9 research outputs found

    Does contrast echocardiography induce increases in markers of myocardial necrosis, inflammation and oxidative stress suggesting myocardial injury?

    Get PDF
    BACKGROUND: Contrast echocardiography is a precise tool for the non-invasive assessment of myocardial function and perfusion. Side effects of contrast echocardiography resulting from contrast-agent induced myocardial micro-lesions have been found in animals. The goal of this study is to measure markers of myocardial necrosis, inflammation and oxidative stress in humans to evaluate potential side-effects of contrast echocardiography. METHODS: 20 patients who underwent contrast echocardiography with Optison as the contrast medium were investigated. To evaluate myocardial micro-necrosis, inflammation and oxidative stress, cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, -8 and thiobarbituric acid reactive substances (TBARS) were measured at baseline and at 2, 4, 8 and 24 hours after contrast echocardiography. RESULTS: At baseline, 50% of the patients had cTnI and TBARS values outside the reference range. TNF-α, IL-6, IL-8 levels were within the reference range. Patients with cTnI above the RR clustered to significantly higher levels of TNF-α and IL-6. After contrast echocardiography, no statistically significant increase of cTnI, cytokines and TBARS was found. However, for nearly 50% of the patients, the intra-individual cTnI kinetics crossed the critical difference (threefold of methodical variation) which indicates a marker increase. This was neither predicted by the baseline levels of the cytokines nor the markers of oxidative stress. CONCLUSION: There are no clinically relevant increases in serum markers for micro-necrosis, inflammation and oxidative stress in humans after contrast echocardiography. Future studies have to address whether cTnI increase in some patients represent a subset with increased risk for side effects after contrast echocardiography

    Transesophageal echocardiography in patients with cryptogenic cerebral ischemia

    No full text
    Abstract Background In about one third of all patients with cerebral ischemia, no definite cause can be identified (cryptogenic stroke). In many patients with initially suspected cryptogenic stroke, however, a cardiogenic etiology can eventually be determined. Hence, the aim of this study was to describe the prevalence of abnormal echocardiographic findings in a large number of these patients. Method Patients with cryptogenic cerebral ischemia (ischemic stroke, IS, and transient ischemic attack, TIA) were included. The initial work-up included a neurological examination, EEG, cCT, cMRT, 12-lead ECG, Holter-ECG, Doppler ultrasound of the extracranial arteries, and transthoracic echocardiography. A multiplane transeophageal echocardiography (TEE, including i.v. contrast medium application [Echovist], Valsalva maneuver) was performed in all patients Results 702 consecutive patients (380 male, 383 IS, 319 TIA, age 18–90 years) were included. In 52.6% of all patients, TEE examination revealed relevant findings. Overall, the most common findings in all patients were: patent foramen ovale (21.7%), previously undiagnosed valvular disease (15.8%), aortic plaques, aortic valve sclerosis, atrial septal aneurysms, regional myocardial dyskinesia, dilated left atrium and atrial septal defects. Older patients (> 55 years, n = 291) and patients with IS had more relevant echocardiographic findings than younger patients or patients with TIA, respectively (p = 0.002, p = 0.003). The prevalence rates of PFO or ASD were higher in younger patients (PFO: 26.8% vs. 18.0%, p = 0.005, ASD: 9.6% vs. 4.9%, p = 0.014). Conclusion A TEE examination in cryptogenic stroke reveals contributing cardiogenic factors in about half of all patients. Younger patients had a higher prevalence of PFO, whereas older patients had more frequently atherosclerotic findings. Therefore, TEE examinations seem indicated in all patients with cryptogenic stroke – irrespective of age – because of specific therapeutic consequences.</p

    Tissue Doppler echocardiography and biventricular pacing in heart failure: Patient selection, procedural guidance, follow-up, quantification of success

