6 research outputs found

    A Global Analysis of Wildfire Smoke Injection Heights Derived from Space-Based Multi-Angle Imaging

    No full text
    We present an analysis of over 23,000 globally distributed wildfire smoke plume injection heights derived from Multi-angle Imaging SpectroRadiometer (MISR) space-based, multi-angle stereo imaging. Both pixel-weighted and aerosol optical depth (AOD)-weighted results are given, stratified by region, biome, and month or season. This offers an observational resource for assessing first-principle plume-rise modelling, and can provide some constraints on smoke dispersion modelling for climate and air quality applications. The main limitation is that the satellite is in a sun-synchronous orbit, crossing the equator at about 10:30 a.m. local time on the day side. Overall, plumes occur preferentially during the northern mid-latitude burning season, and the vast majority inject smoke near-surface. However, the heavily forested regions of North and South America, and Africa produce the most frequent elevated plumes and the highest AOD values; some smoke is injected to altitudes well above 2 km in nearly all regions and biomes. Planetary boundary layer (PBL) versus free troposphere injection is a critical factor affecting smoke dispersion and environmental impact, and is affected by both the smoke injection height and the PBL height; an example assessment is made here, but constraining the PBL height for this application warrants further work

    Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products

    No full text
    Aerosol plumes from wildfires affect the Earth's climate system through regulation of the radiative budget and clouds. However, optical properties of aerosols from individual wildfire smoke plumes and their resultant impact on regional climate are highly variable. Therefore, there is a critical need for observations that can constrain the partitioning between different types of aerosols. Here we present the apparent influence of regional ecosystem types on optical properties of wildfire-induced aerosols based on remote sensing observations from two satellite instruments and three ground stations. The independent observations commonly show that the ratio of the absorbing aerosols is significantly lower in smoke plumes from the Maritime Continent than those from Central Africa, so that their impacts on regional climate are different. The observed light-absorbing properties of wildfire-induced aerosols are explained by dominant ecosystem types such as wet peatlands for the Maritime Continent and dry savannah for Central Africa, respectively. These results suggest that the wildfire-aerosol-climate feedback processes largely depend on the terrestrial environments from which the fires originate. These feedbacks also interact with climate under greenhouse warming. Our analysis shows that aerosol optical properties retrieved based on satellite observations are critical in assessing wildfire-induced aerosols forcing in climate models. The optical properties of carbonaceous aerosol mixtures used by state-of-the-art chemistry climate models may overestimate emissions for absorbing aerosols from wildfires over the Maritime Continent.11Nsciescopu
    corecore