1,427 research outputs found
Origin and spectroscopic determination of trigonal anisotropy in a heteronuclear single-molecule magnet
W-band ({\nu} ca. 94 GHz) electron paramagnetic resonance (EPR) spectroscopy
was used for a single-crystal study of a star-shaped Fe3Cr single-molecule
magnet (SMM) with crystallographically imposed trigonal symmetry. The high
resolution and sensitivity accessible with W-band EPR allowed us to determine
accurately the axial zero-field splitting terms for the ground (S =6) and first
two excited states (S =5 and S =4). Furthermore, spectra recorded by applying
the magnetic field perpendicular to the trigonal axis showed a pi/6 angular
modulation. This behavior is a signature of the presence of trigonal transverse
magnetic anisotropy terms whose values had not been spectroscopically
determined in any SMM prior to this work. Such in-plane anisotropy could only
be justified by dropping the so-called 'giant spin approach' and by considering
a complete multispin approach. From a detailed analysis of experimental data
with the two models, it emerged that the observed trigonal anisotropy directly
reflects the structural features of the cluster, i.e., the relative orientation
of single-ion anisotropy tensors and the angular modulation of single-ion
anisotropy components in the hard plane of the cluster. Finally, since
high-order transverse anisotropy is pivotal in determining the spin dynamics in
the quantum tunneling regime, we have compared the angular dependence of the
tunnel splitting predicted by the two models upon application of a transverse
field (Berry-phase interference).Comment: 13 pages, 9 figure
Experimental and numerical study of vacuum resin infusion of stiffened carbon fiber reinforced panels
Liquid resin infusion processes are becoming attractive for aeronautic applications as an alternative to conventional autoclave-based processes. They still present several challenges, which can be faced only with an accurate simulation able to optimize the process parameters and to replace traditional time-consuming trial-and-error procedures. This paper presents an experimentally validated model to simulate the resin infusion process of an aeronautical component by accounting for the anisotropic permeability of the reinforcement and the chemophysical and rheological changes in the crosslinking resin. The input parameters of the model have been experimentally determined. The experimental work has been devoted to the study of the curing kinetics and chemorheological behavior of the thermosetting epoxy matrix and to the determination of both the in-plane and out-of-plane permeability of two carbon fiber preforms using an ultrasonic-based method, recently developed by the authors. The numerical simulation of the resin infusion process involved the modeling of the resin flow through the reinforcement, the heat exchange in the part and within the mold, and the crosslinking reaction of the resin. The time necessary to fill the component has been measured by an optical fiber-based equipment and compared with the simulation results
Bio-based furan-polyesters/graphene nanocomposites prepared by in situ polymerization
In situ intercalative polymerization has been investigated as a strategic way to obtain poly(propylene 2,5-furandicarboxylate) (PPF) and poly(hexamethylene 2,5-furandicarboxylate) (PHF) nanocomposites with different graphene types and amounts. Graphene (G) has been dispersed in surfactant stabilized water suspensions. The loading range in composites was 0.25–0.75 wt %. For the highest composition, a different type of graphene (XT500) dispersed in 1,3 propanediol, containing a 6% of oxidized graphene and without surfactant has been also tested. The results showed that the amorphous PPF is able to crystallize during heating scan in DSC and graphene seems to affect such capability: G hinders the polymer chains in reaching an ordered state, showing even more depressed cold crystallization and melting. On the contrary, such hindering effect is absent with XT500, which rather induces the opposite. Concerning the thermal stability, no improvement has been induced by graphene, even if the onset degradation temperatures remain high for all the materials. A moderate enhancement in mechanical properties is observed in PPF composite with XT500, and especially in PHF composite, where a significative increase of 10–20% in storage modulus E’ is maintained in almost all the temperature range. Such an increase is also reflected in a slightly higher heat distortion temperature. These preliminary results can be useful in order to further address the field of application of furan-based polyesters; in particular, they could be promising as packaging materials
