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Quantitative measurements of change in β-amyloid load from Positron Emission Tomography (PET)
images play a critical role in clinical trials and longitudinal observational studies of Alzheimer's disease.
These measurements are strongly affected by methodological differences between implementations,
including choice of reference region and use of partial volume correction, but there is a lack of consensus
for an optimal method. Previous works have examined some relevant variables under varying criteria,
but interactions between them prevent choosing a method via combined meta-analysis. In this work, we
present a thorough comparison of methods to measure change in β-amyloid over time using Pittsburgh
Compound B (PiB) PET imaging.
Methods: We compare 1,024 different automated software pipeline implementations with varying
methodological choices according to four quality metrics calculated over three-timepoint longitudinal
trajectories of 129 subjects: reliability (straightness/variance); plausibility (lack of negative slopes);
ability to predict accumulator/non-accumulator status from baseline value; and correlation between
change in β-amyloid and change in Mini Mental State Exam (MMSE) scores.
Results and conclusion: From this analysis, we show that an optimal longitudinal measure of β-amyloid
from PiB should use a reference region that includes a combination of voxels in the supratentorial white
matter and those in the whole cerebellum, measured using two-class partial volume correction in the
voxel space of each subject's corresponding anatomical MR image.
& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the introduction of amyloid Positron Emission Tomo-
graphy (PET) Imaging (Klunk et al., 2004), methods for quantita-
tive measurement of these scans have been an important topic of
discussion motivated by increasing incorporation of these bio-
markers into Alzheimer's Disease (AD) clinical trials and research
collaborations. We focus this work on two commonly-used classes
of existing methods, originally developed for other PET tracers:
Standardized Uptake Value (SUV) and Standardized Uptake Value
Ratio (SUVR). SUV, also known as Differential Absorption Ratio or
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Differential Uptake Ratio, attempts to correct measured values in
PET images for variation in the amount of tracer injected and the
patient's body weight (Thie, 2004; Zasadny and Wahl, 1993). SUVR
uses a ratio of PET uptake values measured in different regions of
the image: a “target” region of interest (ROI) containing biology to
be measured, divided by a “reference” region that is assumed to be
free of the pathology of interest, thus providing a surrogate mea-
sure of the amount of tracer present. Traditionally for amyloid PET,
this has been a ratio of uptake in the cerebral cortex to uptake in
the cerebellum because the cerebellum is known to be relatively
unaffected by β-amyloid deposition (Klunk et al., 2004; Zhou et al.,
2007). We provide equations for both SUV and SUVR in Table 1.

We focus this work on SUV and SUVR because although PET
analysis methods requiring significantly longer scan times are
known to be more reliable for quantifying change over time (van
Berckel et al., 2013), longitudinal population studies require serial
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Equations for SUV and SUVR.

=SUVR Uptake in Target Region
Uptake in Reference Region

( ) ( )
( )= ×

SUV
Uptake in Target Region Weight

Injected Dose
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scans of many hundreds, or even thousands, of subjects. This re-
quirement excludes the possibility of using only dynamic scans
due to cost and scanner access constraints, and subject burden
required for full dynamic scanning. For example, the Mayo Clinic
Study of Aging, data from which we examine in this work, follows
over 1500 subjects longitudinally in order to capture sufficient
biologic diversity over the entire range of human aging. Perform-
ing dynamic scans on such a scale is not tenable. Thus, we focus
this work on optimizing SUV/SUVR methods for analysis of such
datasets, for which these methods are the only reasonable options.

SUV and SUVR can be calculated by varying implementations
and software packages, affecting their properties in ways that have
not been fully explored. For example, both are affected by the
precise choice of voxels in the target region, and SUVR is strongly
affected by the precise choice of voxels in a chosen reference re-
gion. Other factors include use of Partial Volume Correction (PVC),
and in what voxel space to perform analysis calculations. In this
work we explore the effects of each of these choices on serial
measurements of scans using [11C] Pittsburgh Compound B (PiB)
(Klunk et al., 2004).

Recently, the amyloid PET community has begun to address the
many variations in performing these measurements (Klunk et al.,
2015; Schmidt et al., 2015), and many previous works have focused
on determining a technique that outperforms others according to a
range of criteria. Many have focused on purely cross-sectional
criteria for use in cross-sectional studies (Klein et al., 2014; Lo-
presti et al., 2011; Lowe et al., 2009; Thurfjell et al., 2014). Our
present work focuses purely on longitudinal criteria for optimizing
change-over-time measures in longitudinal studies; we review the
others in this category below. In 2014, Fleisher et. al. evaluated
supratentorial white matter (WM) versus cerebellar or pontine
references for computing SUVR on [18F] florbetapir scans, using a
serial-change-detection criteria, and concluded in favor of supra-
tentorial WM reference regions (Fleisher et al., 2014). Liu et. al.
compared measuring SUVR from florbetapir scans with cerebellar
gray matter (GM) versus pons references according to their ability
to detect any potential treatment effect in subjects treated with
bapineuzumab and reported no significant treatment effect using
either reference, but also that SUVR values computed from the two
methods were qualitatively inconsistent with each other (Liu et al.,
2014). Joshi et. al. compared florbetapir scans with supratentorial
WM versus cerebellar references according to maximizing serial
increase in uptake in subjects considered amyloid positive, and
according to a serial variation criteria, and concluded that both
criteria were improved with a supratentorial WM reference region
(Joshi et al., 2014). In 2015, Brendel et. al. compared cross-sectional
group discrimination and serial-change-detection using florbeta-
pir measurements with cerebellar versus brainstem versus WM
references, and also examined whether to use full-brain atlas
voxels versus GM-segmented atlas voxels versus those PVC-cor-
rected. Both criteria were improved by WM or brainstem rather
than cerebellar reference regions, and by using PVC (Brendel et al.,
2015). Chen et. al. compared cerebellar versus pontine versus WM
reference regions using a PET-only method for measuring pairs of
serial florbetapir scans according to reliability, correlation with
cognitive declines, and power to detect longitudinal change, also
concluding in favor of WM references. (Chen et al., 2015). Landau
et. al. compared cerebellar, pontine, and WM reference regions in
Please cite this article as: Schwarz, C.G., et al., Optimizing PiB-PET S
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serial florbetapir measurements. They first identified groups ex-
pected to increase over time, versus those expected to remain
stable, using concurrent β-amyloid measurements from Cere-
brospinal Fluid (CSF). Then, they determined agreement between
serial florbetapir measurements and these predictions, also con-
cluding in favor of WM-containing references (Landau et al., 2015).
An analysis of PVC was performed by Su et. al., who compared
processing methods using two-class PVC, a region-based PVC, and
no PVC on a basis of power to detect change using PiB scans, and
concluded that region-based PVC was superior to two-class PVC,
and both were superior to no PVC (Su et al., 2015).

