9 research outputs found

    Imaging and Nulling with the Space Interferometry Mission

    Get PDF
    We present numerical simulations for a possible synthesis imaging mode of the Space Interferometer Mission (SIM). We summarize the general techniques that SIM offers to perform imaging of high surface brightness sources, and discuss their strengths and weaknesses. We describe an interactive software package that is used to provide realistic, photometrically correct estimates of SIM performance for various classes of astronomical objects. In particular, we simulate the cases of gaseous disks around black holes in the nuclei of galaxies, and zodiacal dust disks around young stellar objects. Regarding the first, we show that a Keplerian velocity gradient of the line-emitting gaseous disk -- and thus the mass of the putative black hole -- can be determined with SIM to unprecedented accuracy in about 5 hours of integration time for objects with H_alpha surface brigthness comparable to the prototype M 87. Detections and observations of exo-zodiacal dust disks depend critically on the disk properties and the nulling capabilities of SIM. Systems with similar disk size and at least one tenth of the dust content of beta Pic can be detected by SIM at distances between 100 pc and a few kpc, if a nulling efficiency of 1/10000 is achieved. Possible inner clear regions indicative of the presence of massive planets can also be detected and imaged. On the other hand, exo-zodiacal disks with properties more similar to the solar system will not be found in reasonable integration times with SIM.Comment: 28 pages, incl. 8 postscript figures, excl. 10 gif-figures Submitted to Ap

    Molecular Gas Dynamics in NGC 6946: a Bar-driven Nuclear Starburst "Caught in the Act"

    Get PDF
    We present high angular resolution ~1" and 0.6" mm-interferometric observations of the 12CO(1-0) and 12CO(2-1) line emission in the central 300pc of the late-type spiral galaxy NGC6946. The data, obtained with the IRAM Plateau de Bure Interferometer (PdBI), allow the first detection of a molecular gas spiral in the inner ~10" (270pc) with a large concentration of molecular gas (M(H_2) ~1.6x10^7M_sun) within the inner 60pc. This nuclear clump shows evidence for a ring-like geometry with a radius of ~10pc as inferred from the p-v diagrams. Both the distribution of the molecular gas as well as its kinematics can be well explained by the influence of an inner stellar bar of about 400pc length. A qualitative model of the expected gas flow shows that streaming motions along the leading sides of this bar are a plausible explanation for the high nuclear gas density. Thus, NGC6946 is a prime example of molecular gas kinematics being driven by a small-scale, secondary stellar bar.Comment: accepted for publication in the Astrophysical Journal; 47 pages, 17 figures, 1 tabl

    N-band Imaging of Seyfert Nuclei and the MIR-X-ray correlation

    Get PDF
    We present new mid-infrared (N-band) images of a sample of eight nearby Seyfert galaxies. In all of our targets, we detect a central unresolved source, which in some cases has been identified for the first time. In particular, we have detected the mid-infrared emission from the active nucleus of NGC 4945, which previously remained undetected at any wavelength but hard X-rays. We also detect circumnuclear extended emission in the Circinus galaxy along its major axis, and find marginal evidence for extended circumnuclear emission in NGC 3281. The high spatial resolution (1.7") of our data allows us to separate the flux of the nuclear point sources from the extended circumnuclear starburst (if present). We complement our sample with literature data for a number of non-active starburst galaxies, and relate the nuclear N-band flux to published hard (2-10 kev) X-ray fluxes. We find tight and well-separated correlations between nuclear N-band flux and X-ray flux for both Seyfert and starburst nuclei which span over 3 orders of magnitude in luminosity. We demonstrate that these correlations can be used as a powerful classification tool for galactic nuclei. For example, we find strong evidence against NGC 1808 currently harbouring an active Seyfert nucleus based on its position in the mid-infrared-X-ray diagram. On the other hand, we confirm that NGC 4945 is in fact a Seyfert 2 galaxy.Comment: 31 pages, incl. 4 figures, uses AASTex. Replaced with accepted version after minor modifications. To appear in Ap

    GOALS-JWST: Small neutral grains and enhanced 3.3 micron PAH emission in the Seyfert galaxy NGC 7469

    Full text link
    We present James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) integral-field spectroscopy of the nearby luminous infrared galaxy, NGC 7469. We take advantage of the high spatial/spectral resolution and wavelength coverage of JWST /NIRSpec to study the 3.3 um neutral polycyclic aromatic hydrocarbon (PAH) grain emission on ~60 pc scales. We find a clear change in the average grain properties between the star-forming ring and the central AGN. Regions in the vicinity of the AGN, with [NeIII]/[NeII]>0.25, tend to have larger grain sizes and lower aliphatic-to-aromatic (3.4/3.3) ratios indicating that smaller grains are preferentially removed by photo-destruction in the vicinity of the AGN. We find an overall suppression of the total PAH emission relative to the ionized gas in the central 1 kpc region of the AGN in NGC 7469 compared to what has been observed with Spitzer on 3 kpc scales. However, the fractional 3.3 um to total PAH power is enhanced in the starburst ring, possibly due to a variety of physical effects on sub-kpc scales, including recurrent fluorescence of small grains or multiple photon absorption by large grains. Finally, the IFU data show that while the 3.3 um PAH-derived star formation rate (SFR) in the ring is 8% higher than that inferred from the [NeII] and [NeIII] emission lines, the integrated SFR derived from the 3.3 um feature would be underestimated by a factor of two due to the deficit of PAHs around the AGN, as might occur if a composite system like NGC 7469 were to be observed at high-redshift.Comment: 14 pages, 5 figures, 2 tables, Submitted to ApJ

    ReveaLLAGN 0: First look at JWST MIRI data of Sombrero and NGC 1052

    No full text
    International audienceWe present the first results from the Revealing Low-Luminosity Active Galactic Nuclei (ReveaLLAGN) survey, a JWST survey of seven nearby LLAGNs. We focus on two observations with the Mid-Infrared Instrument (MIRI)'s Medium-Resolution Spectrometer of the nuclei of NGC 1052 and Sombrero (NGC 4594/M104). We also compare these data to public JWST data of higher-luminosity AGNs, NGC 7319 and NGC 7469. JWST clearly separates the AGN spectrum from the galaxy light even in Sombrero, the faintest target in our survey; the AGN components have very red spectra. We find that the emission-line widths in both NGC 1052 and Sombrero increase with increasing ionization potential, with FWHM > 1000 km s‑1 for lines with ionization potential ≳ 50 eV. These lines are also significantly blueshifted in both LLAGNs. The high-ionization-potential lines in NGC 7319 show neither broad widths nor significant blueshifts. Many of the lower-ionization-potential emission lines in Sombrero show significant blue wings extending >1000 km s‑1. These features and the emission-line maps in both galaxies are consistent with outflows along the jet direction. Sombrero has the lowest-luminosity high-ionization-potential lines ([Ne V] and [O IV]) ever measured in the mid-infrared, but the relative strengths of these lines are consistent with higher-luminosity AGNs. On the other hand, the [Ne V] emission is much weaker relative to the [Ne III] and [Ne II] lines of higher-luminosity AGNs. These initial results show the great promise that JWST holds for identifying and studying the physical nature of LLAGNs
    corecore