21 research outputs found

    Patients' Attitudes Toward an Online Patient Portal for Communicating Laboratory Test Results: Real-World Study Using the eHealth Impact Questionnaire

    Get PDF
    Background: Communicating laboratory test results online has several advantages for patients, such as improving clinical efficiency and accessibility, thereby helping patients to take an active role in managing their health.Objective: This study aimed to investigate the experiences and self-efficacy of patients using an online patient portal that communicates laboratory test results.Methods: We used the online-administered eHealth Impact Questionnaire to explore patients' attitudes toward the portal. Patients visiting the portal were asked to complete the questionnaire. The subscale Information and Presentation assessed the usability of the patient portal and the subscale Motivation and Confidence to Act assessed self-efficacy to determine whether patients were motivated to act on the presented information. We used a cutoff score of 65 or greater to determine whether the portal was rated positively.Results: The questionnaire was completed by 354 of 13,907 patients who viewed their laboratory results in the patient portal, with a response rate of 2.55%. The mean Information and Presentation score was 67.70 (SD 13.12) and the mean Motivation and Confidence to Act score was 63.59 (SD 16.22). We found a positive, significant correlation between the 2 subscales (r(345)=.77, P<.001).Conclusions: Patients participating in the study rated the usability of the portal positively. However, the portal only slightly helped patients to take an active role in managing their own health. The low response rate precludes generalization of the results. Future research should examine avenues to further increase patients' self-efficacy and study whether portal acceptability differs in subgroups. Patient portals conveying laboratory test results in understandable language seem usable and potentially provide a viable way to help patients take a more active role in managing their own health.Prevention, Population and Disease management (PrePoD)Public Health and primary car

    The impact of patient characteristics on their attitudes toward an online patient portal for communicating laboratory test results: real-world study

    Get PDF
    Background: Patient portals are promising tools to increase patient involvement and allow them to manage their health. To optimally facilitate patients, laboratory test results should be explained in easy language. Patient characteristics affect the usage of portals and the user satisfaction. However, limited research is available, specified for online communicating laboratory test results, on whether portal use and acceptance differ between groups.Objective: The aim of this study was to assess the effect of patient characteristics (gender, age, education, and chronic disease) on the self-efficacy and perceived usability of an online patient portal that communicates diagnostic test results.Methods: We used the online-administered eHealth impact questionnaire (eHIQ) to explore patients’ attitudes toward the portal. Patients visiting the portal were asked to complete the questionnaire and to answer questions regarding gender, age, education, and chronic disease. The subscale “information and presentation” of the eHIQ assessed the usability of the patient portal and the subscale “motivation and confidence to act” assessed self-efficacy to determine whether patients were motivated to act on the presented information. Age, gender, education, and chronic disease were the determinants to analyze the effect on usability and self-efficacy. Descriptive analyses were performed to explore patient characteristics, usability, and self-efficacy. Univariable and multivariable regression analyses were performed with age, gender, education, and chronic disease as determinants, and usability and self-efficacy as outcomes.Results: The questionnaire was completed by 748 respondents, of which 428 (57.2%) were female, 423 (56.6%) were highly educated, and 509 (68%) had no chronic disease. The mean age was 58.5 years (SD 16.4). Higher age, high education, and asthma or chronic obstructive pulmonary disease were significant determinants for decreased usability; respectively, b=-.094, 95% CI -1147 to 0.042 (PP=.03); and b=-3.630, 95% CI -6.545 to -0.715 (P=.02). High education was also a significant determinant for a lower self-efficacy (b=-3.521, 95% CI -6.469 to -0.572; P=.02). Other determinants were not significant.Conclusions: This study showed that the higher-educated users of a patient portal scored lower on usability and self-efficacy.Usability was also lower for older people and for patients with asthma or chronic obstructive pulmonary disease. The results portal is not tailored for different groups. Further research should investigate which factors from a patient’s perspective are essential to tailor the portal for different groups and how a result portal can be optimally integrated within the daily practice of a doctor.Public Health and primary carePrevention, Population and Disease management (PrePoD

    Wide Area RTK: a satellite navigation system based on precise real-time ionospheric modelling