Many questions remain unsettled. Particularly, most prior
comparisons focus on 18F ligands, and their conclusions may not
necessarily apply to 11C PiB. Secondly, most focus on a smaller
subset of the many methodological variables involved, usually
reference region alone, ignoring others such as PVC, segmentation
methods, etc. Because it is possible, if not likely, that these vari-
ables have interactions, we propose that a comprehensive study
must include a combination of all variables involved. Finally, we
point out that prior comparisons use a wide variety of criteria:
some relating to accuracy, others to precision, some cross-sec-
tional, some longitudinal, that are rarely the same between them.
Here we present a comprehensive study examining over 1,024
fully-automated software analysis pipeline implementations
(henceforth referred to as “pipelines”) with differing combinations
of methodological variables for measuring SUV and SUVR values
from serial PiB scans, using four criteria addressing different as-
pects of longitudinal trajectory performance. In the following
section we fully describe the aims and scope of this work.
2. Objectives

In calculating a single measure of β-amyloid from an amyloid
PET scan, there are potentially infinite methodological variables. In
this section, we identify a set of methodological questions that
have been the most debated. Answering these will be the objective
of this work.

2.1. Question 1: is partial volume correction helpful?

Partial Volume Correction (PVC) attempts to correct for the
effect of relative uptake levels in multiple tissue types and/or CSF
within each PET voxel. Generally, this uses segmentations from a
T1-weighted Magnetic Resonance Image (MRI) in combination
with the known resolution of the PET camera used to estimate the
fraction of each material expected to lie in each voxel or ROI. In
this work we evaluate three options: no PVC; 2-class PVC (PVC2),
which attempts to correct for CSF in GM/WM locations; and
3-class PVC (PVC3), which attempts to correct for both CSF and
WM in GM locations. Briefly, 2-class PVC uses a binary map of
GMþWM locations from MRI segmentation and blurs this by the
known resolution of the PET camera (approximately 8 mm3 for the
scanners in our study (Joshi et al., 2009)) to create an approximate
fraction of tissue expected in each voxel. The raw PET scan is then
divided by this tissue fraction in each voxel. This algorithm de-
pends on the accuracy of the MRI segmentation and registration
between PET and MRI (Meltzer et al., 1990). In 3-class PVC, MRI
segmentation is instead used to create separate maps of voxels
containing GM and those containing WM. First, an atlas is used to
locate the centrum semiovale region and calculate the mean PET
signal in this ROI, which is then assumed to reflect the true WM
signal in all WM voxels. This mean value is assigned to all voxels
segmented as WM, then blurred with the approximate PSF and
subtracted from the raw PET scan. This step is designed to remove
the signal from each voxel that is due to WM. Next, the image
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Fig. 1. PVC options tested: An example on a single subject PiB scan with no PVC applied, with 2-class PVC (denoted PVC2) applied, and with 3-class PVC (denoted PVC3)
applied. Non-brain voxels were excluded.
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follows the same steps as in two-class PVC, which then attempts to
correct further partial voluming by CSF (Müller-Gärtner et al.,
1992). Because this method is designed to remove WM signal from
each voxel, it is not appropriate when WM voxels are included in
either reference or target regions for SUVR calculation. For this
reason, we omit pipeline combinations that would use 3-class PVC
with WM-containing target or reference regions.

Both algorithms were implemented in-house in Cþþ using the
Insight Toolkit (www.itk.org), and were applied using the MRI
scans that corresponded to each subject's PET scan at each time-
point, in order to allow them to correct for differing amounts of
partial volume over time, which is expected due to atrophy and
potential pathology. We provide examples in Fig. 1.

2.2. Question 2: which is the optimal reference region?

Most of the debate in this literature has concerned choosing a
reference region. We test 55 variations derived from four major
regions: cerebellum, pons, midbrain, and supratentorial WM. The
Fig. 2. Reference regions tested: SUVR Reference regions tested in this study include tho
5 voxels radius (denoted with _Ero3, _Ero5).
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55 variations come from various sub-regions, erosions, and com-
binations of the above. For supratentorial WM, we include two
classes of implementations: those using each subject's individual
segmentation from T1-weighted MRI using SPM12 (Ashburner and
Friston, 2005), and those using regions from the Johns Hopkins
University “Eve” single-subject WM atlas (Oishi et al., 2009). We
show examples in Fig. 2.

