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Abstract—In this paper muscle and gyroscope signals provided 
by a low cost EEG headset were used to classify six different 
facial expressions. Muscle activities generated by facial 
expressions are seen in EEG data recorded from scalp. Using the 
already present EEG device to classify facial expressions allows 
for a new hybrid brain-computer interface (BCI) system without 
introducing new hardware such as separate electromyography 
(EMG) electrodes. To classify facial expressions, time domain 
and frequency domain EEG data with different sampling rates 
were used as inputs of the classifiers. The experimental results 
showed that with sampling rates and classification methods 
optimized for each participant and feature set, high accuracy 
classification of facial expressions was achieved. Moreover, 
adding information extracted from a gyroscope embedded into 
the used EEG headset increased the performance by an average 
of 9 to 16%. 

I. INTRODUCTION 

 
    A brain-computer interface (BCI) is a system that allows an 
external device to be controlled by brain activities [1,2]. Thus, 
BCI enables severely disabled people such as tetraplegic / 
quadriplegic people to control assistive devices through their 
brain activities [2]. Electroencephalography (EEG) is a 
noninvasive technique that measures electrical brain activity 
through electrodes placed on the scalp. The majority of BCI 
systems use EEG for measuring brain activities due to its low 
cost and ease of use [1]. EEG based BCI is currently used for 
external device control through activities such as motor 
imagination [3] or P300 [4]. 
    One of the challenges in EEG-based BCI is the high level 
of noise and artifacts present in EEG signals [5]. A bi-product 
of having electrodes on the scalp is that local muscle signals 
are inadvertently detected. The magnitude of the voltage from 
muscle signals is several orders of magnitude greater than that 
of brain signals [6]. As such muscle induced voltages in EEG 
systems are often treated as artifacts to be removed [7]. 
    Hybrid BCI is a new approach to develop a more practical 
and accurate BCI by fusing data from other modalities with 
EEG signals [8]. In such a system disabled users are able to 
use more of their remaining functionalities as control 
possibilities in parallel with the BCI. There are 282,000 
people with spinal cord injury in the United States. 58.3% of 
which suffer from tetraplegia [9]. Being tetraplegic / 
quadriplegic results in limited voluntary muscle movement 
below the neck. However, most of these people exhibit 
voluntary control of their facial muscles. Therefore, a hybrid 
BCI system that fuses brain activities in parallel with 
information extracted from facial muscle signals can be 
potentially used in controlling assistive devices. Muscle 
activities generated by facial expressions are seen in EEG data 
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recorded from scalp. Using this already present EEG device 
to classify facial expressions allows for a new hybrid BCI 
without new hardware such as separate electromyography 
(EMG) electrodes. 
    Currently facial expressions can be detected through 
methods such as image processing [10] or EMG [11]. There 
are a number of inherent downsides to using image 
processing, namely the need for a camera facing the user’s 
face any time the system wants to be used. Facial expression 
detection through image processing also has limited 
functionality if light and pose are suboptimal [10]. 
    For the use of EMG, assuming non-invasive methods, the 
signal acquired is noisy, but with the correct electrode 
placement facial expressions are detectable [11]. Using the 
EEG headset electrodes on the forehead is effectively the 
same as using an EMG system. However in this case there 
will only be two electrodes on the forehead as opposed to 
many electrodes across the face covering all major muscle 
groups. In this paper we develop a facial expression 
classification method based on EEG and gyroscope data. For 
this purpose, data from an Emotiv Epoc+ was collected. The 
Epoc+ is relatively cheap compared to most other EEG 
recording devices [12]. The Epoc+ also contains a two axis 
gyroscope which allows for further degrees of control when 
movements such as head shaking is introduced. Among 
available Epoc+ electrodes, the frontal AF3 and AF4 
electrodes are used as the most prone to interference from 
facial muscle signals. 
     For this paper both time and frequency feature sets are 
explored to extract information from the EEG signals. The 
output of different facial expressions in both of these domains 
is analyzed using data collected from four participants. 
During preprocessing, for each participant the optimal 
features are chosen with the intent of increasing the 
classification accuracy. Multiple machine learning classifiers 
are used with the optimal classification technique for each 
participant and feature set being chosen. In addition, the 
gyroscope data is investigated in similar manor, with both the 
time and frequency domain features of all facial expressions 
investigated. A technique that allows for the beneficial use of 
the gyroscope is explored. 

