1,050 research outputs found

    Uncertainties in future climate predictions due to convection parameterisations

    Get PDF
    In the last decades several convection parameterisations have been developed to consider the impact of small-scale unresolved processes in Earth System Models associated with convective clouds. Global model simulations, which have been performed under current climate conditions with different convection schemes, significantly differ among each other in the simulated transport of trace gases and precipitation patterns due to the parameterisation assumptions and formulations, e.g. the computation of convective rainfall rates, calculation of entrainment and detrainment rates etc. Here we address sensitivity studies comparing four different convection schemes under alternative climate conditions (with doubling of the CO<sub>2</sub> concentrations) to identify uncertainties related to convective processes. The increase in surface temperature reveals regional differences up to 4 K dependent on the chosen convection parameterisation. These differences are statistically significant almost everywhere in the troposphere of the intertropical convergence zone. The increase in upper tropospheric temperature affects the amount of water vapour transported to the lower stratosphere, leading to enhanced water vapour contents between 40% and 60% at the cold point temperature in the Tropics. Furthermore, the change in transporting short-lived pollutants within the atmosphere is highly ambiguous for the lower and upper troposphere. These results reflect that different approaches to compute mass fluxes, detrainment levels or trigger functions determine the transport of short-lived trace gases from the planetary boundary layer to lower, middle or upper tropospheric levels. Finally, cloud radiative effects have been analysed, uncovering a shift in different cloud types in the Tropics, especially for cirrus and deep convective clouds. These cloud types induce a change in net cloud radiative forcing varying from 0.5 W m<sup>−2</sup> to 2.0 W m<sup>−2</sup>

    Improvements of organic aerosol representations and their effects in large-scale atmospheric models

    Get PDF
    Organics dominate the composition of the atmospheric aerosol, especially in the fine mode, influencing some of its characteristics such as the hygroscopicity, which is of climatic relevance for the Earth system. This study targets an improvement in the description of organic aerosols suitable for large-scale modelling, making use of recent developments based on laboratory and field measurements. In addition to the organic mass and particle number distribution, the proposed method keeps track of the oxidation state of the aerosol based on the OH exposure time, describing some of its chemical characteristics. This study presents the application of the method in a global chemistry climate model, investigates the sensitivity to process formulations and emission assignments, provides a comparison with observations and analyses the climate impact. &lt;br&gt;&lt;/br&gt; Even though the organic aerosol mass distribution is hardly affected by the new formulation, it shows impacts (regionally of the order of 10 % to 20 %) on parameters directly influencing climate via the direct and indirect aerosol effects. Furthermore, the global distribution of the organic O:C ratio is analysed in detail, leading to different regimes in the oxidation state: low O:C ratios over the tropical continents due to small OH concentrations caused by OH depletion in chemical reactions, and enhanced oxidation states over the tropical oceans based on less OH scavengers and at high altitudes due to longer atmospheric residence time. Due to the relation between O:C ratio and the aerosol hygroscopicity the ageing results in a more physically and chemically consistent description of aerosol water uptake by the organic aerosol. In comparison with observations reasonable agreement for the O:C ratio within the limits of a global model of the simulations is achieved

    Lightning and convection parameterisations ? uncertainties in global modelling

    Get PDF
    International audienceThe simulation of convection, lightning and consequent NOx emissions with global atmospheric chemistry models is associated with large uncertainties since these processes are heavily parameterised. Each parameterisation by itself has deficiencies and the combination of these substantially increases the uncertainties compared to the individual parameterisations. In this study several combinations of state-of-the-art convection and lightning parameterisations are used in simulations with the global atmospheric chemistry general circulation model ECHAM5/MESSy, and are evaluated against lightning observations. A wide range in the spatial and temporal variability of the simulated flash densities is found, attributed to both types of parameterisations. Some combinations perform well, whereas others are hardly applicable. In addition to resolution dependent rescaling parameters, each combination of lightning and convection schemes requires individual scaling to reproduce the observed flash frequencies. The resulting NOx profiles are inter-compared, however definite conclusions about the most realistic profiles can currently not be drawn

    Technical note: Implementation of prescribed (OFFLEM), calculated (ONLEM), and pseudo-emissions (TNUDGE) of chemical species in the Modular Earth Submodel System (MESSy)

