64 research outputs found

    Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE

    Get PDF
    AbstractQuantitative measurements of change in β-amyloid load from Positron Emission Tomography (PET) images play a critical role in clinical trials and longitudinal observational studies of Alzheimer's disease. These measurements are strongly affected by methodological differences between implementations, including choice of reference region and use of partial volume correction, but there is a lack of consensus for an optimal method. Previous works have examined some relevant variables under varying criteria, but interactions between them prevent choosing a method via combined meta-analysis. In this work, we present a thorough comparison of methods to measure change in β-amyloid over time using Pittsburgh Compound B (PiB) PET imaging.MethodsWe compare 1,024 different automated software pipeline implementations with varying methodological choices according to four quality metrics calculated over three-timepoint longitudinal trajectories of 129 subjects: reliability (straightness/variance); plausibility (lack of negative slopes); ability to predict accumulator/non-accumulator status from baseline value; and correlation between change in β-amyloid and change in Mini Mental State Exam (MMSE) scores.Results and conclusionFrom this analysis, we show that an optimal longitudinal measure of β-amyloid from PiB should use a reference region that includes a combination of voxels in the supratentorial white matter and those in the whole cerebellum, measured using two-class partial volume correction in the voxel space of each subject's corresponding anatomical MR image

    Does amyloid deposition produce a specific atrophic signature in cognitively normal subjects?☆

    Get PDF
    The objective of our study was to evaluate whether cognitively normal (CN) elderly participants showing elevated cortical beta-amyloid (Aβ) deposition have a consistent neuroanatomical signature of brain atrophy that may characterize preclinical Alzheimer's disease (AD). 115 CN participants who were Aβ-positive (CN +) by amyloid PET imaging; 115 CN participants who were Aβ-negative (CN −); and 88 Aβ-positive mild cognitive impairment or AD participants (MCI/AD +) were identified. Cortical thickness (FreeSurfer) and gray matter volume (SPM5) were measured for 28 regions-of-interest (ROIs) across the brain and compared across groups. ROIs that best discriminated CN − from CN + differed for FreeSurfer cortical thickness and SPM5 gray matter volume. Group-wise discrimination was poor with a high degree of uncertainty in terms of the rank ordering of ROIs. In contrast, both techniques showed strong and consistent findings comparing MCI/AD + to both CN − and CN + groups, with entorhinal cortex, middle and inferior temporal lobe, inferior parietal lobe, and hippocampus providing the best discrimination for both techniques. Concordance across techniques was higher for the CN − and CN + versus MCI/AD + comparisons, compared to the CN − versus CN + comparison. The weak and inconsistent nature of the findings across technique in this study cast doubt on the existence of a reliable neuroanatomical signature of preclinical AD in elderly PiB-positive CN participants

    A novel computer adaptive word list memory test optimized for remote assessment: Psychometric properties and associations with neurodegenerative biomarkers in older women without dementia

    Get PDF
    Introduction: This study established the psychometric properties and preliminary validity of the Stricker Learning Span (SLS), a novel computer adaptive word list memory test designed for remote assessment and optimized for smartphone use. Methods: Women enrolled in the Mayo Clinic Specialized Center of Research Excellence (SCORE) were recruited via e-mail or phone to complete two remote cognitive testing sessions. Convergent validity was assessed through correlation with previously administered in-person neuropsychological tests (n = 96, ages 55-79) and criterion validity through associations with magnetic resonance imaging measures of neurodegeneration sensitive to Alzheimer\u27s disease (n = 47). Results: SLS performance significantly correlated with the Auditory Verbal Learning Test and measures of neurodegeneration (temporal meta-regions of interest and entorhinal cortical thickness, adjusting for age and education). Test-retest reliabilities across two sessions were 0.71-0.76 (two-way mixed intraclass correlation coefficients). Discussion: The SLS is a valid and reliable self-administered memory test that shows promise for remote assessment of aging and neurodegenerative disorders

    Frequency and topography of cerebral microbleeds in dementia with Lewy bodies compared to Alzheimer's disease

    Get PDF
    AbstractAimTo determine the frequency and topographic distribution of cerebral microbleeds (CMBs) in dementia with Lewy bodies (DLB) in comparison to CMBs in Alzheimer disease dementia (AD).MethodsConsecutive probable DLB (n = 23) patients who underwent 3-T T2* weighted gradient-recalled-echo MRI, and age and gender matched probable Alzheimer's disease patients (n = 46) were compared for the frequency and location of CMBs.ResultsThe frequency of one or more CMBs was similar among patients with DLB (30%) and AD (24%). Highest densities of CMBs were found in the occipital lobes of patients with both DLB and AD. Patients with AD had greater densities of CMBs in the parietal, temporal lobes and infratentorial regions compared to DLB (p < 0.05).ConclusionCMBs are as common in patients with DLB as in patients with AD, with highest densities observed in the occipital lobes, suggesting common pathophysiologic mechanisms underlying CMBs in both diseases

    Molecular fragment characteristics and distribution of tangle associated TDP-43 (TATs) and other TDP-43 lesions in Alzheimer’s disease

