9,638 research outputs found

    Microstructure of co-evaporated CoCr films with perpendicular anisotropy

    Get PDF
    Coevaporation of Co and Cr is applied to achieve good magnetic characteristics of media deposited at low temperature. The opposed oblique incidence vapor flux induces a columnar alignment parallel to the evaporation plane. Further, a process-induced segregation is present which introduces separated Co-rich and Cr-rich regions. A selective etching process is carried out to find proof of this. With increasing process temperature, nonelongated columns develop. The columnar axes are inclined towards the Co source at a smaller angle than the angle of incidence. The texture axes are also inclined, as are the anisotropy axes. The process-induced segregation results in an enhanced coercivity and saturation magnetization. A small in-plane anisotropy coincides with the direction of columnar alignment. At a higher process temperature, the column, texture, and anisotropy axis tilting decrease

    Delocalized Entanglement of Atoms in optical Lattices

    Get PDF
    We show how to detect and quantify entanglement of atoms in optical lattices in terms of correlations functions of the momentum distribution. These distributions can be measured directly in the experiments. We introduce two kinds of entanglement measures related to the position and the spin of the atoms

    On the Azimuthal Stability of Shock Waves around Black Holes

    Full text link
    Analytical studies and numerical simulations of time dependent axially symmetric flows onto black holes have shown that it is possible to produce stationary shock waves with a stable position both for ideal inviscid and for moderately viscous accretion disks. We perform several two dimensional numerical simulations of accretion flows in the equatorial plane to study shock stability against non-axisymmetric azimuthal perturbations. We find a peculiar new result. A very small perturbation seems to produce an instability as it crosses the shock, but after some small oscillations, the shock wave suddenly transforms into an asymmetric closed pattern, and it stabilizes with a finite radial extent, despite the inflow and outflow boundary conditions are perfectly symmetric. The main characteristics of the final flow are: 1) The deformed shock rotates steadily without any damping. It is a permanent feature and the thermal energy content and the emitted energy vary periodically with time. 2) This behavior is also stable against further perturbations. 3) The average shock is still very strong and well defined, and its average radial distance is somewhat larger than that of the original axially symmetric circular shock. 4) Shocks obtained with larger angular momentum exhibit more frequencies and beating phenomena. 5) The oscillations occur in a wide range of parameters, so this new effect may have relevant observational consequences, like (quasi) periodic oscillations, for the accretion of matter onto black holes. Typical time scales for the periods are 0.01 and 1000 seconds for black holes with 10 and 1 million solar mass, respectively.Comment: 15 pages, 7 figures, accepted by the Astrophysical Journa

    What Controls the Structure and Dynamics of Earth's Magnetosphere?

    Get PDF

    The Unwritten Ballot

    Get PDF

    Quantum ergodicity for restrictions to hypersurfaces

    Full text link
    Quantum ergodicity theorem states that for quantum systems with ergodic classical flows, eigenstates are, in average, uniformly distributed on energy surfaces. We show that if N is a hypersurface in the position space satisfying a simple dynamical condition, the restrictions of eigenstates to N are also quantum ergodic.Comment: 22 pages, 1 figure; revised according to referee's comments. To appear in Nonlinearit

    L^{2}-restriction bounds for eigenfunctions along curves in the quantum completely integrable case

    Full text link
    We show that for a quantum completely integrable system in two dimensions,the L2L^{2}-normalized joint eigenfunctions of the commuting semiclassical pseudodifferential operators satisfy restriction bounds ofthe form γϕj2ds=O(log) \int_{\gamma} |\phi_{j}^{\hbar}|^2 ds = {\mathcal O}(|\log \hbar|) for generic curves γ\gamma on the surface. We also prove that the maximal restriction bounds of Burq-Gerard-Tzvetkov are always attained for certain exceptional subsequences of eigenfunctions.Comment: Correct some typos and added some more detail in section

    Highly Selective Hydroformylation of the Cinchona Alkaloids

    Get PDF
    The four naturally occurring cinchona alkaloids were subjected to hydroformylation to create an extra functional group that allows immobilization. Cinchonidine, quinine, and quinidine, could be hydroformylated with virtually complete terminal selectivity, using a rhodium/tetraphosphite catalyst. The cinchonidine aldehyde was reduced to the alcohol and subjected to reductive amination with benzylamine.

    Propellant material compatibility program and results

    Get PDF
    The effects of long-term (up to 10 years) contact of inert materials with earth-storable propellants were studied for the purpose of designing chemical propulsion system components that can be used for current as well as future planetary spacecraft. The primary experimental work, and results to date are reported. Investigations include the following propellants: hydrazine, hydrazine-hydrazine nitrate blends, monomethyl-hydrazine, and nitrogen tetroxide. Materials include: aluminum alloys, corrosion-resistant steels, and titanium alloys. More than 700 test specimen capsules were placed in long-term storage testing at 43 C in the special material compatibility facility. Material ratings relative to the 10-year requirement have been assigned
    corecore