2.3. Question 3: which is the optimal GM segmentation within the
target region?

In this question, we optimize which voxels to include in the
cortical target. We are not comparing different sets of anatomic
brain regions, but only how to apply segmentation to determine a
subset of the voxels within these regions for each scan. We test a
total of six segmentation methods within a fixed target meta-ROI
containing those regions primarily affected by β-amyloid deposi-
tion: parietal, cingulate precuneus, prefrontal, orbito-frontal,
temporal, and anterior cingulate (Fig. 3). Within these ROIs, we
se above, along with various combinations (denoted with þ) and erosions of 3 and
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Fig. 3. Target GM Segmentations Tested: In this work, we examine six options for different segmentations within the target ROI. We emphasize that this work does not
examine different regions of the brain as targets; instead, we examine options for tissue segmentations that choose sets of voxels within a set of standard anatomical regions:
parietal, cingulate precuneus, prefrontal, orbito-frontal, and anterior cingulate.
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test three variations with segmentations computed by the Unified
Segmentation algorithm in SPM12 (Ashburner and Friston, 2005)
with an in-house population-specific set of tissue priors, and three
using Freesurfer version 5.3 (Fischl, 2012). For SPM methods, we
test three variations: 1) voxels estimated to be either GM or WM
together 2) voxels estimated to be GMwith at least 50% confidence
3) voxels estimated to be GM with at least 95% confidence. Among
Freesurfer methods, we test: 1) voxels segmented as either GM or
WM together 2) voxels segmented as GM 3) voxels estimated to lie
upon a surface halfway between the GM/WM and GM/CSF (pial)
surfaces. Because Freesurfer does not output probabilistic seg-
mentations, we use the output binary segmentations for the GM
and GMþWM variations. Freesurfer segmentations are output in
Fig. 4. Analysis space options tested: We examine two options for voxel spaces in which
versus up-sampling PET images to match MRI resolution (MRI space).
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the space of its native Talairach template; we resample these back
to each subject's native space using the recommended technique
(How to Convert from FreeSurfer Space Back to Native Anatomical
Space, 2015). The “GM Half Surface” option uses the mri_surf2vol
tools to estimate those voxels along a surface halfway between the
GM/WM and the GM/CSF (pial) surface. These voxels are theore-
tically those cortical GM voxels furthest from WM. Segmentations
produced by all methods were visually examined for all scans, and
none had errors sufficient to warrant manual correction or ex-
clusions. All segmentation and registration steps were performed
separately for each scan at each timepoint, with the exception of
Freesurfer segmentations, which used the longitudinal stream of
Freesurfer.
to calculate results: down-sampling MR images to match PET resolution (PET Space)
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2.4. Question 4: which is the optimal analysis space?

Typical T1-weighted MRI scans have a resolution of approxi-
mately 1 mm3, while PET scans typically have an effective re-
solution of approximately 6 mm3 or larger (Joshi et al., 2009). For
this situation, it is necessary to choose sets of voxels defined in
some specific voxel space. Thus, resampling one or the other is
necessary, but it is unclear which will produce superior results
(Fig. 4). We test both options (MRI space and PET space) in this
work.

2.5. Question 5: SUV or SUVR?

Among discussion of reference regions, one might consider
using SUV to normalize instead of a reference region (Table 1). We
include this option in the set of reference methods tested, in-
creasing the count to 56.
3. Methods

3.1. Subject characteristics

We include scans of 129 subjects from the Mayo Clinic Study of
Aging (MCSA) and Mayo Clinic Alzheimer's Disease Research
Center (ADRC) studies with three timepoints of serial scans with
both PiB and T1-weighted MRI (for a total of 387 scans). Subjects
with baseline SUVR 42.5 were excluded, for reasons discussed
later. MCSA is an epidemiological study of cognitive aging in Ro-
chester, Olmsted County, Minnesota (Petersen et al., 2010; Roberts
et al., 2008). The ADRC study recruits and follows subjects initially
seen as patients in the Mayo Clinic Behavioral Neurology practice.
All studies were approved by their respective institutional review
boards and all subjects or their surrogates provided informed
consent compliant with HIPAA regulations. We provide subject
characteristics in Table 2. Freesurfer processing failed to produce
Table 2
Subject characteristics.

Characteristic Summary

Number of subjects 129

Sex, n (%)

Female 44 (34%)
Male 85 (66%)
Age at baseline PET, years 76 (71, 80) [41 to 93]
Education, years 14 (12, 16) [7 to 24]
Global cortical PIB, SUVR 1.39 (1.31, 1.81) [1.19 to

2.47]

Diagnosis at baseline, n (%)a

CN 78 (62%)
MCI 25 (20%)
Dementia 23 (18%)

APOE ε4, n (%)

Carrier 84 (65%)
Non-carrier 45 (35%)
MMSE score 28 (26, 29) [8 to 30]
Time between first and third scan, years 3.1 (2.6, 3.9) [1.7 to 5.1]
Time between corresponding MRI and PET scans,
days

11.0 (2.0, 31.0) [0.0 to 148.0]

Ranges are given as: median (1st quartile, 3rd quartile) [min to max]
Abbreviations: n: Number of subjects; CN: Cognitively Normal; MCI: Mild Cognitive
Impairment; APOE: apolipoprotein E; MMSE: Mini-Mental State Exam

a Three subjects were given a diagnosis of “Uncertain” and are not included
here.
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an output for one subject, who was therefore excluded from
Freesurfer-using pipelines.

3.2. Scan acquisition parameters

[11C] Pittsburgh Compound B (PiB) PET/CT studies were ac-
quired using GE scanners (models Discovery 690XT and Discovery
RX; GE Healthcare, Waukesha, WI). Subjects were injected with
PiB (average 625 MBq, range 256–751 MBq) and a low dose CT
scan was acquired. Beginning 40 min post-injection, subjects then
underwent a 20-min dynamic PET scan with four five-minute
frames. Dynamic PET images were generated (256 matrix, 300 mm
field of view, 1.17 mm�1.17 mm�3.27 mm voxel size) using an
iterative reconstruction algorithm. Standard corrections for at-
tenuation, scatter, randoms and decay were applied as well as a
5 mm Gaussian post filter. The images from the four dynamic
frames were averaged to create a single static image.

T1-weighted MRI scans (used for atlas normalization/masking,
and for PVC where applicable) were acquired on 3 T scanners
(models Discovery MR750, Signa HDx, Signa HDxt, and Signa Ex-
cite) manufactured by General Electric (GE) using a 3D Sagittal
Magnetization Prepared Rapid Acquisition Gradient-Recalled Echo
(MP-RAGE) sequence. Repetition time (TR) was E7 ms, echo time
(TE) E3 ms, and inversion time (TI)¼900 ms.Voxel dimensions
were E1.20 mm�1.015 mm�1.015 mm.