    Get PDF
    TAR DNA binding protein 43 (TDP-43) pathology is a defining feature of frontotemporal lobar degeneration (FTLD). In FTLD-TDP there is a moderate-to-high burden of morphologically distinctive TDP-43 immunoreactive inclusions distributed throughout the brain. In Alzheimer’s disease (AD), similar TDP-43 immunoreactive inclusions are observed. In AD, however, there is a unique phenomenon of neurofibrillary tangle-associated TDP-43 (TATs) whereby TDP-43 intermingles with neurofibrillary tangles. Little is known about the characteristics and distribution of TATs, or how burden and distribution of TATs compares to burden and distribution of other FTLD-TDP-like lesions observed in AD. Here we characterize molecular fragment characteristics, burden and distribution of TATs and assess how these features compare to features of other TDP-43 lesions. We performed TDP-43 immunohistochemistry with anti-phosphorylated, C- and N-terminal TDP-43 antibodies in 20 high-probability AD cases and semi-quantitative burden of seven inclusion types within five brain regions (entorhinal cortex, subiculum, CA1 and dentate gyrus of hippocampus, occipitotemporal cortex). Hierarchical cluster analysis was used to analyze the dataset that consisted of 75 different combinations of neuropathological features. TATs were nonspherical with heterogeneous staining patterns and present in all regions except hippocampal dentate. All three antibodies detected TATs although N-terminal antibody sensitivity was low. Three clusters were identified: Cluster-1 had mild-moderate TATs, moderate-frequent neuronal cytoplasmic inclusions, dystrophic neurites, neuronal intranuclear inclusions and fine neurites, and perivascular and granular inclusions identified only with the N-terminal antibody throughout the brain; Cluster-2 had scant TATs in limbic regions and Cluster-3 mild-moderate TATs and mild-moderate neuronal cytoplasmic inclusions and dystrophic neurites throughout the brain and moderate fine neurites. Only 17% of cluster 1 cases had the TMEM106b GG (protective) haplotype and 83% had hippocampal sclerosis. Both features differed across clusters (p=0.03 & p=0.01). TATs have molecular characteristics, distribution and burden, and genetic and pathologic associations like FTLD-TDP lesions

    Evaluation of Clustering and Genotype Distribution for Replication in Genome Wide Association Studies: The Age-Related Eye Disease Study

    Get PDF
    Genome-wide association studies (GWASs) assess correlation between traits and DNA sequence variation using large numbers of genetic variants such as single nucleotide polymorphisms (SNPs) distributed across the genome. A GWAS produces many trait-SNP associations with low p-values, but few are replicated in subsequent studies. We sought to determine if characteristics of the genomic loci associated with a trait could be used to identify initial associations with a higher chance of replication in a second cohort. Data from the age-related eye disease study (AREDS) of 100,000 SNPs on 395 subjects with and 198 without age-related macular degeneration (AMD) were employed. Loci highly associated with AMD were characterized based on the distribution of genotypes, level of significance, and clustering of adjacent SNPs also associated with AMD suggesting linkage disequilibrium or multiple effects. Forty nine loci were highly associated with AMD, including 3 loci (CFH, C2/BF, LOC387715/HTRA1) already known to contain important genetic risks for AMD. One additional locus (C3) reported during the course of this study was identified and replicated in an additional study group. Tag-SNPs and haplotypes for each locus were evaluated for association with AMD in additional cohorts to account for population differences between discovery and replication subjects, but no additional clearly significant associations were identified. Relying on a significant genotype tests using a log-additive model would have excluded 57% of the non-replicated and none of the replicated loci, while use of other SNP features and clustering might have missed true associations

    Density of Common Complex Ocular Traits in the Aging Eye: Analysis of Secondary Traits in Genome-Wide Association Studies

    Get PDF
    Genetic association studies are identifying genetic risks for common complex ocular traits such as age-related macular degeneration (AMD). The subjects used for discovery of these loci have been largely from clinic-based, case-control studies. Typically, only the primary phenotype (e.g., AMD) being studied is systematically documented and other complex traits (e.g., affecting the eye) are largely ignored. The purpose of this study was to characterize these other or secondary complex ocular traits present in the cases and controls of clinic-based studies being used for genetic study of AMD. The records of 100 consecutive new patients (of any diagnosis) age 60 or older for which all traits affecting the eye had been recorded systematically were reviewed. The average patient had 3.5 distinct diagnoses. A subset of 10 complex traits was selected for further study because they were common and could be reliably diagnosed. The density of these 10 complex ocular traits increased by 0.017 log-traits/year (P = 0.03), ranging from a predicted 2.74 at age 60 to 4.45 at age 90. Trait-trait association was observed only between AMD and primary vitreomacular traction (P = 0.0009). Only 1% of subjects age 60 or older had no common complex traits affecting the eye. Extrapolations suggested that a study of 2000 similar subjects would have sufficient power to detect genetic association with an odds ratio of 2.0 or less for 4 of these 10 traits. In conclusion, the high prevalence of complex traits affecting the aging eye and the inherent biases in referral patterns leads to the potential for confounding by undocumented secondary traits within case-control studies. In addition to the primary trait, other common ocular phenotypes should be systematically documented in genetic association studies so that adjustments for potential trait-trait associations and other bias can be made and genetic risk variants identified in secondary analyses
    • …
    corecore