40 research outputs found

    Current status of Japanese detectors

    Full text link
    Current status of TAMA and CLIO detectors in Japan is reported in this article. These two interferometric gravitational-wave detectors are being developed for the large cryogenic gravitational wave telescope (LCGT) which is a future plan for detecting gravitational wave signals at least once per year. TAMA300 is being upgraded to improve the sensitivity in low frequency region after the last observation experiment in 2004. To reduce the seismic noises, we are installing new seismic isolation system, which is called TAMA Seismic Attenuation System, for the four test masses. We confirmed stable mass locks of a cavity and improvements of length and angular fluctuations by using two SASs. We are currently optimizing the performance of the third and fourth SASs. We continue TAMA300 operation and R&D studies for LCGT. Next data taking in the summer of 2007 is planned. CLIO is a 100-m baseline length prototype detector for LCGT to investigate interferometer performance in cryogenic condition. The key features of CLIO are that it locates Kamioka underground site for low seismic noise level, and adopts cryogenic Sapphire mirrors for low thermal noise level. The first operation of the cryogenic interferometer was successfully demonstrated in February of 2006. Current sensitivity at room temperature is close to the target sensitivity within a factor of 4. Several observation experiments at room temperature have been done. Once the displacement noise reaches at thermal noise level of room temperature, its improvement by cooling test mass mirrors should be demonstrated.Comment: 6 pages, 5 figures, Proceedings of GWDAW-1

    Efficacy and safety of monthly oral minodronate in patients with involutional osteoporosis

    Get PDF
    Summary Monthly minodronate at 30 or 50 mg had similar efficacy as 1 mg daily in terms of change in bone mineral density (BMD) and bone turnover markers with similar safety profiles. This new regimen provides patients with a new option for taking minodronate. Introduction Minodronate at a daily oral dose of 1 mg has been proven to have antivertebral fracture efficacy. In the present study, the efficacy and safety of oral minodronate at monthly doses of either 30 mg or 50 mg were compared with a daily dose of 1 mg. Methods A total of 692 patients with involutional osteoporosis were randomized to receive minodronate at either 30 or 50 mg monthly or a daily dose of 1 mg. The primary endpoint was the percent change from baseline in lumbar spine (LS) BMD at 12 months. Total hip BMD, bone turnover markers, serum calcium (Ca), and parathyroid hormone (PTH) levels were also evaluated. Results Minodronate at monthly doses of 30 or 50 mg were noninferior to the 1 mg daily dose in terms of change in LS-BMD. Changes in total hip BMD were also comparable. Although a transient decrease in serum Ca and increase in PTH levels were observed in all three groups at slightly different magnitudes and time courses, changes in bone turnover markers were comparable among the differentdosage groups with a similar time course. Safety profiles were also comparable. Conclusion Minodronate at monthly doses of 30 or 50 mg has similar efficacy to the daily 1 mg dose in terms of BMD and bone turnover markers with similar tolerability

    A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet

    Get PDF
    A gyrotron with an axis-encircling electron beam is capable of high-frequency operation, because the high-beam efficiency is kept even at high harmonics of the electron cyclotron frequency. We have designed and constructed such a gyrotron with a permanent magnet. The gyrotron has already operated successfully at the third, fourth, and fifth harmonics. The frequencies are 89.3, 112.7, and 138 GHz, respectively, and the corresponding cavity modes are TE/sub 311/, TE/sub 411/, and TE/sub 511/. The permanent magnet system is quite novel and consists of many magnet elements made of NbFeB and additional coils for controlling the field intensities in the cavity and electron gun regions. The magnetic field in the cavity region can be varied from 0.97 to 1.18 T. At the magnetic field intensities, the output powers at the third and the fourth harmonics are 1.7 and 0.5 kW, respectively. The gyrotron is pulsed, the pulse length is 1 ms and the repetition frequency is 1 Hz. The beam energy is 40 kV and the beam current is 1.2-1.3 A. Beam efficiencies and emission patterns have also been measured. In this paper, the experimental results of the gyrotron are described and compared with computer simulations

    Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data

    Get PDF
    Japanese laser interferometric gravitational wave detectors, TAMA300 and LISM, performed a coincident observation during 2001. We perform a coincidence analysis to search for inspiraling compact binaries. The length of data used for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors are operated simultaneously. TAMA300 and LISM data are analyzed by matched filtering, and candidates for gravitational wave events are obtained. If there is a true gravitational wave signal, it should appear in both data of detectors with consistent waveforms characterized by masses of stars, amplitude of the signal, the coalescence time and so on. We introduce a set of coincidence conditions of the parameters, and search for coincident events. This procedure reduces the number of fake events considerably, by a factor 104\sim 10^{-4} compared with the number of fake events in single detector analysis. We find that the number of events after imposing the coincidence conditions is consistent with the number of accidental coincidences produced purely by noise. We thus find no evidence of gravitational wave signals. We obtain an upper limit of 0.046 /hours (CL =90= 90 %) to the Galactic event rate within 1kpc from the Earth. The method used in this paper can be applied straightforwardly to the case of coincidence observations with more than two detectors with arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in Physical Review

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    Get PDF
    We present data-analysis schemes and results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp-wave analysis, because precise waveform templates are not available. We used an excess-power filter for the extraction of gravitational-wave candidates, and developed two methods for the reduction of fake events caused by non-stationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. The resultant event candidates were interpreted from an astronomical viewpoint. We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave event rate in our Galaxy with a confidence level of 90%. This work sets a milestone and prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

    Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within our Galaxy

    Get PDF
    TAMA300, an interferometric gravitational-wave detector with 300-m baseline length, has been developed and operated with sufficient sensitivity to detect gravitational-wave events within our galaxy and sufficient stability for observations; the interferometer was operated for over 10 hours stably and continuously. With a strain-equivalent noise level of h5×1021/Hzh\sim 5 \times 10^{-21} /\sqrt{\rm Hz}, a signal-to-noise ratio (SNR) of 30 is expected for gravitational waves generated by a coalescence of 1.4 MM_\odot-1.4 MM_\odot binary neutron stars at 10 kpc distance. %In addition, almost all noise sources which limit the sensitivity and which %disturb the stable operation have been identified. We evaluated the stability of the detector sensitivity with a 2-week data-taking run, collecting 160 hours of data to be analyzed in the search for gravitational waves.Comment: 5 pages, 4 figure
    corecore