252 research outputs found

    Resonant effects in a SQUID qubit subjected to non adiabatic changes

    Get PDF
    By quickly modifying the shape of the effective potential of a double SQUID flux qubit from a single-well to a double-well condition, we experimentally observe an anomalous behavior, namely an alternance of resonance peaks, in the probability to find the qubit in a given flux state. The occurrence of Landau-Zener transitions as well as resonant tunneling between degenerate levels in the two wells may be invoked to partially justify the experimental results. A quantum simulation of the time evolution of the system indeed suggests that the observed anomalous behavior can be imputable to quantum coherence effects. The interplay among all these mechanisms has a practical implication for quantum computing purposes, giving a direct measurement of the limits on the sweeping rates possible for a correct manipulation of the qubit state by means of fast flux pulses, avoiding transitions to non-computational states.Comment: 6 pages and 6 figures. The paper, as it is, has been accepted for publication on PRB on March 201

    Microwave-induced thermal escape in Josephson junctions

    Full text link
    We investigate, by experiments and numerical simulations, thermal activation processes of Josephson tunnel junctions in the presence of microwave radiation. When the applied signal resonates with the Josephson plasma frequency oscillations, the switching current may become multi-valued in a temperature range far exceeding the classical to quantum crossover temperature. Plots of the switching currents traced as a function of the applied signal frequency show very good agreement with the functional forms expected from Josephson plasma frequency dependencies on the bias current. Throughout, numerical simulations of the corresponding thermally driven classical Josephson junction model show very good agreement with the experimental data.Comment: 10 pages and 4 figure

    Superconducting tunable flux qubit with direct readout scheme

    Full text link
    We describe a simple and efficient scheme for the readout of a tunable flux qubit, and present preliminary experimental tests for the preparation, manipulation and final readout of the qubit state, performed in incoherent regime at liquid Helium temperature. The tunable flux qubit is realized by a double SQUID with an extra Josephson junction inserted in the large superconducting loop, and the readout is performed by applying a current ramp to the junction and recording the value for which there is a voltage response, depending on the qubit state. This preliminary work indicates the feasibility and efficiency of the scheme.Comment: 10 pages, 5 figure

    Study of the Fabrication Process for a Dual Mass Tuning Fork Gyro

    Get PDF
    AbstractThe fabrication process of a dual mass tuning for gyroscope presents many different challenges: the aspect ratio of the sidewalls, the Aspect Ratio Dependent Etch (ARDE) which causes different gaps to be etched in different etching time [1], the stiction during the release of the free structures, the notching effect that occurs with a dielectric etch stop layer [2], the thermal contact during the etch process. In this paper are presented different processes and studies of the etching characteristics in order to avoid or minimize these problems

    X-IFU CryoAC technology demonstration plan

    Get PDF
    The main purpose of the present plan is to provide a clear path to demonstrate the CryoAC TRL5 by the mission Adoption. The reference statement from which we have derived our present CryoAC Technology Demonstration Plan comes from the “X-IFU Critical Items Demonstration Plan” document (see [RD1]). It reports: “The Technology should not be developed to the detriment of the Design. The confusion between Technology demonstration and Design has for consequence to go into Technology demonstration by sacrifying the design with negative impacts: - Poor requirements - Poor level of trade-offs - Poor understanding of design drivers” Hence, after having identified the main critical items an effort has been performed in trying to separate, as much as possible, the CryoAC technology from the CryoAC design. The identified items are: - Chip (it is the etched Si wafer having on-board the TES network, Nb wiring, and heaters) - CFEE (this is mainly constituted by the SQUID pcb) - Mechanics (this is the metallic supporting frame to host the chip) - Cold Assembly (this is the union of the above items) This document is structured as follows. We will show: - in § 2 a brief overview of the CryoAC detector - in § 3 a brief report about the CryoAC concept validation - in § 4, for each above identified item, the separation between technology and design - in § 5 the CryoAC model philosophy - in § 6 the list of the technological processes - in § 6 the critical technologies or processes that are the main driver to get TRL5 - in § 8 the planning Then the Conclusion

    Return current in hysteretic Josephson junctions: Experimental distribution in the thermal activation regime

    Get PDF
    We present an experimental study on the retrapping process of a hysteretic, high-quality Josephson junction; namely, we have measured the distribution of the values at which the junction switches back from the voltage state to the zero-voltage state, as a function of the applied magnetic field. While the opposite process (escape from the zero-voltage state) has been extensively studied in the past, both from the theoretical and the experimental point of view, little is found in the literature on the retrapping process. In terms of the tilted washboard potential, the process corresponds to the retrapping from the running state to a locked state in a potential well. The interest of the measurements is in the fact that the value of the return current can be directly related to the dissipation in the junction. While the deterministic behavior, experimentally measured through the I–V curve, appears to be in agreement with the theoretical predictions, even in minor details, the statistical behavior is strongly different from what is expected. The disagreement is found even in zero-applied magnetic field and it cannot be attributed to external noise in the system. From the experimental statistical properties, we find values for the effective dissipation much lower than those obtained from the deterministic curves, a result which could be of interest in experiments on the observation of macroscopic quantum phenomena

    The effective dissipation in Nb/AlOx/Nb Josephson tunnel junctions by return current measurements

    Get PDF
    Measurements of temperature dependence of the return current in high quality Nb/AlOx/Nb Josephson junctions are presented. From the experimental data, we obtain the effective resistance, i.e., the effective dissipation, for the retrapping process, according to the generalized resistively shunted junction model proposed by Chen, Fisher, and Leggett. We present a careful analysis, based on a comparison between the measured temperature dependencies of both the return and the quasiparticle tunneling current. We find that the junction subgap conductance, which includes the quasiparticle and the quasiparticle-pair interference terms, is responsible for the return process. The measurements have been performed on various samples, in a wide range of critical current densities from 50 to 2250 A/cm2, covering different damping regimes and spanning over the high and low temperature limits. Junctions with low critical current density show ideal dissipation which makes the return current scale with temperature according to the BCS exponential behavior without flattening out effects. This result may be relevant for the possible use of Nb/AlOx/Nb junctions in macroscopic quantum coherence experiments, which strongly require a very low dissipation
    • …
    corecore