GnRH agonist versus GnRH antagonist in in vitro fertilization and embryo transfer (IVF/ET)
Several protocols are actually available for in Vitro Fertilization and Embryo Transfer. The review summarizes the main differences and the clinic characteristics of the protocols in use with GnRH agonists and GnRH antagonists by emphasizing the major outcomes and hormonal changes associated with each protocol. The majority of randomized clinical trials clearly shows that in "in Vitro" Fertilization and Embryo Transfer, the combination of exogenous Gonadotropin plus a Gonadotropin Releasing Hormone (GnRH) agonist, which is able to suppress pituitary FSH and LH secretion, is associated with increased pregnancy rate as compared with the use of gonadotropins without a GnRH agonist. Protocols with GnRH antagonists are effective in preventing a premature rise of LH and induce a shorter and more cost-effective ovarian stimulation compared to the long agonist protocol. However, a different synchronization of follicular recruitment and growth occurs with GnRH agonists than with GnRH antagonists. Future developments have to be focused on timing of the administration of GnRH antagonists, by giving a great attention to new strategies of stimulation in patients in which radio-chemotherapy cycles are needed
CTX-M-15 Type Extended-Spectrum Beta-Lactamase-Producing Enterobacter cloacae In Bioaerosol of a Municipal Solid Waste Recycling Plant: A New Possible Reservoir of Infection?
Background: Although there are many reports of antibiotic resistant microorganisms
released from the treated municipal wastewater, less attention has been given to
other waste treatment activities. We report the occurrence of antibiotic resistant
strains isolated from the working setting of a solid waste recycling plant in Italy
which serves 195 municipalities.
Methods: To assess microbial contamination levels, several sampling points were
chosen for their relevance in evaluating exposure of the workers to biological
risk, especially during indoor operations. Active sampling was carried out using
the Surface Air System and Rodac plate method was applied to surface sampling.
Species identification and antimicrobial susceptibilities were obtained by Vitek2
System (bioMĂ©rieux, France) and by the agar-diffusion method. The presence of
resistance genes was investigated by multiplex PCR assay.
Results: In all sampling points a significant contamination of aerosol was detected,
although the total microbial counts resulted within the limit proposed by the
National authority (10000 CFU/sqm). The counts of Enterobacteriaceae were
always above the limit of 100 CFU/sqm and strains of Enterobacter cloacae resistant
to third generation cephalosporins were detected, carrying the blaCTX-M15 gene.
Conclusions: The contamination of workplace with multidrug-resistant strains is
a crucial area for public health actions to avoid the conjunction of factors that
promote evolution and spread of antibiotic resistance
Curve classes on irreducible holomorphic symplectic varieties
We prove that the integral Hodge conjecture holds for 1-cycles on irreducible
holomorphic symplectic varieties of K3 type and of Generalized Kummer type. As
an application, we give a new proof of the integral Hodge conjecture for cubic
fourfolds.Comment: 15 page
The Relationship between Gut Microbiota and Respiratory Tract Infections in Childhood: A Narrative Review
Respiratory tract infections (RTIs) are common in childhood and represent one of the main causes of hospitalization in this population. In recent years, many studies have described the association between gut microbiota (GM) composition and RTIs in animal models. In particular, the “inter-talk” between GM and the immune system has recently been unveiled. However, the role of GM in human, and especially infantile, RTIs has not yet been fully established. In this narrative review we provide an up-to-date overview of the physiological pathways that explain how the GM shapes the immune system, potentially influencing the response to common childhood respiratory viral infections and compare studies analysing the relationship between GM composition and RTIs in children. Most studies provide evidence of GM dysbiosis, but it is not yet possible to identify a distinct bacterial signature associated with RTI predisposition. A better understanding of GM involvement in RTIs could lead to innovative integrated GM-based strategies for the prevention and treatment of RTIs in the paediatric population
- …