153 research outputs found

    Fatty Acid Accumulation and Resulting PPARĪ± Activation in Fibroblasts due to Trifunctional Protein Deficiency

    Get PDF
    To examine fatty acid accumulation and its toxic effects in cells, we analyzed skin fibroblasts from six patients with mitochondrial trifunctional protein deficiency, who had abnormalities in the second through fourth reactions in fatty acid Ī²-oxidation system. We found free fatty acid accumulation, enhanced three acyl-CoA dehydrogenases, catalyzing the first reaction in the Ī²-oxidation system and being assumed to have normal activities in these patients, and PPARĪ± activation that was confirmed in the experiments using MK886, a PPARĪ± specific antagonist and fenofibrate, a PPARĪ± specific agonist. These novel findings suggest that the fatty acid accumulation and the resulting PPARĪ± activation are major causes of the increase in the Ī²-oxidation ability as probable compensation for fatty acid metabolism in the patients' fibroblasts, and that enhanced cell proliferation and increased oxidative stress due to the PPARĪ± activation relate to the development of specific clinical features such as hypertrophic cardiomyopathy, slight hepatomegaly, and skeletal myopathy. Additionally, significant suppression of the PPARĪ± activation by means of MK886 treatment is assumed to provide a new method of treating this deficiency

    Biological roles of anti-GM1 antibodies in patients with Guillainā€“BarrĆ© syndrome for nerve growth factor signaling

    Get PDF
    AbstractTo reveal the biological and pathological roles of anti-GM1 antibody in Guillainā€“BarrĆ© syndrome (GBS), we examined its effects on nerve growth factor (NGF) induced TrkA autophosphorylation (NGF-TrkA signaling) in PC12 cells, a sympathetic nerve cell line. The NGF-TrkA signaling is enhanced by exogenous GM1 ganglioside and this phenomenon is regarded as one of the functional aspects of GM1. The IgGs purified from patients' sera inhibited the NGF-TrkA signaling in GM1 pre-incubated PC12 cells. The degrees of inhibition by IgGs from patients paralleled their immunological reactivity to GM1. In addition, the IgGs also inhibited the neurite outgrowth of NGF-treated PC12 cells. Immunoglobulins in the rabbit sera, which were immunized by GM1, also caused a similar suppressive phenomenon. These results suggested that the anti-GM1 antibody could play roles in pathophysiology in anti-GM1 antibody positive GBS through interfering with the neurotrophic action of NGF and GM1 mediated signal modulation including NGF-TrkA signaling. It is suggested that the modulation of GM1 function is one important action of antibodies and could be one of the important mechanisms in GBS

    Peroxisome proliferator-activated receptor alpha mediates enhancement of gene expression of cerebroside sulfotransferase in several murine organs

    Get PDF
    Sulfatides, 3-O-sulfogalactosylceramides, are known to have multifunctional properties. These molecules are distributed in various tissues of mammals, where they are synthesized from galactosylceramides by sulfation at C3 of the galactosyl residue. Although this reaction is specifically catalyzed by cerebroside sulfotransferase (CST), the mechanisms underlying the transcriptional regulation of this enzyme are not understood. With respect to this issue, we previously found potential sequences of peroxisome proliferator-activated receptor (PPAR) response element on upstream regions of the mouse CST gene and presumed the possible regulation by the nuclear receptor PPAR alpha. To confirm this hypothesis, we treated wild-type and Ppara-null mice with the specific PPAR alpha agonist fenofibrate and examined the amounts of sulfatides and CST gene expression in various tissues. Fenofibrate treatment increased sulfatides and CST mRNA levels in the kidney, heart, liver, and small intestine in a PPAR alpha-dependent manner. However, these effects of fenofibrate were absent in the brain or colon. Fenofibrate treatment did not affect the mRNA level of arylsulfatase A, which is the key enzyme for catalyzing desulfation of sulfatides, in any of these six tissues. Analyses of the DNA-binding activity and conventional gene expression targets of PPAR alpha has demonstrated that fenofibrate treatment activated PPAR alpha in the kidney, heart, liver, and small intestine but did not affect the brain or colon. These findings suggest that PPAR alpha activation induces CST gene expression and enhances sulfatide synthesis in mice, which suggests that PPAR alpha is a possible transcriptional regulator for the mouse CST gene.ArticleGLYCOCONJUGATE JOURNAL. 30(6):553-560 (2013)journal articl

    Development of the Virtual Earth\u27s Magnetosphere System (VEMS)

    Get PDF
    We have constructed a new research environment for geo-space science based on 3-D visualization tool and network database; Virtual Earth\u27s Magnetosphere System (VEMS). With an interactive research environment researchers can visually understand structures of the Earth\u27s magnetosphere using VEMS. On the VEMS, computer simulation results and observation data are simultaneously visualized, having a potential to data assimilation for geo-space studies in the future. Since the VEMS deals with time-dependent data, it also helps researchers to study dynamics of the Earth\u27s magnetosphere. We found that immersive data analyses are possible using the VEMS on a virtual reality system

    Mechanical Stimulation-Induced Calcium Signaling by Piezo1 Channel Activation in Human Odontoblast Reduces Dentin Mineralization