3.3. Common processing

T1-weighted scans were acquired with sagittal-plane gradient
distortion correction performed on the scanner. Through-plane
correction was performed as part of image processing (Jovicich
et al., 2006). Tissue-class segmentation and inhomogeneity (B0
bias-field) correction were performed using the Unified Segmen-
tation algorithm (Ashburner and Friston, 2005) in SPM12 (revision
6225). Several parameters in SPM12 were modified to produce
more accurate segmentations for older-adult populations. Firstly,
we used an in-house population-specific template and tissue
priors that we call MCSA202. This template was created from MRI
scans of 202 subjects in the same Mayo Clinic MCSA and ADRC
studies from which this study's subjects were selected. Each sub-
ject's MRI was segmented using SPM12 and our custom template
was created from these segmentations using the DARTEL group-
wise registration algorithm in SPM12 (Ashburner, 2007). The tis-
sue probability priors were manually edited to correct common
segmentation errors, and 122 ROIs were drawn on the anatomic
template. In addition to using the MCSA202 template, we also
altered the SPM12 segmentation parameters to use two Gaussians
to model WM intensities, instead of one, due to the higher pre-
valence of WM disease in such populations. We also reduced each
of the stiffness penalty parameters of the nonlinear normalization
of the tissue class priors of half of their defaults, allowing for in-
creased inter-subject variability due to increased prevalence/se-
verity of atrophy and other pathologies. More detailed information
about the MCSA202 template and these parameter alterations is
beyond the scope of this text, but are forthcoming in future pub-
lication. Images were registered to our MCSA202 template using
the ANTs SyN registration algorithm (Avants et al., 2008) version
1.9.x with multiple channels: the post-B0-correction T1-weighted
image, segmented tissue probabilities, and a mask of total in-
tracranial volume. When each scan was segmented using Free-
surfer 5.3, it was directly entered into Freesurfer version 5.3
(Fischl, 2012) using the recon-all pipeline (i.e. not preprocessed
with the SPM12 bias-correction described above, because Free-
surfer performs its own bias correction step and this would be
redundant).

T1 and PiB scans were coregistered using SPM12 with 6 degrees
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of freedom (DOF). Resampling between MRI and PET resolutions
was performed using ANTs software tools with 3rd-order BSpline
interpolation. Atlas ROIs were resampled to subject spaces also
using ANTs with nearest-neighbor interpolation.

3.4. 1,024 Pipelines

We compare a total of 1,024 different software pipelines for
measuring β-amyloid load in PiB scans. In total, we examine
3 methods of PVC (none, 2-class PVC, and 3-class PVC), 56 in-
tensity normalization methods (55 SUVR reference regions þ
SUV), 6 methods of cortical target segmentations, and 2 potential
analysis spaces (MR-Space versus PET-Space). Multiplying all
combinations, we implemented a total of 3�56�6�2 ¼ 2016
pipelines. We then excluded pipelines in two classes of theoreti-
cally-implausible combinations: (1) 3-class PVC used with any of
the 52 references containing WM or with either of the 2 targets
containing WM ((1�52�6�2¼624)þ(1�56�2�2¼224)�
(1�52�2�2¼208 in both)¼640), and (2) target segmentations
containing supratentorial WM used with references also contain-
ing supratentorial WM (3�44�2�2¼528). Class 1 was excluded
because images corrected with 3-class PVC have signal in WM
removed, making it illogical to then attempt to measure signal in
these WM regions. Class 2 was excluded in order to prevent use of
the same voxels for both target and reference regions, which
would at least partially normalize out any signal of interest. After
subtracting both classes, 2016�640�528þ(1�44�2�2¼176 in
both exclusion groups)¼1,024 combinations remained, which we
analyze in this work.

3.5. Evaluation criteria and statistical methods

In this section we describe the motivations and implementa-
tions for each of the four individual criteria, and the weighted,
combined metric, used to compare measurement pipelines in this
work. Each criterion was designed to address different character-
istics desirable in serial PiB measurements. Ideally, one would
wish to have an independent, gold-standard measurement of β-
amyloid load with which to compare, but the only such measures
come from pathological examinations, which are of course im-
possible for serial measurements. As such, we have chosen criteria
based on obtainable data: the plausibility of the serial trajectories
produced by each pipeline for each subject. All criteria analyzed
are specifically longitudinal, because the goal of this study is to
determine the best pipeline for serial measurements, which may
or may not also be ideal for cross-sectional studies. Because none
of these criterion is flawless nor alone captures all traits desirable
in a serial PiB measurement pipeline, and because comparing four
separate metrics across different implementations creates a com-
plex array of data, we also present a single metric that is a
weighted combination of the four. We describe each below.

3.5.1. Longitudinal reliability
Our Longitudinal Reliability metric is motivated by the intuitive

notion that pipelines with less measurement jitter within each
subject over time are preferable to those with more. For example, a
plotted three-timepoint trajectory shaped like a triangle is less
reasonable than one that is approximately linear. From previous
Amyloid PET studies, it known that the trajectory of β-amyloid
accumulation in AD is a roughly sigmoidal shape where the ac-
cumulation phase occurs over a time period of approximately 19
years (Villemagne et al., 2013). Studies of CSF amyloid, which
provides an independent source of data for measuring β-amyloid
in-vivo, also support the sigmoidal trajectory (Buchhave et al.,
2012; Shaw et al., 2009). Based on this evidence, having data from
only three timepoints over a time span of E3 years, it is
Please cite this article as: Schwarz, C.G., et al., Optimizing PiB-PET S
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reasonable to assume that trajectories should be locally linear, i.e.
a significant acceleration or deceleration in measured SUVRs is
more likely attributed to measurement error than true change in
subject β-amyloid.

