68 research outputs found

    Five gaps Eliashberg model for KCa2Fe4As4F2: relevance of the electronic band

    Get PDF
    Experimental data from the recently discovered iron-based superconductor (IBS) KCaFeAsF is analyzed within a realistic five-band Eliashberg model with coupling provided by antiferromagnetic spin fluctuations. Fundamental parameters are deduced from available angle resolved photoemission spectoscopy (ARPES) and ab-initio density functional theory (DFT) data, and several physical properties are calculated: critical temperature, upper critical field, gap values, resistivity and superfluid density. This procedure, usually extremely successful in IBSs, highlights the peculiar behavior of this new compound in which s and d -wave character might coexist and where the electron band is close to vanish

    Tuning the microwave electromagnetic properties of biochar-based composites by annealing

    Get PDF
    Abstract We report on the effects of thermal treatment of biochar embedded in epoxy-based composites on their microwave electrical properties, linking such properties to the material structure investigated by Raman, X-ray photoelectron spectroscopy, and X-ray diffraction. Annealing temperatures in the range 900–1500 °C and biochar concentrations in the epoxy matrix in the range from 5 to 25 wt.% were investigated. The microwave analysis, in the range from 250 MHz to 6 GHz, allowed us to determine the complex permittivity of composites and, through a proper deconvolution technique, to determine the contribution of biochar inclusions alone. High values of real permittivity (up to 220) and conductivity (up to 17 S/m) were evaluated for the biochar particles at 5 GHz, after the 1500 °C thermal treatment. A clear correlation between electrical properties and the biochar microstructure emerged from the dataset, with real permittivity and conductivity increasing as carbon inclusions transform from amorphous to nanocrystalline graphite. Conversely, the percentage of aromatic carbon has a weaker influence on the microwave properties. This study opens to the possibility of tailoring the high-frequency properties of biochar and biochar composites through proper thermal treatments

    Spectroscopic studies of the superconducting gap in the 12442 family of iron-based compounds

    Get PDF
    The iron-based compounds of the so-called 12442 family are very peculiar in various respects. They originate from the intergrowth of 122 and 1111 building blocks, display a large in-plane vs. out-of-plane anisotropy, possess double layers of FeAs separated by insulating layers, and are generally very similar to double-layer cuprates. Moreover, they are stoichiometric superconductors because of an intrinsic hole doping. Establishing their superconducting properties, and in particular the symmetry of the order parameter, is thus particularly relevant in order to understand to what extent these compounds can be considered as the iron-based counterpart of cuprates. In this work we review the results of various techniques from the current literature and compare them with ours, obtained in Rb-12442 by combining point-contact Andreev-reflection spectroscopy and coplanar waveguide resonator measurements of the superfluid density. It turns out that the compound possesses at least two gaps, one of which is certainly nodal. The compatibility of this result with the theoretically allowed gap structures, as well as with the other results in literature, is discussed in detail.Comment: 16 pages, 12 figure

    Expected radiation environment and damage for YBCO tapes in compact fusion reactors

    Get PDF
    We investigate the neutron damage expected in high-temperature superconducting tapes that will be employed in compact fusion reactors. Monte Carlo simulations yield the expected neutron spectrum and fluence at the magnet position, from which the primary knock-on atom energy distributions can be computed for each atomic species comprising the superconductor. This information is then employed to characterize the displacement cascades, in terms of size and morphology, through molecular dynamics simulations. The expected radiation environment is then compared with the neutron spectrum and fluences achievable at the facilities currently available for experimental investigation in order to highlight similarities and differences that could be relevant to the understanding of the radiation hardness of these materials in real fusion conditions. We find that the different neutron spectra result in different damage regimes, the irradiation temperature influences the number of generated defects, and the interaction of the neutrons with the superconductor results in a local increase in temperature. These observations suggest that further experimental investigations are needed in different regimes and that some neutron shielding will be necessary in compact fusion reactors.Funding Agencies|Italian Ministry of Education, University, and Research through Project PRIN HIBiSCUS [201785KWLE]; Programma Operativo Nazionale (PON) Ricerca e Innovazione 2014-2020; Swedish Research Council [2018-05973]; European Cooperation in Science and Technology, COST Action [CA19108]</p

    UV-Led curable coatings containing porcupine-like carbon structures: thermal, dynamic-mechanical and electrical properties

    Get PDF
    Multi-functional coatings based on a UV-LED curable epoxy-acrylate resin and different loadings (up to 10 wt.%) of carbonaceous structures having a peculiar porcupine (PuP)-like morphology were formulated. More specifically, biochar-based particles derived from cellulose nanocrystals were modified through the growth of carbon nanofibers onto their outer surface, aiming at combining the effects of globular and high aspect ratio structures in a single filler. The introduction of increasing amounts of PuPs induced a progressive increase of the material storage modulus and thermal conductivity and a remarkable enhancement of the electrical conductivity, thus pointing out the effectiveness of the proposed approach of surface modifying biochar particles in obtaining composite films with superior properties

    Mechanical, electrical, thermal and tribological behavior of epoxy resin composites reinforced with waste hemp-derived carbon fibers

    Get PDF
    Short hemp fibers, an agricultural waste, were used for producing biochar by pyrolysis at 1000°C. The so-obtained hemp-derived carbon fibers (HFB) were used as filler for improving the properties of an epoxy resin using a simple casting and curing process. The addition of HFB in the epoxy matrix increases the storage modulus while damping factor is lowered. Also, the incorporation of HFB induces a remarkable increment of electrical conductivity reaching up to 6 mS/m with 10 wt% of loading. A similar trend is also observed during high frequency measurements. Furthermore, for the first time wear of these composites has been studied. The use of HFB is an efficient method for reducing the wear rate resistance and the friction coefficient (COF) of the epoxy resin. Excellent results are obtained for the composite containing 2.5 wt% of HFB, for which COF and wear rate decrease by 21% and 80%, respectively, as compared with those of the unfilled epoxy resin. The overall results prove how a common waste carbon source can significantly wide epoxy resin applications by a proper modulation of its electrical and wear properties

    Study of the thermal distribution for YBCO based Transition Edge Bolometers working above 77 K

    Get PDF
    ransition Edge Bolometers (TEB) are among the simplest radiation detectors. The straightforward operation mode provides good results only if it is combined with a careful thermal optimization.In a TEB, the strong dependence of the electrical resistivity on the temperature in its transition zone enables the detection of a variation of the local temperature which can reach tens of µK. For this reason, it is essential to study the thermal profile of the superconducting active part of the detector, hence its substrate, to make it as homogeneous as possible.Irradiated YBa 2 Cu 3 O 7-x (YBCO) films can be used for position sensitive detection of infrared radiation. A TEB with a double meander pattern, one of which with a reduced critical temperature due to irradiation with high-energy heavy ions, was designed to work in a portable cryostat at a temperature above the liquid nitrogen (LN 2 ) point.In this work, we present a series of Finite Element Method simulations (using COMSOL Multiphysics ® ) aimed at the optimization of the thermal distribution above the YBCO film. Once the optimal working point for the device is found, various materials for the bolometer hosting are tested to identify the combination that provides the most homogeneous temperature distribution. The optimal configurations are then analyzed in response to a sudden change in the PID current to determine the one which presents the best behavior in a transient situation
    • …
    corecore