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Resonant effects in a SQUID qubit subjected to nonadiabatic changes
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By quickly modifying the shape of the effective potential of a double SQUID flux qubit from a single-well to
a double-well condition, we experimentally observe an anomalous behavior, namely, an alternation of resonance
peaks, in the probability to find the qubit in a given flux state. The occurrence of Landau-Zener transitions as
well as resonant tunneling between degenerate levels in the two wells may be invoked to partially justify the
experimental results. A quantum simulation of the time evolution of the system indeed suggests that the observed
anomalous behavior can be imputable to quantum coherence effects. The interplay among all these mechanisms
has a practical implication for quantum computing purposes, giving a direct measurement of the limits on the
sweeping rates possible for a correct manipulation of the qubit state by means of fast flux pulses, avoiding
transitions to noncomputational states.
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I. INTRODUCTION

Superconducting devices based on the Josephson effect are
an important testbed for investigating deep aspects of quantum
mechanics such as macroscopic quantum phenomena [1–4]
and circuit quantum electrodynamics (cQED) [5–10]. Such
devices are moreover promising candidates for the practical
implementation of solid-state quantum computing [11–20].
This is thanks to the possibility to arrange superconducting
circuits in a desired way with great flexibility [21–23] and
also because their behavior can be analyzed by means of
equivalent mechanical models [24], describing the motion of
fictitious particles moving in an effective potential, with a
supposed quantum behavior at low temperature. For example,
it is possible to realize Josephson anharmonic oscillators that
can be used as artificial atoms, which can be manipulated
by microwaves with NMR-like techniques [25], and which
can also be coupled with superconducting resonators for
single-photon experiments in cavities [5,6]. Moreover, it is
often possible to control and modify the effective potential
shape in time with a fast and accurate timing. This allows, for
example, the observation of very fast coherent oscillations
(up to 20 GHz) of the magnetic flux states in a SQUID
(superconducting quantum interference device) qubit [26,27],
obtained just by quickly and strongly modifying the effective
potential shape (from a symmetric double well to a single
well, and back to the double well). This is done by simply
applying flux pulses, in the absence of microwaves. For this
kind of manipulation, of great importance is the rapidity of
the modification of the effective potential shape. For example,
if we consider quantum computing applications, the manip-
ulation must be fast enough in order to induce nonadiabatic
Landau-Zener transitions between the first two energy levels
(used as computational space), but also slow enough in order
to avoid transitions to upper levels (noncomputational space).
Fortunately, generally speaking this is possible thanks to an
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appropriate energy gap existing between the first couple of
levels and the upper ones, but the transition rate is an aspect
that must be accurately considered and calibrated [28].

In this work, we investigate experimentally and theo-
retically the effect of the speed of modification of the
potential shape in a double SQUID flux qubit, presenting
the experimental observation and the theoretical analysis
of an interesting quantum effect due to the interplay of
Landau-Zener transitions and resonant tunneling. A similar
phenomenon has been studied in Refs. [29,30], even if in a
different system and contest.

II. DOUBLE SQUID

The device we consider is the so-called double SQUID
[31], consisting of a superconducting loop of inductance L

interrupted by a dc SQUID, a second smaller superconducting
loop of inductance l interrupted by two identical Josephson
junctions, each of (nominally) identical critical current i0

and capacitance c [Fig. 1(a)]. The dc SQUID behaves
approximately like a single junction of capacitance C = 2c

and tunable critical current I0(�c) = 2i0 cos(�c/�B) (where
�B = �0

2π
, being �0 = h/2e the flux quantum), which is

controlled by a magnetic flux �c applied to the small loop
(this approximation holds if the loop is small enough, i.e., for
li0 � �0). Note that I0(�c) can also be negative, and in this
case the dc SQUID behaves as a π junction. The double SQUID
behavior can be controlled by two distinct magnetic fluxes,
one applied to the large loop (�x) and the second to the small
one (�c, previous mentioned). The SQUID dynamics can be
described by an equivalent mechanical model, with effective
mass m = C�2

