrieved for full-text evaluation, from which 16 papers met the inclusion criteria (12 on lumbar disc replacement and five on cervical disc replacement; one of the included studies reported on both lumbar and cervical disc replacement), which involved semiquantitative analysis of wear and adverse local tissue reactions along with a description of the device used. An additional three papers were located by searching bibliographies of key articles. There were seven case reports, three case series, two case-control studies, and seven analytical studies. The Methodological Index for Non-randomized Studies (MINORS) Scale was used to score case series and case-control studies, which yielded mean scores of 10.3 of 16 and 17.5 of 24, respectively. In general, the case series (three) and case-control (two) studies were of good quality. Results In lumbar regions, metal-on-polymer devices with mobile-bearing designs consistently generated small and large polymeric wear debris, triggering periprosthetic tissue activation of macrophages and giant cells, respectively. In the cervical regions, metal-on-polymer devices with fixed-bearing designs had similar outcomes. All metal-on-metal constructs tended to generate small metallic wear debris, which typically triggered an adaptive immune response of predominantly activated lymphocytes. There were no retrieval studies on one-piece prostheses. Conclusions This review provides evidence that design and biomaterials affect the type of wear and inflammation. However, clinical study design, followup, and analytical techniques differ among investigations, preventing us from drawing firm conclusions about the relationship between implant design and wear performance for both cervical and lumbar total disc replacement

    Short-term Osteoclastic Activity Induced by Locally High Concentrations of Recombinant Human Bone Morphogenetic Protein–2 in a Cancellous Bone Environment

    Get PDF
    Study Design. An experimental study investigating osteoclastic activity induced by rhBMP-2 in sheep. Objective. To examine the effects of increasing local rhBMP-2 concentration on osteoclastic response and peri-implant bone resorption. Summary of Background Data. Level I clinical studies have established the safe and effective volume and concentration of rhBMP-2 delivered on an absorbable collagen sponge. However, peri-implant bone resorption appearing as decreased mineral density has been observed radiographically in rare instances after implantation of rhBMP-2 on an absorbable collagen sponge (rhBMP-2/ACS). Methods. Bilateral corticocancellous defects were created in the distal femora of 30 adult sheep. Combinations of rhBMP-2/ACS implant volume (V) (1V = normal fill or 2V = overfilled) and rhBMP-2 solution concentration (‫) (1 ‫ normal concentration or 3.5 ‫ = hyperconcentrated) resulted in local rhBMP-2 concentrations of 0‫, 1‫, 2‫, 3.5‫, and 7‫ the estimated effective concentration for this model. Faxitron radiography, quantitative CT, histology, and quantitative histomorphometry were conducted in a blinded fashion to analyze the effect of the treatments. Results. At 1 week, the normal fill-normal concentration implants (1‫) produced the least transient osteoclastic activity resulting in limited peri-implant resorption. Overfilledhyperconcentrated implants (2‫, 3.5‫) demonstrated moderate resorption zones. Overfilled-hyperconcentrated implants (7‫) demonstrated extensive osteoclastic activity and marked resorption. Results at 4 and 8 weeks revealed dense osteoid and bone in the voids with progressive bony healing. Control defects showed no osteoclastic activity with little to no bony healing. Conclusion. Increasing the local rhBMP-2 concentration by overfilling the defect with rhBMP-2/ACS or hyper-concentrating the rhBMP-2 solution on the absorbable collagen sponge led to a concentration-dependent osteoclastic resorption of peri-implant bone. The osteoclastic effect was transient, and progressive healing took place over the 8-week survival period

    Mechanical Behavior and Failure Analysis of Prosthetic Retaining Screws after Long‐term Use In Vivo. Part 3: Preload and Tensile Fracture Load Testing

    Get PDF
    Purpose: The aim of this study was to determine the preload and tensile fracture load values of prosthetic retaining screws after long‐term use in vivo compared to unused screws (controls). Additionally, the investigation addressed whether the preload and fracture load values of prosthetic retaining screws reported by the manufacturer become altered after long‐term use in vivo. Materials and Methods: For preload testing, 10 new screws (controls) from Nobel Biocare (NB) and 73 used retaining screws [58 from NB and 15 from Sterngold (SG)] were subjected to preload testing. For tensile testing, eight controls from NB and 58 used retaining screws (46 from NB and 12 from SG) were subjected to tensile testing. Used screws for both tests were in service for 18–120 months. A custom load frame, load cell, and torque wrench setup were used for preload testing. All 83 prosthetic screws were torqued once to 10 Ncm, and the produced preload value was recorded (N) using an X–Y plotter. Tensile testing was performed on a universal testing machine and the resulting tensile fracture load value was recorded (N). Preload and tensile fracture load values were analyzed with 2‐way ANOVA and Tukey post‐hoc tests. Results: There was a significant difference between preload values for screws from NB and screws from SG (p \u3c 0.001). The preload values for gold alloy screws from NB decreased as the number of years in service increased. There was a significant difference between tensile fracture values for the three groups (gold alloy screws from NB and SG and palladium alloy screws from NB) at p \u3c 0.001. The tensile fracture values for gold alloy screws from NB and SG decreased as the number of years in service increased. Conclusions: In fixed detachable hybrid prostheses, perhaps as a result of galling, the intended preload values of prosthetic retaining screws may decrease with increased in‐service time. The reduction of the fracture load value may be related to the increase of in‐service time; however, the actual determination of this relationship is not possible from this study alone
    • 

    corecore