    No full text
    International audienceWe present the submodels OFFLEM, ONLEM, and TNUDGE for the Modular Earth Submodel System (MESSy). Prescribed emissions from input files are handled by OFFLEM. ONLEM deals with online-calculated emissions, i.e., emissions that are calculated during the simulation. The submodel TNUDGE uses the "tracer nudging" technique for pseudo-sources and -sinks. For species with highly uncertain emission fluxes and/or with sufficiently long lifetimes, e.g., CH4, it is common to create such pseudo-fluxes by prescribing the observed mixing ratio of the species at a given boundary (e.g., the mixing ratio of methane at the surface, or the ozone mixing ratio at the tropopause). All three submodels substantially simplify the inclusion of emissions into a model. Specific emissions can easily be switched on or off. New prescribed emissions can be included without rewriting any code. New online emissions only require one additional subroutine containing the new parameterization. A major advantage is that input fields at arbitrary resolution can be used. The problem of incompatible grids between emission data and model is overcome by utilizing the MESSy data import interface. To further simplify the creation of new offline emission data, the preprocessing program EDGAR2NC is provided. EDGAR2NC transforms files from the EDGAR format into the netCDF format which is required by OFFLEM. The presented routines are a part of the community modeling project MESSy and can be made available for use to the atmospheric modeling community

    Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling

    No full text
    International audienceWe present the new scavenging scheme SCAV, simulating the removal of trace gases and aerosol particles by clouds and precipitation in global atmospheric chemistry models. The scheme is quite flexible and can be used for various purposes, e.g. long term chemistry simulations as well as detailed cloud and precipitation chemistry calculations. The presence of clouds can substantially change the chemical composition of the atmosphere. We present a new method of mechanistically coupling gas phase, aerosol, cloud and precipitation chemistry, which enables studies of feedbacks between multiphase chemistry and transport processes

    Technical Note: Simulation of detailed aerosol chemistry on the global scale using MECCA-AERO

    No full text
    International audienceWe present the MESSy submodel MECCA-AERO, which simulates both aerosol and gas phase chemistry within one comprehensive mechanism. Including the aerosol phase into the chemistry mechanism increases the stiffness of the resulting set of differential equations. The numerical aspects of the approach followed in MECCA-AERO are presented. MECCA-AERO requires input of an aerosol dynamical/microphysical model to provide the aerosol size and particle number information of the modes/bins for which the chemistry is explicitly calculated. Additional precautions are required to avoid the double counting of processes, especially for sulphate in the aerosol dynamical and the chemistry model. This coupling is explained in detail. To illustrate the capabilities of the new aerosol submodel, examples for species usually treated in aerosol dynamical models are shown. The aerosol chemistry as provided by MECCA-AERO is very sumptuous and not readily applicable for long-term simulations, though it provides a reference to evaluate simplified approaches

    Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy)

    Get PDF
    International audienceWe present the submodels DRYDEP and SEDI for the Modular Earth Submodel System (MESSy). Dry deposition of gases and aerosols is calculated within DRYDEP, whereas SEDI deals with aerosol particle sedimentation. Dry deposition velocities depend on the near-surface turbulence and the physical and chemical properties of the surface cover (e.g. the roughness length, soil pH or leaf stomatal exchange). The dry deposition algorithm used in DRYDEP is based on the big leaf approach and is described in detail within this Technical Note. The sedimentation submodel SEDI contains two sedimentation schemes: a simple upwind zeroth order scheme and a first order approach

    Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Get PDF
    International audienceThe representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (3 can reach ?20%, and several important compounds (e.g., H2O2, HCHO) are substantially depleted by clouds and precipitation

    Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER

    No full text
    International audienceThe implementation of processes related to chemistry into Earth System Models and their coupling within such systems requires the consistent description of the chemical species involved. We provide a tool (written in Fortran95) to structure and manage information about constituents, hereinafter referred to as tracers, namely the Modular Earth Submodel System (MESSy) generic (i.e., infrastructure) submodel TRACER. With TRACER it is possible to define a multitude of tracer sets, depending on the spatio-temporal representation (i.e., the grid structure) of the model. The required information about a specific chemical species is split into the static meta-information about the characteristics of the species, and its (generally in time and space variable) abundance in the corresponding representation. TRACER moreover includes two submodels. One is TRACER_FAMILY, an implementation of the tracer family concept. It distinguishes between two types: type-1 families are usually applied to handle strongly related tracers (e.g., fast equilibrating species) for a specific process (e.g., advection). In contrast to this, type-2 families are applied for tagging techniques. Tagging means the artificial decomposition of one or more species into parts, which are additionally labelled (e.g., by the region of their primary emission) and then processed as the species itself. The type-2 family concept is designed to conserve the linear relationship between the family and its members. The second submodel is TRACER_PDEF, which corrects and budgets numerical negative overshoots that arise in many process implementations due to the numerical limitations (e.g., rounding errors). The submodel therefore guarantees the positive definiteness of the tracers and stabilises the integration scheme. As a by-product, it further provides a global tracer mass diagnostic. Last but not least, we present the submodel PTRAC, which allows the definition of tracers via a Fortran95 namelist, as a complement to the standard tracer definition by application of the TRACER interface routines in the code. TRACER with its submodels and PTRAC can readily be applied to a variety of models without further requirements. The code and a documentation are included in the electronic supplement
    • …
    corecore