B , effective position corresponding to the total
magnetic flux threading the large loop (�), and potential

U = (� − �x)2

2L
− I0(�c)�B cos

(
�

�B

)
. (1)

This effective potential can have one or two distinct
wells, according to the adimensional parameter β(�c) =
2πI0(�c)L/�0: in the particular case �x = 0, there will be a
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FIG. 1. (Color online) (a) Scheme of the double SQUID.
(b) Effective potential of the double SQUID in the single-well case,
with relative eigenwaves vertically shifted by the corresponding
eigenenergies. (c) Double-well case with a slight asymmetry.

single well for β > −1 [approximately a harmonic potential
with a characteristic frequency controlled by �c, Fig. 1(b)],
and two distinct wells separated by a barrier for β < −1 [with
barrier height controlled by �c, Fig. 1(c)]. The flux �x controls
the potential symmetry: for �x = 0 the potential is symmetric,
otherwise it is tilted [Fig. 1(c)].

In order to study the effect of speed versus adiabaticity on
the system, we concentrate our attention on a fast and large
modification of the potential shape, from the single-well to the
double-well case. This is just half of the complete manipulation
of the qubit state presented in Refs. [26,27]. Initially, the
system is maintained in the single-well case for a rest time
tw, waiting for the complete relaxation to the ground state.
Then, it is moved rapidly to the double-well case, where a
high barrier separates the two minima, and this is obtained by
changing the control flux �c with a characteristic sweeping
rate χ = d�c

dt
. Finally, a readout of the SQUID flux state is

done, corresponding to observe which of the two minima
is occupied at the end. This is performed by an inductively
coupled readout SQUID used as a magnetometer by means
of measurements of the switching current [32]. The sequence
is repeated many times in order to estimate the occupation
probability P of the final flux (for example, the probability
to obtain a final right flux state). The complete operation
is repeated for different unbalancing fluxes �x . For slow
(adiabatic) modifications we expect that the system remains
always in its ground state: the left flux state when the left
minima is the lower one (for �x < 0), and the right flux state in
the opposite case (for �x > 0), with a sweet transition between
these opposite cases around the symmetry point (�x ≈ 0). In
this case, the probability P as a function of the unbalancing flux
�x presents a sigmoidal shape. By increasing the sweeping rate
χ , we expect an excitation of upper levels due to nonadiabatic
transitions, with a possible emerging of effects related to this
population.

III. EXPERIMENTAL SETUP AND RESULTS

We performed the measurements on devices realized
by standard trilayer Nb/AlOx/Nb technology, with nominal
parameters L = 85pH , l = 7pH , I0 = 8μA, and c = 0.3pF ,
in a dilution refrigerator with base temperature T = 30 mK
arranged for ultralow noise qubit measurements (μ metal,
superconducting and normal metal shields, thermocoax and
L-C-L filters on dc lines, different attenuator stages on the

FIG. 2. (Color online) (a) Energy potential of the system and
relative eigenstates in the single-well case (for �c = −429 m�0).
(b) Energy potential of the system and relative eigenstates in the
double-well case (for �c = −412 m�0), with a slight asymmetry
ensuring the degeneracy (for �x = 0.543 m�0). (c) Variation of the
energy levels positions for different fluxes �c (for �x = 0.543 m�0).
Note that for convenience all energies are expressed as frequencies
in GHz, and are shifted by subtracting the ground-state energy.

signal line). A preliminary study of the switching current in
the readout dc SQUID gives an escape temperature of about
250 mK, compatible with the crossover temperature within the
experimental errors. This indicates the absence of an excess
temperature due to noise [32]. The probability P is evaluated
by repeating the preparation-modification-readout cycles for
1000 times at a rate of 10 kHz. The initial preparation is
obtained by waiting for a time tw = 200 ns in the single-well
condition [Fig. 2(a)], for �c ≈ −480 m�0. In this condition,
the system is well approximated by a harmonic oscillator
with characteristic frequency ≈19 GHz, corresponding to a
level spacing of about 0.91 K, very high with respect to
the thermal bath temperature, so that we expect a negligible
thermal excitation.

