11 research outputs found

    Design and validation of the 1-week memory battery for assessing episodic memory and accelerated long-term forgetting in cognitively unimpaired subjects

    Full text link
    Subtle decline in memory is thought to arise in the preclinical phase of Alzheimer's disease (AD). However, detecting these initial cognitive difficulties cross-sectionally has been challenging, and the exact nature of the decline is still debated. Accelerated long-term forgetting (ALF) has been recently suggested as one of the earliest and most sensitive indicators of memory dysfunction in subjects at risk of developing AD. The objective of this study was to design and validate the 1-week memory battery (1WMB) for assessing episodic memory and ALF in cognitively unimpaired individuals.The 1WMB is unique in that it assesses multimodal memory and measures recall at both short delay (20 min) and at long term (1 week). Forty-five cognitively unimpaired subjects were assessed with 1WMB and standardized neuropsychological tests. Subjective cognitive decline (SCD), levels of anxiety and depression, and cognitive reserve were also measured.The tests of 1WMB showed a high internal consistency, and concurrent validity was observed with standard tests of episodic memory and executive functions. The analysis revealed a greater loss of information at 1 week compared to short-term forgetting (20 min). Performance in the 1WMB was affected by age and educational level, but was not associated with levels of anxiety and depression. Unlike standard tests, performance in the 1WMB correlated with measures of SCD.Our findings indicate that the 1WMB has good psychometric properties, and future studies are needed to explore its potential usefulness to assess cognitively unimpaired subjects at increased risk of developing AD. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

    Cortical thickness modeling and variability in Alzheimer's disease and frontotemporal dementia

    Full text link
    Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC.We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity.We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability.We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.© 2023. The Author(s)

    Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias

    Get PDF
    INTRODUCTION: Synaptic damage, axonal neurodegeneration, and neuroinflammation are common features in Alzheimer's disease (AD), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD). METHODS: Unicentric cohort of 353 participants included healthy control (HC) subjects, AD continuum stages, genetic AD and FTD, and FTD and CJD. We measured cerebrospinal fluid neurofilament light (NF-L), neurogranin (Ng), 14-3-3, and YKL-40 proteins. RESULTS: Biomarkers showed differences in HC subjects versus AD, FTD, and CJD. Disease groups differed between them except AD versus FTD for YKL-40. Only NF-L differed between all stages within the AD continuum. AD and FTD symptomatic mutation carriers presented differences with respect to HC subjects. Applying the AT(N) system, 96% subjects were positive for neurodegeneration if 14-3-3 was used, 94% if NF-L was used, 62% if Ng was used, and 53% if YKL-40 was used. DISCUSSION: Biomarkers of synapse and neurodegeneration differentiate HC subjects from neurodegenerative dementias and between AD, FTD, and CJD. NF-L and 14-3-3 performed similar to total tau when AT(N) system was applied

    Contribution of CSF biomarkers to early-onset Alzheimer's disease and frontotemporal dementia neuroimaging signatures

    Get PDF
    Prior studies have described distinct patterns of brain gray matter and white matter alterations in Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD), as well as differences in their cerebrospinal fluid (CSF) biomarkers profiles. We aim to investigate the relationship between early‐onset AD (EOAD) and FTLD structural alterations and CSF biomarker levels. We included 138 subjects (64 EOAD, 26 FTLD, and 48 controls), all of them with a 3T MRI brain scan and CSF biomarkers available (the 42 amino acid‐long form of the amyloid‐beta protein [Aβ42], total‐tau protein [T‐tau], neurofilament light chain [NfL], neurogranin [Ng], and 14‐3‐3 levels). We used FreeSurfer and FSL to obtain cortical thickness (CTh) and fraction anisotropy (FA) maps. We studied group differences in CTh and FA and described the “AD signature” and “FTLD signature.” We tested multiple regression models to find which CSF‐biomarkers better explained each disease neuroimaging signature. CTh and FA maps corresponding to the AD and FTLD signatures were in accordance with previous literature. Multiple regression analyses showed that the biomarkers that better explained CTh values within the AD signature were Aβ and 14‐3‐3; whereas NfL and 14‐3‐3 levels explained CTh values within the FTLD signature. Similarly, NfL levels explained FA values in the FTLD signature. Ng levels were not predictive in any of the models. Biochemical markers contribute differently to structural (CTh and FA) changes typical of AD and FTLD

    Early-onset Alzheimer's disease shows a distinct neuropsychological profile and more aggressive trajectories of cognitive decline than late-onset

    Full text link
    Early- and late-onset Alzheimer's disease (EOAD and LOAD) share the same neuropathological traits but show distinct cognitive features. We aimed to explore baseline and longitudinal outcomes of global and domain-specific cognitive function in a well characterized cohort of patients with a biomarker-based diagnosis.In this retrospective cohort study, 195 participants were included and classified according to their age, clinical status, and CSF AD biomarker profile: 89 EOAD, 37 LOAD, 46 young healthy controls (age???65?years), and 23 old healthy controls (>65?years). All subjects underwent clinical and neuropsychological assessment, neuroimaging, APOE genotyping and lumbar puncture.We found distinct neuropsychological profiles between EOAD and LOAD at the time of diagnosis. Both groups showed similar performances on memory and language domains, but the EOAD patients displayed worsened deficits in visual perception, praxis, and executive tasks (p?<?0.05). Longitudinally, cognitive decline in EOAD was more pronounced than LOAD in the global outcomes at the expense of these non-amnestic domains. We found that years of education significantly influenced the decline in most of the neuropsychological tests. Besides, the APOE ?4 status showed a significant effect on the decline of memory-related tasks within the EOAD cohort (p?<?0.05).Age of onset is a main factor shaping the cognitive trajectories in AD patients, with younger age driving to a steeper decline of the non-memory domains. Years of education are related to a transversal decline in all cognitive domains and APOE ?4 status to a specific decline in memory performance in EOAD.© 2022 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association

    Accelerated long-term forgetting over three months in asymptomatic APOE ɛ4 carriers

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER); Agencia Estatal de Investigación (AEI).Accelerated long-term forgetting (ALF) refers to a rapid loss of information over days or weeks despite normal acquisition/encoding. Notwithstanding its potential relevance as a presymptomatic marker of cognitive dysfunction, no study has addressed the relationship between ALF and Alzheimer's disease (AD) biomarkers. We examined ALF in APOE ɛ4 carriers versus noncarriers, and its relationships with AD cerebrospinal fluid (CSF) biomarkers. We found ALF over three months in APOE ɛ4 carriers (F(1,19) = 5.60; P < 0.05; Cohen's d = 1.08), and this performance was associated with abnormal levels of the CSF Aβ/ptau ratio (r = −.614; P < 0.01). Our findings indicate that ALF is detectable in at-risk individuals, and that there is a relationship between ALF and the pathophysiological processes underlying AD
    corecore