    Get PDF
    <p>Abstract</p> <p>Asynchronous myocardial contraction in heart failure is associated with poor prognosis. Resynchronization can be achieved by biventricular pacing (BVP), which leads to clinical improvement and reverse remodeling. However, there is a substantial subset of patients with wide QRS complexes in the electrocardiogram that does not improve despite BVP. QRS width does not predict benefit of BVP and only correlates weakly with echocardiographically determined myocardial asynchrony. Determination of asynchrony by Tissue Doppler echocardiography seems to be the best predictor for improvement after BVP, although no consensus on the optimal method to assess asynchrony has been achieved yet. Our own preliminary results show the usefulness of Tissue Doppler Imaging and Tissue Synchronization Imaging to document acute and sustained improvement after BVP. To date, all studies evaluating Tissue Doppler in BVP were performed retrospectively and no prospective studies with patient selection for BVP according to echocardiographic criteria of asynchrony were published yet. We believe that these new echocardiographic tools will help to prospectively select patients for BVP, help to guide implantation and to optimize device programming.</p

    Turtles and Tortoises Are in Trouble

    No full text
    Turtles and tortoises (chelonians) have been integral components of global ecosystems for about 220 million years and have played important roles in human culture for at least 400,000 years. The chelonian shell is a remarkable evolutionary adaptation, facilitating success in terrestrial, freshwater and marine ecosystems. Today, more than half of the 360 living species and 482 total taxa (species and subspecies combined) are threatened with extinction. This places chelonians among the groups with the highest extinction risk of any sizeable vertebrate group. Turtle populations are declining rapidly due to habitat loss, consumption by humans for food and traditional medicines and collection for the international pet trade. Many taxa could become extinct in this century. Here, we examine survival threats to turtles and tortoises and discuss the interventions that will be needed to prevent widespread extinction in this group in coming decades

    Global conservation status of turtles and tortoises (order Testudines)

    No full text
    We present a review and analysis of the conservation status and International Union for Conservation of Nature (IUCN) threat categories of all 360 currently recognized species of extant and recently extinct turtles and tortoises (Order Testudines). Our analysis is based on the 2018 IUCN Red List status of 251 listed species, augmented by provisional Red List assessments by the IUCN Tortoise and Freshwater Turtle Specialist Group (TFTSG) of 109 currently unlisted species of tortoises and freshwater turtles, as well as re-assessments of several outdated IUCN Red List assessments. Of all recognized species of turtles and tortoises, this combined analysis indicates that 20.0% are Critically Endangered (CR), 35.3% are Critically Endangered or Endangered (CR+EN), and 51.9% are Threatened (CR+EN+Vulnerable). Adjusting for the potential threat levels of Data Deficient (DD) species indicates that 56.3% of all data-sufficient species are Threatened. We calculated percentages of imperiled species and modified Average Threat Levels (ATL; ranging from Least Concern = 1 to Extinct = 8) for various taxonomic and geographic groupings. Proportionally more species in the subfamily Geoemydinae (Asian members of the family Geoemydidae) are imperiled (74.2% CR I EN, 79.0% Threatened, 3.89 ATL) compared to other taxonomic groupings, but the families Podocnemididae, Testudinidae, and Trionychidae and the superfamily Chelonioidea (marine turtles of the families Cheloniidae and Dermochelyidae) also have high percentages of imperiled species and ATLs (42.9-50.0% CR+EN, 73.8-100.0% Threatened, 3.44-4.06 ATL). The subfamily Rhinoclemmydinae (Neotropical turtles of the family Geoemydidae) and the families Kinosternidae and Pelomedusidae have the lowest percentages of imperiled species and ATLs (0%-7.4% CR+EN, 7.4%-13.3% Threatened, 1.65-1.87 ATL). Turtles from Asia have the highest percentages of imperiled species (75.0% CR+EN, 83.0% Threatened, 3.98 ATL), significantly higher than predicted based on the regional species richness, due to much higher levels of exploitation in that geographic region. The family Testudinidae has the highest ATL (4.06) of all Testudines due to the extinction of several species of giant tortoises from Indian and Pacific Ocean islands since 1500 CE. The family Testudinidae also has an ATL higher than all other larger polytypic families (>= 5 species) of Reptilia or Amphibia. The order Testudines is, on average, more imperiled than all other larger orders (>= 20 species) of Reptilia, Amphibia, Mammalia, or Ayes, but has percentages of CR FEN and Threatened species and an ATL (2.96) similar to those of Primates and Caudata (salamanders)
    corecore