To quantify this measure, we estimated the “reliability” or “R2”
of each pipeline by fitting a linear mixed-effects regression model
with time from baseline as a fixed effect and including random
subject-specific intercepts and slopes over time. From the model,
we obtained the estimated variances of the subject-specific in-
tercepts, slopes, and errors, denoted by σintercept

2 , σslope
2 , and by σerror

2 ,
respectively. We then report the reliability as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟− σ

σ σ σ+ +
1 error

2

intercept
2

slope
2 error

2 . We denote this quantity by R2 as it can be

interpreted as the percentage of the total intra-subject variability
in β-amyloid PET SUVR measurements that can be “explained” by
the linear model, i.e. the straightness of the trajectory.

One potential limitation of this measure is that it can slightly
penalize trajectories that reflect true slightly-nonlinear β-amyloid
trajectories, i.e. those that were stable in the first two timepoints
but began to accumulate in the third, or those that were accu-
mulating in the first two timepoints but began to plateau in the
third. However, our sample is designed to exclude the latter, and
the former are expected to be a minority within the sample. Al-
though this measure does slightly penalize small accelerations and
decelerations, it much more strongly penalizes triangle-shaped
trajectories, which are always implausible for β-amyloid. This
limitation could have been partly addressed by using higher-order
models to allow nonlinear acceleration/deceleration, but because
we have only three measurements available over a time span of
E3 years, we feel it is reasonable to assume amyloid accumulation
is locally linear. To be able to effectively model departures from
linearity, we suspect that we would need at least five measure-
ments over a 5–10 year period.

3.5.2. Longitudinal plausibility
It is commonly agreed that β-amyloid in AD does not decrease

over time; it only increases until approaching a plateau toward the
late stage of the disease (Ingelsson et al., 2004). From previous
work (Jack et al., 2013), we assume that all β-amyloid measure-
ments over time of subjects whose baseline SUVR value o2.5, i.e.
those much earlier than the disease phase approaching a plateau,
should be non-decreasing. Therefore, each must be either stable,
or increasing. We excluded from our study all subjects with
baseline SUVR Z2.5, thus assuming that any apparently-de-
creasing trajectories can be attributed to measurement error.

The plausibility criterion was assessed as the percentage of
subjects with non-negative slopes. For each pipeline, we fitted a
linear regression model for each subject using their three time-
points and obtained an estimate of their individual rate of β-
amyloid accumulation (i.e., their slope) and calculated the per-
centage of subjects with slopes Z0. To minimize potential circu-
larity bias imposed by the choice of method used to determine
these SUVR thresholds, we used during subject selection those
values computed by an earlier method (Jack et al., 2013), which is
not among those considered here and was designed to be a cross-
sectional, rather than longitudinal, method. In this earlier method,
which we used here only for subject selection criteria, SUVR values
were computed using registrations, segmentations, and atlas
normalizations using SPM5. Two-class PVC was applied, and cer-
ebellar GM was used as a reference.

3.5.3. Longitudinal group separability
Based on the same assumptions as in Sections 3.5.1 and 3.5.2,

we assume that it is possible to divide non-late-stage subjects into
two classes based on their baseline measurements: “non-
UVR change-over-time measurement by a large-scale analysis of
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accumulators”, those who do not have significant β-amyloid bur-
den and are not expected to increase over time (i.e. those who do
not have AD, or have not yet reached this phase of pathophysiol-
ogy), and “accumulators”, those already have measurable β-amy-
loid burden and are expected to continue increasing (Villain et al.,
2012). To assess the separability between these groups, we used a
subset of 90 participants categorized as those with baseline SUVR
o1.35 (the expected “non-accumulator group”; n¼ 50) and those
with baseline SUVR between 1.5 and 2.2 (the expected “accumu-
lator group”; n¼ 40), using thresholds based on previous work
(Jack et al., 2013). We chose 2.2 as the upper cutoff for the accu-
mulator group to obtain subjects expected to increase, rather than
re-using the previous work's 2.5 cutoff, which was designed to
ensure that subjects would have non-decreasing (but not ne-
cessarily still-increasing) amyloid burden. SUVR values used for
these thresholds were also computed as in (Jack et al., 2013).

To measure the separability between these groups, we used the
area under the receiver operating characteristic curve (AUROC) as
a nonparametric effect size estimate and calculated based on
group-wise differences in the rate of β-amyloid accumulation,
where rates were obtained from the same slopes estimated in the
longitudinal plausibility analysis. In this context, the AUROC can be
interpreted as the estimated probability that an accumulator
would have a greater/more-positive slope than a non-accumulator.

The primary limitation of this criterion is that although it re-
flects an expected correlation within most subjects that should be
reflected by any reasonable pipeline for serial amyloid PET, some
subject trajectories naturally deviate from this relationship, and
pipelines reflecting this truth are penalized. There is also a po-
tential circularity introduced by having defined the two groups’
inclusion thresholds using an SUVR variant that resembles some
Fig. 5. Plots of the longitudinal reliability (straightness) criterion from a mixed-effects m
methods, all computed in MRI voxel space. References are ranked according to the max
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pipelines being examined; we address this limitation in Section
5.8.

3.5.4. Correlation between ΔSUVR and ΔMMSE
Although cognitive decline in AD is more closely associated

with tau pathophysiology than the β-amyloid pathophysiology
measured by PiB imaging, a smaller but significant correlation is
expected between β-amyloid and cognition (Jack et al., 2008;
Whitwell et al., 2008). If changes in a hypothetical measurement of
β-amyloid showed no correlation with change in clinical symp-
toms in any subjects, it would be a poor measure. Therefore, we
test this capability of each of our metrics.

To this end, we tested the correlation between the rate of β-
amyloid accumulation and the rate of change in Mini-Mental State
Exam (MMSE) (Folstein et al., 1975) scores, where both rate
measures were obtained from linear regression models using a
subject's three timepoints. Because of skewness in the distribution
of MMSE scores, and the potential for a non-linear association
between change in β-amyloid and change in MMSE, we report
Spearman's rank correlation. Generally, the correlation between
both rates is negative since greater β-amyloid accumulation would
tend to coincide with more rapidly decreasing MMSE scores.
Therefore, we report the negative of the Spearman's estimates.