 

II. EXPERIMENT 
 

A. Participants 

Four young adults between 20 and 22 years of age with no 
history of neurological illness of involuntary muscle 
movements participated in this study. Three males and one 
female participated with informed consent given. 
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B. EEG data acquisition 

An Emotiv Epoc+ [12] was used to collect EEG and 
gyroscope data. The Emotiv Epoc+ is a wireless EEG headset 
with 14 EEG channels and 2 reference channels. Compared to 
many other EEG headsets, the Epoc+ headset is cost effective, 
wireless, and non-gel based. Thus it represents a more 
practical and economic EEG acquisition device for daily 
applications out of the laboratory. Moreover, the two-axis 
gyroscope embedded in the headset provides information 
about head movements that can be used as complementary 
information in many EEG-based applications. 
    In this study, data from AF3, AF4 and the gyroscope were 
used for detecting different facial expressions. According to 
the international 10-20 electrode placement system channels 
AF3 and AF4 are placed on the upper forehead. These 
electrode positions are associated with the largest interference 
from facial muscle signals. The sample rate of the headset is 
128 Hz. A saline solution was used on all relevant electrodes 
to ensure appropriate impedance levels [12].    

C. Facial expression task  

    Participants were requested to perform six facial 
expressions while in an isolated room. These six facial 
expressions consisted of smile, clench, blink, eyebrow raise, 
headshake and neutral. Each facial expression was performed 
sixteen times. To allow for sufficient breaks, sessions were 
split into four blocks. These four blocks consisted of each 
facial expression being performed four times. Between each 
block there was a two to five minute break. Each action (i.e. 
facial expression) was preceded by a 4 second relaxation 
period, where the participant could move freely. Followed by 
a four second preparation period where participants saw both 
text and a visual cue for the upcoming action to perform. 
Finally, there was a two second period of being able to 
perform the action while a cross was shown on the screen (see 
Fig.1). During this period participants were asked to remain 
relaxed and minimize any body movement other than what 
was requested, and remaining focused on the screen. This was 
immediately followed by the next four second relaxation 
period, as the sequence repeated. 

Figure 1.  User interface for facial expression data collection 

III.  METHODOLOGY 

A. Preprocessing and feature selection 

     To allow for optimal classification the raw EEG data was 
preprocessed and features were extracted. The two main 
feature sets were based on the time and frequency domains. 
    The process for the time domain went as follows; front 

channels AF3 and AF4 were averaged. This reduced the 
potential noise in any individual channel affecting 
performance. Zero mean was then applied to this data, 
followed by the application of down sampling at several 
different rates. Finally, the down-sampled data were used as 
the time-domain features.  
    For the frequency domain the zero mean was initially taken 
followed by a logarithmic forward fourier transform. Using 
the logarithmic frequency response allows for lower 
frequencies to be better represented. This data also went 
through down sampling at several different rates. All five 
sampling rates shown in Fig.2 were used for all participants. 
The optimal down sampling rates were chosen during the 
evaluation stage of classification. The optimal down sampling 
rates were chosen during the evaluation stage of 
classification. 

Acronyms used: SVM (Support Vector Machine), LDA (Linear Discriminant Analysis) and NB (Naive 
Bayesian) 

Figure 2.  Schematic illustration of the applied EEG signal processing 
procedure 

     The gyroscope data was preprocessed using the method 
illustrated in Fig.3. Firstly the X axis gyroscope data had zero 
mean applied, followed by the absolute value of the data being 
taken. The mean of the resulting dataset was consequently 
used for classification. 

B.  Classification 
    Classification of the EEG time and frequency domain data 
went through three stages. Firstly, support vector machine, 
linear discriminant analysis and naive Bayesian classifiers 
were trained. This was achieved using seven out of the sixteen 
recorded trials of each facial expression. All five sampling 
rates were also used at this stage. This resulted in fifteen total 
trained classifiers for each participant and feature set. 
     The evaluation stage involved testing the performance of 
all fifteen trained classifiers on three new trials of each facial 
expression. 
     An average accuracy for each sampling rate and classifier 



  

combination was found, the combination with the greatest 
average classification accuracy was then chosen as the 
optimal combination for each participant for that particular 
feature set. Finally, using this optimal combination classifier 
accuracy was then tested by applying the final six 
performances of each facial expression. 
     Preprocessed gyroscope data was simply compared to a 
threshold value of 500mV. If the preprocessed data surpassed 
this threshold it was classified as a headshake, if not the EEG 
classification results were used to determine the class of the 
data. When the gyroscope data was in use the machine 
learning classifiers were no longer trained for the head-shake 
class. 

 
 

Figure 3.  Schematic illustration of the applied gyroscope signal processing 
procedure 

 

IV.  RESULTS 

A. EEG data in the time domain 
     Each facial expression had their respective time domain 
response, which is shown in Fig.4(a). Notably eyebrow raise 
had a distinctly greater amplitude than the other classes. This 
is likely due to the proximity of the muscles associated with 
eyebrow movements to the EEG electrodes AF3 and AF4. 
The smile class appears similar to the neutral class in the time 
domain. This similarity constitutes a lower performance for 
this feature set and these classes. 
 

