6,307 research outputs found

    Belleville spring assembly with elastic guides

    Get PDF
    Belleville spring assembly with elastic guides having low hysteresi

    Long-term material compatibility testing system

    Get PDF
    System includes procedure for hermetically sealing solid materials and fluids in glass ampoule and use of temperature-controlled facility containing sample holder, which permits sample containers to be retrieved safely and conveniently. Solid material and fluid are sealed within chemically-clean glass ampoule according to highly detailed procedure

    Propellant material compatibility program and results

    Get PDF
    The effects of long-term (up to 10 years) contact of inert materials with earth-storable propellants were studied for the purpose of designing chemical propulsion system components that can be used for current as well as future planetary spacecraft. The primary experimental work, and results to date are reported. Investigations include the following propellants: hydrazine, hydrazine-hydrazine nitrate blends, monomethyl-hydrazine, and nitrogen tetroxide. Materials include: aluminum alloys, corrosion-resistant steels, and titanium alloys. More than 700 test specimen capsules were placed in long-term storage testing at 43 C in the special material compatibility facility. Material ratings relative to the 10-year requirement have been assigned

    Elastic guides reduce hysteresis effect in Belleville spring package

    Get PDF
    Peripheral support guides that elastically flex with the slight breathing on radial displacement during actuation can greatly reduce the hysteresis present in a Belleville spring package. This technique provides a control device that enhances the precision of pressure regulating valves, pressure switches, and vacuum actuators

    1995 atmospheric trace molecule spectroscopy (ATMOS) linelist

    Get PDF
    The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment uses a Fourier-transform spectrometer on board the Space Shuttle to record infrared solar occultation spectra of the atmosphere at 0.01-cm^(-1) resolution. The current version of the molecular spectroscopic database used for the analysis of the data obtained during three Space Shuttle missions between 1992 and 1994 is described. It is an extension of the effort first described by Brown et al. [Appl. Opt. 26, 5154 (1987)] to maintain an up-to-date database for the ATMOS experiment. The three-part ATMOS compilation contains Line parameters of 49 molecular species between 0 and 10000 cm^(-1), The main list, with nearly 700,000 entries, is an updated version of the HITRAN 1992 database. The second compilation contains supplemental line parameters, and the third set consists of absorption cross sections to represent the unresolvable features of heavy molecules. The differences between the ATMOS database and other public compilations are discussed

    Magnetic Effects Change Our View of the Heliosheath

    Full text link
    There is currently a controversy as to whether Voyager 1 has already crossed the Termination Shock, the first boundary of the Heliosphere. The region between the Termination Shock and the Heliopause, the Helisheath, is one of the most unknown regions theoretically. In the Heliosheath magnetic effects are crucial, as the solar magnetic field is compressed at the Termination Shock by the slowing flow. Recently, our simulations showed that the Heliosheath presents remarkable dynamics, with turbulent flows and the presence of a jet flow at the current sheet that is unstable due to magnetohydrodynamic instabilities \cite{opher,opher1}. In this paper we review these recent results, and present an additional simulation with constant neutral atom background. In this case the jet is still present but with reduced intensity. Further study, e.g., including neutrals and the tilt of the solar rotation from the magnetic axis, is required before we can definitively address how the Heliosheath behaves. Already we can say that this region presents remarkable dynamics, with turbulent flows, indicating that the Heliosheath might be very different from what we previously thought.Comment: 6 pages, 5 figures, to appear in IGPP 3rd Annual International Astrophysics Conference, "PHYSICS OF THE OUTER HELIOSPHERE

    Accelerating relativistic reference frames in Minkowski space-time

    Full text link
    We study accelerating relativistic reference frames in Minkowski space-time under the harmonic gauge. It is well-known that the harmonic gauge imposes constraints on the components of the metric tensor and also on the functional form of admissible coordinate transformations. These two sets of constraints are equivalent and represent the dual nature of the harmonic gauge. We explore this duality and show that the harmonic gauge allows presenting an accelerated metric in an elegant form that depends only on two harmonic potentials. It also allows reconstruction of the spatial structure of the post-Galilean coordinate transformation functions relating inertial and accelerating frames. The remaining temporal dependence of these functions together with corresponding equations of motion are determined from dynamical conditions, obtained by constructing the relativistic proper reference frame of an accelerated test particle. In this frame, the effect of external forces acting on the observer is balanced by the fictitious frame-reaction force that is needed to keep the test particle at rest with respect to the frame, conserving its relativistic linear momentum. We find that this approach is sufficient to determine all the terms of the coordinate transformation. The same method is then used to develop the inverse transformations. The resulting post-Galilean coordinate transformations extend the Poincar\'e group on the case of accelerating observers. We present and discuss the resulting coordinate transformations, relativistic equations of motion, and the structure of the metric tensors corresponding to the relativistic reference frames involved.Comment: revtex4, 21 page

    INTERACTION OF IMPLICIT THEORIES AND ORIENTATION STYLE IN TEACHER PRACTICUM

    Get PDF
    The classroom practicum for student teachers is evaluated controversely both by educational researches and by student teachers. We suggested that student teachers' differing evaluations are due to interpersonal differences: according to their own experiences as pupils and to their uncertainty vs. certainty orientation student teachers developed implicit theories of teaching, which determine their actual practicum experiences. Interviews with 18 student teachers selected on the basis oftheir orientation style were analyzed using a combination of qualitative and quantitative methods. The results show a clear interaction of central components of their implicit theories of teaching and their orientation style. Consequences for the organization of teacher practica are outlined.La práctica en el aula es evaluada de un modo controvertido tanto por parte de los investigadores en educación como de los futuros profesores. Nuestra hipótesis es que las diferentes evaluaciones del profesor en formación son debidas a diferencias interpersonales: según sus propias experiencias como alumno; su orientación hacia la certidumbre o la incertidumbre, los futuros profesores desarrollan teorías implícitas de enseñanza que determinan el tipo de experiencia que sacarán de la propia práctica. Con este fin se analizaron -usando una combinación de métodos cuantitativos y cualitativos- 18 entrevistas con estudiantes de Pedagogía seleccionados sobre la base de su estilo de orientación. Los resultados muestran una clara interacción entre los componentes centrales de sus teorías implícitas acerca de la enseñanza y sus estilos de orientación. Se deducen, como conclusión, algunas consecuencias para la organización de la práctica

    Fundamental parameter-free solutions in Modified Gravity

    Full text link
    Modified Gravity (MOG) has been used successfully to explain the rotation curves of galaxies, the motion of galaxy clusters, the Bullet Cluster, and cosmological observations without the use of dark matter or Einstein's cosmological constant. We now have the ability to demonstrate how these solutions can be obtained directly from the action principle, without resorting to the use of fitted parameters or empirical formulae. We obtain numerical solutions to the theory's field equations that are exact in the sense that no terms are omitted, in two important cases: the spherically symmetric, static vacuum solution and the cosmological case of an homogeneous, isotropic universe. We compare these results to selected astrophysical and cosmological observations.Comment: 11 pages, 8 figures; accepted for publication in CQ
    • …
    corecore