The primarily limitation of this criterion is the same as that in
Section 3.5.3; it reflects an assumption that any reasonable pipe-
line should find true for most subjects, but it can penalize pipe-
lines that correctly measure subjects that do not follow it. Devia-
tion from this assumption is expected for those subjects in the
early phase of β-amyloid accumulation, prior to the onset of sig-
nificant accumulation of tau pathology, neurodegeneration, and
clinical decline. However, some degree of correlation is expected
odel across pipelines varying in choice of references, target segmentations, and PVC
imum R2 values across all PVC and target segmentation methods.
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Fig. 6. Plots of the plausibility (percent non-negative) criteria from the linear regression model. References are ranked according to the maximum percent across all PVC and
target segmentation methods.
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for most subjects in this sample, i.e. those prior to the start of
significant β-amyloid accumulation (for which β-amyloid and
MMSE will both be stable and thus highly correlated), and those
well-within the approximately 19-year period of significant β-
amyloid accumulation.

3.5.5. Combined evaluation criteria
We created a combined criterion in order to account for the fact

that each of these four measures embodies a separate desirable
trait for serial PiB measurement that is, in itself, insufficient to
determine an ideal pipeline. Therefore, a combined metric can
provide a single concise measure while allowing each trait to
contribute. As previously discussed, each individual criterion is
designed to favor superior pipelines but requires assumptions that
are not always valid for all subjects. Therefore, our combined
measure is intended to allow each criterion to weigh in while also
compensating for each other's shortcomings.

To arrive at a single value combining all four quality metrics,
we first normalized each metric using rank-based scaling with
1 being the highest rank and 0 being the lowest rank. Next, we
applied pre-specified weights reflecting the level of importance
we deemed for each quality metric. We used weights of 0.4 for
reliability, 0.4 for plausibility, 0.1 for group separability, and 0.1 for
correlation between the rates of β-amyloid and MMSE. We chose
these weights a priori based on the assumption that the reliability
and plausibility metrics are criteria that should be true for all
trajectories (i.e. all included subjects’ trajectories should be reli-
able and should not have decreasing slopes), whereas the separ-
ability and MMSE criteria are expected to be looser correlations
that apply to most subjects but from which some subjects will
naturally deviate (see sections 3.5.3 and 3.5.4). Finally, we added
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the normalized, weighted values of the four quality metrics to-
gether. Using this method, a pipeline that performed best across
all metrics would get an overall score of 1.0 while a pipeline that
performed worst across all metrics would get a 0.0.

We investigated the sampling variability of the quality metrics
using bootstrap procedures by randomly sampling participants
with replacement and performing all calculations described above
on the bootstrap sample. The process was repeated 1000 times
and resulted in 1000 estimates of the quality metrics and 1000
estimates of the combined scores. We used these bootstrap esti-
mates to obtain confidence intervals based on the quantiles of the
sampling distribution. We then selected 60 top-performing pipe-
lines according to the combined values and plotted the estimates
that were obtained from our original data. To facilitate compar-
isons across pipelines, we used a heuristic that non-overlapping
83% confidence intervals (obtained from the 8.5th and 91.5th
percentiles of the bootstrap distribution) provide an informal in-
dication of significant differences at po0.05 (Knol et al., 2011).

To more formally compare pipelines, we report p-values for
tests of differences between pipelines based on the confidence
intervals for the bootstrap difference between pipelines. To do this
we note that a 95% confidence interval that does not include zero
can be interpreted as providing a statistical test that is significant
at po0.05. Generalizing this, for each pairwise comparison we
estimated confidence intervals of the difference in the combined
values and identified the widest confidence interval (i.e., one with
the highest level) that still excluded the null value of zero. For
example, if a 98% confidence interval did not include zero, but a
99% confidence interval included zero, we define the p value as
p¼0.02.

To address the concern that our analysis may be sensitive to the
UVR change-over-time measurement by a large-scale analysis of
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Fig. 7. Plots of AUROC estimates. Subjects are separated into 2 groups using baseline global PiB; 50 subjects with PiB o1.35 and 40 subjects with PiB between 1.5 and 2.2.
Rates of change in PiB are from linear regression. References are ranked according to the maximum AUROC estimates across all PVC and target segmentation methods.
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specific choice of weightings for each criterion, we also examined
the effects of using equal weightings for each criterion, and of
reversing the weightings for each criteria (assigning 0.1 to those
regularly assigned 0.4, and vice versa). In that analysis, we found
that most major conclusions were not altered by either permuta-
tion, and thus the analysis is not sensitive to alterations in these
weights. For space reasons, we present this data only in the Sup-
plementary materials.
4. Results

Results of each individual evaluation criterion are presented in
Fig. 5–8, and of the combined, weighted criterion in Fig. 9. In each
of these figures, we list reference ROIs from best to worst, ranking
each according to its best performing combination of PVC and
target-segmentation (i.e. top-scoring plotted point within that
row). For space reasons, we present only variations where calcu-
lations were performed with PET images upsampled to match
MRI's voxel space, because in almost every case, for all criteria,
performance of these were slightly better than their correspond-
ing PET-space counterparts where all else was the same (data not
shown). In this section we discuss the best- and worst-performing
pipelines according to each plot. In the following section, we dis-
cuss these results in aggregate and give overall recommendations.

We present results of the longitudinal reliability (straightness)
criterion in Fig. 5. By this criterion, differences across segmenta-
tions (columns) and across PVC variations were generally minimal,
so we focus on reference region differences. SUV-using pipelines
performed worse than all SUVR-using pipelines. The top five
candidates all included some form of eroded supratentorial white
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matter combined with some area of infratentorial WM. Each of
these combined supra/infra variants performed better than its
individual components. Cerebellar WM alone also performed well,
achieving the seventh position. Some SUVR variants where su-
pratentorial WM was combined with the whole cerebellum (with
or without brainstem) also performed near the top of the list.

