7 research outputs found

    SMG1, a nonsense-mediated mRNA decay (NMD) regulator, as a candidate therapeutic target in multiple myeloma

    No full text
    Early data suggested that CC-115, a clinical molecule, already known to inhibit the mammalian target of rapamycin kinase (TORK) and DNA-dependent protein kinase (DNA-PK) may have additional targets beyond TORK and DNA-PK. Therefore, we aimed to identify such target(s) and investigate a potential therapeutic applicability. Functional profiling of 141 cancer cell lines revealed inhibition of kinase suppressor of morphogenesis in genitalia 1 (SMG1), a key regulator of the RNA degradation mechanism nonsense-mediated mRNA decay (NMD), as an additional target of CC-115. CC-115 treatment showed a dose-dependent increase of SMG1-mediated NMD transcripts. A subset of cell lines, including multiple myeloma (MM) cell lines sensitive to the endoplasmic reticulum stress-inducing compound thapsigargin, were highly susceptible to SMG1 inhibition. CC-115 caused the induction of UPR transcripts and cell death by mitochondrial apoptosis, requiring the presence of BAX/BAK and caspase activity. Superior antitumor activity of CC-115 over TORK inhibitors in primary human MM cells and three xenograft mouse models appeared to be via inhibition of SMG1. Our data support further development of SMG1 inhibitors as possible therapeutics in MM

    SMG1, a nonsense-mediated mRNA decay (NMD) regulator, as a candidate therapeutic target in multiple myeloma

    No full text
    Early data suggested that CC-115, a clinical molecule, already known to inhibit the mammalian target of rapamycin kinase (TORK) and DNA-dependent protein kinase (DNA-PK) may have additional targets beyond TORK and DNA-PK. Therefore, we aimed to identify such target(s) and investigate a potential therapeutic applicability. Functional profiling of 141 cancer cell lines revealed inhibition of kinase suppressor of morphogenesis in genitalia 1 (SMG1), a key regulator of the RNA degradation mechanism nonsense-mediated mRNA decay (NMD), as an additional target of CC-115. CC-115 treatment showed a dose-dependent increase of SMG1-mediated NMD transcripts. A subset of cell lines, including multiple myeloma (MM) cell lines sensitive to the endoplasmic reticulum stress-inducing compound thapsigargin, were highly susceptible to SMG1 inhibition. CC-115 caused the induction of UPR transcripts and cell death by mitochondrial apoptosis, requiring the presence of BAX/BAK and caspase activity. Superior antitumor activity of CC-115 over TORK inhibitors in primary human MM cells and three xenograft mouse models appeared to be via inhibition of SMG1. Our data support further development of SMG1 inhibitors as possible therapeutics in MM

    Dual TORK/DNA-PK inhibition blocks critical signaling pathways in chronic lymphocytic leukemia

    No full text
    Inhibition of B-cell receptor (BCR) signaling pathways in chronic lymphocytic leukemia (CLL) provides significant clinical benefit to patients, mainly by blocking adhesion of CLL cells in the lymph node microenvironment. The currently applied inhibitors ibrutinib and idelalisib have limited capacity however to induce cell death as monotherapy and are unlikely to eradicate the disease. Acquired resistance to therapy in CLL is often caused by mutations in the response network being targeted, both for DNA damage or BCR signaling pathways. Thus, drugswith dual targeting capacity could offer improved therapeutic value. Here, the potency of CC-115, a novel inhibitor of mammalian target of rapamycin kinase (TORK) and DNA-dependent proteinkinase (DNA-PK), was evaluated in primary CLL cells in vitro and in CLL patients. Combined TORK and DNA-PK inhibition in vitro resulted in caspase-dependent cell killing irrespective of p53, ATM, NOTCH1, or SF3B1 status. Proliferation induced by CD40(+) interleukin-21 stimulation was completely blocked by CC-115, and CD40-mediated resistance to fludarabine and venetoclax could be reverted by CC-115. BCR-mediated signaling was inhibited by CC-115 and also in CLL samples obtained from patients with acquired resistance to idelalisib treatment. Clinical efficacy of CC-115 was demonstrated in 8 patients with relapsed/refractory CLL/small lymphocytic lymphoma harboring ATM deletions/mutations; all but 1 patient had a decrease in lymphadenopathy, resulting in 1 IWCLL partial response (PR) and 3 PRs with lymphocytosis. In conclusion, these preclinical results, along with early promising clinical activity, suggest that CC-115 may be developed further for treatment of CLL
    corecore