    Get PDF
    The Wide Area Real Time Kinematic (WARTK) is an augmentation system concept for multi-frequency users based on precise real-time ionospheric modeling. It is able to provide a high accuracy and integrity GNSS positioning service over continental areas using the infrastructure of a network of permanent ground monitor stations, such as the European Geostationary Navigation Overlay Service (EGNOS) network of Ranging and Integrity Monitoring Stations (RIMS) in Europe. In this way, it allows an additional benefit to be obtained from these reference stations, that is, the network has the potential to support two independent systems: a satellite-based augmentation system, such as EGNOS, and a high-precision positioning service, based on WARTK. Indeed, thanks to the accuracy of the ionospheric corrections provided, WARTK users have available in real-time an extra constraint per satellite between the carrier phase ambiguities, which helps solve them quickly. Once such ambiguities have been solved, the GNSS user obtains navigation accurate to within 20 cm at the 95th percentile (about 10 cm RMS). Moreover, this precise positioning is achieved in a few minutes (with two frequency signals) or in a single epoch, after initial convergence of the tropospheric delay (with three frequency signals), even up to hundreds of kilometers away from the nearest reference station. While previous WARTK research has been devoted to implementing the concept and assessing its feasibility, considering in particular the accuracy achievable, the work reported in this paper focused on consolidating the results by analyzing a large and representative data set, and on deeper analysis of the integrity issue. It was carried out in the context of the Multi-constellation Regional System (MRS) project, within the European Space Agency GNSS Evolution Programme, with the aim of designing a high accuracy service for GPS and/or Galileo. Three months of actual data, from more than 25 permanent GPS stations in Europe, have been processed (some of them as a roving user), for high-, mid- and low-solar cycle conditions (in 2002, 2004 and 2006 respectively). In addition, several ionospheric storms occurred during the selected periods, with Dst values reaching up to −150 nT. Results based on these data show that user domain integrity was maintained for baselines of up to 400 km. At the 95th percentile, the daily horizontal and vertical position errors were 20 and 30 cm, respectively, and the corresponding protection levels were about 1 and 2 m. The convergence time was around 5 minutes with actual GPS constellation data. The benefits of using a multi-constellation system were also studied, with simulated GPS and three-frequency Galileo data, showing that it is possible to reduce the convergence time to a few seconds.Postprint (published version

    Challenge of teaching complex, end-to-end space system design and development process: Earth Observation Satellite System Design training course

    Get PDF
    The Earth Observation Satellite System Design training course was first offered in 2018 at ESA Academy’s Training and Learning Facility at ESA’s ESEC Galaxia site in Belgium, and again in 2021 in an online format under the Covid-19 pandemic situation. The course covers the end-to-end design and development process of satellite Earth observation systems. Two major challenges were faced by the teaching experts, consisting of the active and retired ESA staff, as well as ESA Academy’s instructional designers for its development: (1) Condensing such a vast subject domain, associated with a complex, multi-disciplinary engineering undertaking, into a compact format (e.g. 4.5 days in 2018) without sacrificing the quality of the essential technical knowledge, engineering practices and logic as taught; (2) Presenting the course materials in a comprehensive form to a group of 30 M.S. and Ph.D. students with their backgrounds generally not covering all of the technical disciplines associated with the course subject domain. The 2021 online edition of the training course, which drew on lessons learnt from 2018, consisted of 18 lectures, plus 5 group project sessions where the students put their acquired knowledge into practice and learned to work in a project team environment. This paper concentrates on the approach and logic adopted by the instructional team to address the above 2 challenges. Difficulties encountered in some of the areas, e.g. remote sensing instrumentation designs, are discusse

    Wide area real time kinematic: a new augmentation concept towards the definition of a high accuracy and integrity service

    No full text
    A High Precision Positioning Service based in the Wide Area RTK is presented in this work. The integrity and the benefits of the multiconstellation system are also discussed

    Wide area real time kinematic: a new augmentation concept towards the definition of a high accuracy and integrity service

    No full text
    A High Precision Positioning Service based in the Wide Area RTK is presented in this work. The integrity and the benefits of the multiconstellation system are also discussed

    Fast Precise Point Positioning for decimeter-error-level navigation for multi and single-frequency users of Global Navigation Satellite Systems

    No full text
    This manuscript summarizes the new algorithm of Fast Precise Point Positioning (FPPP) the developed during the projects "Enhanced PPP GNSS multifrequency user algorithm" nd “Precise Real Time Orbit Determination and Time synchronisation”, both funded by the European Space Agency (ESA). The main innovations achieved during the overall project comprise the application of precise ionospheric corrections to facilitate the fast resolution of undifferenced carrier phase ambiguities, ambiguity validation and integrity monitoring for both multi- and single-frequency users. Among the integrity, detailed in previous works, the performance of the FPPP algorithm in terms of improved accuracy and convergence time is demonstrated with actual GPS and simulated Galileo data. The 10-centimeters error level real-time kinematic positioning can be achieved in few minutes for dual-and single-frequency users, almost instantaneous for three-frequency users (or once the tropospheric delay is well estimated in few minutes in cold start), and with very limited bandwidth requirements for the FPPP users (less than 300 bps for dual-frequency GPS).Postprint (published version

    Fast Precise Point Positioning for decimeter-error-level navigation for multi and single-frequency users of Global Navigation Satellite Systems

    No full text
    This manuscript summarizes the new algorithm of Fast Precise Point Positioning (FPPP) the developed during the projects "Enhanced PPP GNSS multifrequency user algorithm" nd “Precise Real Time Orbit Determination and Time synchronisation”, both funded by the European Space Agency (ESA). The main innovations achieved during the overall project comprise the application of precise ionospheric corrections to facilitate the fast resolution of undifferenced carrier phase ambiguities, ambiguity validation and integrity monitoring for both multi- and single-frequency users. Among the integrity, detailed in previous works, the performance of the FPPP algorithm in terms of improved accuracy and convergence time is demonstrated with actual GPS and simulated Galileo data. The 10-centimeters error level real-time kinematic positioning can be achieved in few minutes for dual-and single-frequency users, almost instantaneous for three-frequency users (or once the tropospheric delay is well estimated in few minutes in cold start), and with very limited bandwidth requirements for the FPPP users (less than 300 bps for dual-frequency GPS)
    corecore