In Fig. 6 we present the results of the non-negative (plausi-
bility) criteria. Again, target ROI segmentation method did not
have a large influence among top-performing reference ROIs. In
most instances, 2-class PVC outperformed variants without PVC in
otherwise-equivalent pairings. Of the top-10 reference choices, all
but one contained the whole cerebellum, and seven of these were
in combination with some form of supratentorial WM. Again, re-
ferences using supratentorial WM combined with infratentorial
regions performed well, and better than their individual compo-
nents. Cerebellar WM alone, which performed well in Fig. 5, was
the worst performer in this criterion.

We present the results of our separability (accumulator group
versus non-accumulator group) analysis in Fig. 7. Corpus callosum
references performed best, followed by combinations of supra-
tentorial WM and whole cerebellum (optionally with pons/brain-
stem), and brainstem/pons/Cerebellar WM alone. Cerebellar GM
only performed reasonably when using 3-class PVC, but was
among the worst performers otherwise. SUV pipelines performed
worse than all others.

Fig. 8 shows the results of testing correlation between change
in measured uptake and change in MMSE. In this criterion, varia-
tions with 2-class PVC were either equivalent to or outperformed
those without PVC and those with 3-class PVC in almost all in-
stances. Differences across target spaces were comparatively small.
Corpus callosum references performed near the top, in agreement
UVR change-over-time measurement by a large-scale analysis of
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Fig. 8. Plots of Spearman's correlation estimates between rates of change in PiB and rates of change in MMSE (both are from linear regression). References are ranked
according to the maximum correlation estimates across all PVC and target segmentation methods.
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with the separability criteria (Fig. 7). Otherwise, top performing
reference methods primarily included a combination of supra-
tentorial WM and cerebellum (GM or whole), with or without
brainstem.

In Fig. 9 we present the results of analysis with our combined
criterion, which is a weighted combination of the other four (re-
sults with alternative weightings, the major conclusions from
which are highly consistent with the presented weighting, are
provided in Supplementary material). By the combined criteria,
the best performing references were those with a combination of
supratentorial WM and whole cerebellum, sometimes also con-
taining brainstem and/or pons. Each of these combinations out-
performed their individual components. This result is consistent
with the fact that such pipelines were among the top performers
by many of the individual criteria. Also highly consistent with the
individual criteria, SUV pipelines were the worst performers, and
differences across target segmentations were relatively small.
2-class PVC outperformed no-PVC in most otherwise-equivalent
pairings. 3-class PVC, where applicable, had mixed performance
versus other PVC methods.

We plot the statistical significance of differences between pi-
pelines in Fig. 10. By this analysis, many top-performing variations
of combined supra-/infratentorial references (e.g. including versus
excluding brainstem, eroded segmentation versus atlas im-
plementations) did not differ significantly from each other; how-
ever, the top-performing pipeline does differ significantly from all
pipelines using non-WM regions only, or using supra-/infra-
tentorial regions alone. Therefore, we consider this combined re-
ference region significantly superior to these other options.
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5. Discussion and conclusions

In this section, we first discuss the results as they relate to our
objective questions. Then, we give our final pipeline re-
commendations and discuss the strengths and limitations of our
study.

5.1. Question 1: is partial volume correction helpful?

Our results suggest that under most combinations of other
factors, two-class (Meltzer) PVC improved results according to all
of our criteria when compared to no-PVC pipelines. Three-class
PVC was not applicable to a large majority of pipelines tested
because these include WM, which 3-class PVC attempts to remove,
in the reference regions. Three-class PVC was often superior
among the pipelines with GM-only references, although pipelines
using these GM-only references were otherwise not among the
top candidates.

5.2. Question 2: which is the optimal reference region?

This question has received the most attention in prior litera-
ture, and also most strongly impacted our analyses. Overall, our
results strongly suggest the superiority of reference regions con-
taining both supratentorial WM and whole cerebellum, optionally
also including the pons or entire brainstem. Supratentorial WM
may be implemented equivalently either by segmenting each in-
dividual T1 and eroding the WM voxels with a radius of 3 or
5 voxels, or by using an atlas where the relevant WM ROIs exclude
WM near the cortex. Using individual segmentations without such
erosion was generally worse. These combined-reference-ROI
UVR change-over-time measurement by a large-scale analysis of
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Fig. 9. Plots of sum of weighted scores. Data were normalized using rank-based scaling. (0.4nreliabilityþ0.4ntrending non-negativeþ0.1nAUROC estimatesþ0.1ncorrelation
between Δ PiB and Δ MMSE). References are ranked according to the maximum correlation estimates across all PVC and target segmentation methods. Results using
alternate weightings are plotted in Supplementary material.
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approaches significantly outperform those with any of their
components individually (in Fig. 10, the top-performing pipeline,
which uses this combined-reference approach, differs significantly
from all pipelines using non-WM or supra-/infratentorial regions
alone). We visualize these winning variations in Fig. 11.

5.3. Question 3: which is the optimal GM segmentation within the
target region?

Among the top-performing pipelines, differences between tar-
get segmentation methods were not significant (Fig. 10). Across all
pipelines, this had a relatively small impact on our quality criteria
compared to other methodological factors.

5.4. Question 4: which is the optimal analysis space?

In almost all cases, pairings of pipelines differing on only this
variable trended toward slightly better performance in MRI-space.
We omitted showing this data for space reasons.