 
Figure 4.  EEG data for 6 facial expressions  

 (a) Time domain (b) Frequency domain 

 

B. EEG data in the frequency domain 
     The frequency domain response has visually clearer 
separations between classes as shown in Fig.4(b). Notably the 
30Hz - 40Hz range has a clear separation of classes. However, 
headshake and blink or smile and clench are still relatively 
close. In the 20Hz - 30Hz range or 35Hz - 45Hz range these 
respective pairs of classes are further separated. As a result of 
this observation, and through testing, using the full range of 
frequencies produced a higher average classification accuracy 
as opposed to a smaller range of frequencies. 

C. Gyroscope data 
    The gyroscope response of all facial expressions other than 
the head shaking was very similar. Classification of these 
facial expressions was therefore at or below chance level. As 
a result, head shaking gyroscope data was compared to all 
other facial expressions in a binary fashion. As seen in 
Fig.5(a) and Fig.5(b) both time and frequency responses have 
clear differences between head shaking and other facial 
expressions. A threshold could, therefore be applied to either 
domain. However, for the purpose of this paper only the time 
domain was used. 

Figure 5.  Gyroscope data for 6 facial expressions with a threshold limit 
 (a) Time domain (b) Frequency domain     

D. Optimal sampling rate and classification method 

For each feature set and participant, the optimal sampling rate 
and machine learning classification method was found. 
During the evaluation stage all three classification methods 
and all five sampling rates were used, the combination with 
the greatest overall accuracy was then chosen and used in the 
testing stage.th 
    In Fig.6 the optimal sampling rates and machine learning 
classification methods chosen for all participants are shown. 
There was not a clear benefit to choosing a specific sampling 
rate and applying it universally. Sampling rates of 128Hz and 
8Hz were optimal in 23% of cases, the least commonly 
optimal sampling rates were 16Hz and 4Hz which were 
optimal in 17% of cases. There also was not a clear best 
sampling rate for a particular feature set or participant. As a 
result, deciding on the best sampling rate on a participant and 
feature set basis was the most effective method. 
    The optimal machine learning method to use was linear 
discriminant analysis in 51% of cases followed by Naïve 
Bayesian in 43% of cases and support vector machine in only 
6% of cases. Once again there was no clear correlation 
between any particular feature set or sampling rate and the 
optimal machine learning method.  
 

(a) (b) 

(a) (b) 



  

Figure 6.  Optimal sampling rate and classification method 
(a) Sampling rate (b) Machine learning methods 

E. Classification 

After applying the classification techniques described 
previously, and finding the mean average across all 
participants the results shown in Fig.7 were obtained. Notably 
the inclusion of the gyroscope increased classification 
accuracy by an average of 4.6%. 
     The classes with the least separation visible in Fig.4, as 
expected resulted in having the lowest classification accuracy, 
with the smile class averaging 50%. Classes with clear 
separation such as eyebrow raise and neutral classes had much 
higher performance with 83.4% and 82.3% respectively. 
     As shown in Fig.4 the separation between classes in the 
time domain was not as great as that of the frequency domain. 
This observation translated to results which reflect this 
characteristic. The time domain response without the 
gyroscope had a mean classification accuracy of 59.7% 
compared to 68.1% in the frequency. The inclusion of the 
gyroscope reduces this difference significantly with the time 
and frequency domain differences going from 8.4% to 0.7% 
with and without the gyroscope respectively. This is likely 
due to the false classification of other classes being classified 
as head shaking in the time domain. However, with the 
inclusion of the gyroscope, and the lack of classifier training 
for the headshake movement this false classification no longer 
occurred. 

Table 1. Table of average classification accuracies across participants 

 

 

 

V. CONCLUSION 

 
In this study it was shown that using the frontal electrodes of 
an EEG headset and a gyroscope, average classification 
accuracy of over 75% with six classes is achievable. This 
performance was achieved using time and frequency domain 
feature sets with optimal sampling rates and machine learning 
classifiers for each participant and feature set. This 
performance was consistent over multiple participants with a 
relatively small training and evaluation data set of seven and 
three instances of each class respectively. The introduction of 
a gyroscope increased performance by an average of 4.6%, it 
is therefore a positive asset to have.  
     The system proposed in this paper could be used in a 
hybrid BCI system to allow for new modes of control of an 
assistive device without the introduction of new hardware.  
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 Average classification accuracy (%) 
EEG Gyroscope  

Classes Time Frequency Time Frequency Mean 

Smile 54.2 37.5 62.5 45.8 50.0 

Blink 33.3 54.2 62.5 66.7 54.2 
Eyebrow 
raise 91.7 79.2 79.2 83.3 83.4 

      
Clench 66.7 79.2 75 70.8 72.9 
Headshake 54.2 62.5 100 100 79.2 

Neutral 58.3 95.8 79.2 95.8 82.3 

Mean 59.7 68.1 76.4 77.1  