    Get PDF
    Odontoblasts play critical roles in dentin formation and sensory transduction following stimuli on the dentin surface. Exogenous stimuli to the dentin surface elicit dentinal sensitivity through the movement of fluids in dentinal tubules, resulting in cellular deformation. Recently, Piezo1 channels have been implicated in mechanosensitive processes, as well as Ca(2+) signals in odontoblasts. However, in human odontoblasts, the cellular responses induced by mechanical stimulation, Piezo1 channel expression, and its pharmacological properties remain unclear. In the present study, we examined functional expression of the Piezo1 channel by recording direct mechanical stimulation-induced Ca(2+) signaling in dentin matrix protein 1 (DMP-1)-, nestin-, and dentin sialophosphoprotein (DSPP)-immunopositive human odontoblasts. Mechanical stimulation of human odontoblasts transiently increased intracellular free calcium concentration ([Ca(2+)](i)). Application of repeated mechanical stimulation to human odontoblasts resulted in repeated transient [Ca(2+)](i) increases, but did not show any desensitizing effects on [Ca(2+)](i) increases. We also observed a transient [Ca(2+)](i) increase in the neighboring odontoblasts to the stimulated cells during mechanical stimulation, showing a decrease in [Ca(2+)](i) with an increasing distance from the mechanically stimulated cells. Application of Yoda1 transiently increased [Ca(2+)](i). This increase was inhibited by application of Gd(3+) and Dooku1, respectively. Mechanical stimulation-induced [Ca(2+)](i) increase was also inhibited by application of Gd(3+) or Dooku1. When Piezo1 channels in human odontoblasts were knocked down by gene silencing with short hairpin RNA (shRNA), mechanical stimulation-induced [Ca(2+)](i) responses were almost completely abolished. Piezo1 channel knockdown attenuated the number of Piezo1-immunopositive cells in the immunofluorescence analysis, while no effects were observed in Piezo2-immunopositive cells. Alizarin red staining distinctly showed that pharmacological activation of Piezo1 channels by Yoda1 significantly suppressed mineralization, and shRNA-mediated knockdown of Piezo1 also significantly enhanced mineralization. These results suggest that mechanical stimulation predominantly activates intracellular Ca(2+) signaling via Piezo1 channel opening, rather than Piezo2 channels, and the Ca(2+) signal establishes intercellular odontoblast-odontoblast communication. In addition, Piezo1 channel activation participates in the reduction of dentinogenesis. Thus, the intracellular Ca(2+) signaling pathway mediated by Piezo1 channels could contribute to cellular function in human odontoblasts in two ways: (1) generating dentinal sensitivity and (2) suppressing physiological/reactional dentinogenesis, following cellular deformation induced by hydrodynamic forces inside dentinal tubules

    16S rRNA Methylaseā€“producing, Gram-Negative Pathogens, Japan

    Get PDF
    To investigate the exact isolation frequency of 16S rRNA methylaseā€“producing, gram-negative pathogenic bacteria, we tested 87,626 clinical isolates from 169 hospitals. Twenty-six strains from 16 hospitals harbored 16S rRNA methylase genes, which suggests sparse but diffuse spread of pan-aminoglycosideā€“resistant microbes in Japan

    Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury

    Get PDF
    Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5 with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment

    Predictive factors of mortality of patients with fragility hip fractures at 1 year after discharge : A multicenter, retrospective study in the northern Kyushu district of Japan

    Get PDF
    Purpose: Fragility hip fractures (FHFs) are associated with a high risk of mortality, but the relative contribution of various factors remains controversial. This study aimed to evaluate predictive factors of mortality at 1 year after discharge in Japan. Methods: A total of 497 patients aged 60 years or older who sustained FHFs during follow-up were included in this study. Expected variables were finally assessed using multivariable Cox proportional hazards models. Results: The 1-year mortality rate was 9.1% (95% confidence interval: 6.8ā€“12.0%, n = 45). Log-rank test revealed that previous fractures (p = 0.003), Barthel index (BI) at discharge (p = 0.011), and place-to-discharge (p = 0.004) were significantly associated with mortality for male patients. Meanwhile, body mass index (BMI; p = 0.023), total Charlson comorbidity index (TCCI; p = 0.005), smoking (p = 0.007), length of hospital stay (LOS; p = 0.009), and BI (p = 0.004) were the counterparts for females. By multivariate analyses, previous vertebral fractures (hazard ratio (HR) 3.33; p = 0.044), and BI <30 (HR 5.42, p = 0.013) were the predictive variables of mortality for male patients. BMI <18.5 kg/m2 (HR 2.70, p = 0.023), TCCI ā‰„5 (HR 2.61, p = 0.032), smoking history (HR 3.59, p = 0.018), LOS <14 days (HR 13.9; p = 0.007), and BI <30 (HR 2.76; p = 0.049) were the counterparts for females. Conclusions: Previous vertebral fractures and BI <30 were the predictive variables of mortality for male patients, and BMI <18.5 kg/m2, TCCI ā‰„5, smoking history, LOS <14 days, and BI <30 were those for females. Decreased BI is one of the independent and preventable risk factors. A comprehensive therapeutic approach should be considered to prevent deterioration of activities of daily living and a higher risk of mortality
    • ā€¦
    corecore