5.5. Question 5: SUV or SUVR?

Pipelines using SUV, rather than a reference region (SUVR),
were by far the worst performing on the straightness and separ-
ability criteria, and they were only mid-level performers on the
other two. Using the combined criterion, even the worst-per-
forming SUVR pipelines generally outperformed the best-per-
forming SUV pipelines. Therefore, we conclude that use of SUVR
with any reasonable reference region is superior to SUV.
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5.6. Overall recommended pipelines

Our study suggests that an optimal pipeline to measure change
in β-amyloid from PiB scans should use two-class PVC, perform
calculations in the voxel space of the MRI, and use SUVR with a
reference region containing both supratentorial WM and the
whole cerebellum, optionally also including pons/brainstem
(Fig. 11).
6. Discussion

Our analysis is unique for its finding that references containing
supratentorial WM and whole cerebellum together are sig-
nificantly superior to either alone for analysis of serial PiB scans.
Some previous comparisons using florbetapir have also examined
these “composite” reference regions (Landau et al., 2015), but such
results could theoretically not be the same for PiB. Some other
works favoring supratentorial WM references have hypothesized
that the cerebellum is noisier due to its relatively peripheral lo-
cation in the field of view, where scanner sensitivity is lower, or
due to its relatively smaller size (Chen et al., 2015; Landau et al.,
2015). Our data supports the hypothesis that cerebellar ROIs are
noisier than supratentorial WM references (In Fig. 5, the long-
itudinal reliability criteria, references containing only cerebellar
ROIs are among the worst performers). However, the statistical
equivalence of including brainstem, and the superiority of some
smaller WM variants and some larger WM variants, suggests that
larger references are not always superior, perhaps due to dimin-
ishing returns, or because larger WM regions tend to include more
UVR change-over-time measurement by a large-scale analysis of
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Fig. 10. Statistical Significance of Differences Between Top Pipelines: Top-performing pipelines according to the weighted-sum combined criterion are shown with their
83.4% confidence intervals according to 1000 bootstrap replicates. The rightmost column lists p-values of differences between the best pipeline (first row) and each
subsequent row. The vertical, red dotted line follows the lower end of the best pipeline's confidence interval, and represents the approximate point at which differences
become significant at po0.05.
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contamination from adjacent GM.
Although we had no strong reason to believe a priori that our

findings would agree with those of previous studies using Fluorine
ligands, our findings were consistent with previous studies using
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Florbetapir in suggesting that references containing supratentorial
WM are superior to purely-infratentorial references (Chen et al.,
2015; Landau et al., 2015). This agreement with prior studies using
differing ligands, populations, and measurement criteria adds to a
UVR change-over-time measurement by a large-scale analysis of
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Fig. 11. Winning Reference ROI: The top-performing reference ROI according to our combined criterion includes all voxels colored above. Orange: Supratentorial WM
segmented by SPM12, thresholded at 0.95, and eroded by 3 voxels Green: Whole Cerebellum Blue: Pons (masked to include only voxels segmented as WM) Not pictured:
other variations that were statistically equivalent, including atlas-based supratentorial WM variations, and possible omission of pons and/or brainstem.
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growing body of evidence that supratentorial WM references are
superior to purely-infratentorial references for serial Amyloid PET
measurements regardless of tracer used. This agreement across
studies using differing criteria also suggests that this finding is
strong enough to be seen consistently despite the lack of
gold-standard validation measures and despite the limitations of
each criterion that has been used in their place.

6.1. Strengths and limitations of current study

The primary strength of this work is its large scope, attempting
to test most reasonable combinations of methods across several
variables according to four different longitudinal criteria. We use
three timepoints for all subjects, giving increased power and en-
abling more analysis criteria, such as trajectory reliability, versus
previous studies using two. This work also addresses a relative lack
of such comparisons using PiB, as opposed to 18F-based amyloid
PET ligands. It is important to stress that our work applies only to
longitudinal measurements of PiB. We do not assume that our
findings necessarily apply to cross-sectional measurements; fol-
low-up studies will be needed to examine this question. We also
leave for future work a more exhaustive comparison of PVC
methods with more variations, e.g. ROI-based methods (Rousset
et al., 1998) and comparisons with methods using data-driven
selections of individual voxels (Borghammer et al., 2009; Carbonell
et al., 2015; Razifar et al., 2009). We also did not examine PET-only
methods (Bilgel et al., 2015; Fripp et al., 2008; Raniga et al., 2007;
Zhou et al., 2014) because MRI is generally available in most stu-
dies that include amyloid PET.

One limitation of our study is the potential for circularity in
some criteria: although we examine different varieties of SUVR
measurements, it was necessary to use cross-sectional SUVR
measurements for study subject selection, and for their division
into subgroups for the group separability criterion. Theoretically,
such circularity could bias results toward favoring methods that
most resemble the selection criteria. Although we attempted to
minimize this potential by using a method that was not among
those tested, the selection method was still based on SUVR with
two-class PVC and a cerebellar gray reference, and this could have
biased results toward similar pipelines. However, methods using
cerebellar GM references performed relatively poorly in our ana-
lysis, suggesting that this potential bias was not strong enough to
incorrectly favor these methods. For the group separability ana-
lysis, we also selected thresholded ranges that excluded many
subjects between the extremes to minimize the ability for subtle
changes in SUVR measurements to impact group selection.

Because external, gold-standard measurements (i.e. autopsy) of
change over time in ß-amyloid do not exist, our study is primarily
limited by the assumptions of each criterion used instead (see
Section 3.5). In addition to carefully designing each criterion to
minimize the impact of these limitations, we also created the
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combined criterion that allows each to compensate for the other's
shortcomings, and we weighted each metric in proportion with
our confidence in the universality of its assumptions in our data-
set. While these weights were chosen a priori, our major findings
were largely consistent across all four measurement criteria, and
thus across different weightings of the combined criteria (see
Supplementary Material). This consistency of our findings across
criteria that measured fundamentally different properties of each
pipeline suggests that these criteria were each reasonable, despite
their varying assumptions and limitations, and adds confidence to
our findings overall.

Our study adds to the growing evidence in favor of analysis
methods that include WM voxels within reference regions. One
potential caveat of WM-containing references for longitudinal
analyses is the potential for a confound by changes in WM mye-
lination, which have been shown to affect uptake of ß-amyloid PET
ligands (Stankoff et al., 2011; Veronese et al., 2015). It is possible
that such WM changes over long periods of time could affect the
value of a WM-containing reference ROI. However, this effect
would likely be reduced by the inclusion of infratentorial voxels in
composite references, which are those that performed best in this
analysis.
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