The potential shape modification is driven by a fast pulse
generator, presenting signals with a typical rise time tR =
0.8 ns that can be changed by using homemade tunable L-C-L
filter. The modified pulse is fully characterized thanks to a
fast oscilloscope, in particular, it is possible to check the pulse
shape and the actual rise time. The fast signal is transmitted to
the device thanks to a 50-� matched coaxial cable interrupted
by three 20-dB attenuators placed at 300-K, 1-K, and 30-mK
stages. More details on the setup can be found in Ref. [26]. We
tested the entire line at room temperature and in the absence of
the chip, while the present setup does not allow to test the entire
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FIG. 3. (Color online) Experimental results for the probability P

to measure a right flux state for different unbalancings �x at
three different rise times tR . Resonance peaks are visible for faster
transitions (arrows in second and third plots)

system (line plus chip) at low temperature. For this reason, we
can expect a large error in the determination of the real signal
shape and rise time at the device level. The applied signal
modifies the potential from the single-well condition, at �c ≈
−480 m�0, to the double-well case, at �c ≈ −360 m�0,
passing through the critical condition �c ≈ −422 m�0 where
there is the transition between the single-well and double-well
conditions (Fig. 2). At the end of each cycle, the final flux state
is measured by the coupled readout dc SQUID. This is done
by applying a current ramp to the SQUID and recording the
switching current, which is directly related to the qubit flux.
The sequence is repeated for different unbalancing fluxes �x ,
ranging from −4 m�0 to +4 m�0, obtaining the probability
curves plotted in Fig. 3. These curves are obtained for three
different rise times: 1.55, 1.34, and 1.13 ns. In the top plot,
we observe the sigmoidal function expected for a slow rate.
In the middle and lower plots, two distinct order of peaks
appear, respectively, at about ±0.55 m�0 and ±1.1 m�0. The
measurement can be repeated for different rise times obtaining
the three-dimensional (3D) curve shown in Fig. 4.

From Fig. 4 we can note some enlightening characteristics.
First of all, the position of peaks (in �x) corresponds to the
conditions for which different levels in the two wells are
aligned (degenerate) [Fig. 2(b)]. This strongly suggests that
the presence of peaks is a manifestation of resonant tunneling
between wells. Second, we note that the appearing of peaks
requires rise times below a particular critical value, namely,
it is necessary to have a high enough sweep rate in order
to observe peaks. Third, there is an alternation of peaks’
orders: when the second order of peaks appears, the first order

FIG. 4. (Color online) Experimental results for the probability P

to measure a right flux state for different unbalancings �x at different
rise times tR , plotted as a 3D surface.

disappears. In Fig. 2(c), it is plotted the modification of the
first nine energy levels in the passage from the single-well to
the double-well condition (in the degenerate case for �x =
0.55 m�0). This figure can help us in a qualitative explanation
of the observed peaks. In the single-well condition (on the
left), it appears reasonable to suppose that only the ground
state is populated. Close to the critical point �c ≈ −0.42 �0,
where the barrier appears to separate two distinct wells,
Landau-Zener transitions populate the upper levels, with an
efficiency depending on the sweep rate d�c

dt
. These excited

states can cross the barrier thanks to a resonant tunneling when
the alignment condition is met. The experimental results thus
suggest that these two effects combine together and produce
the observed peaks, due to an excess of population in the upper
well when the resonant and the nonadiabatic conditions are
both fulfilled. The region where this effect is active is small, of
the order of 1

10 of the entire span of the flux �c (120 m�0), and
this region is crossed in a similar fraction of the entire rise time
duration, about 0.1 ns. We stress again that the combination
of Landau-Zener and resonant tunneling can explain the first
two observations (position of peaks and appearance of them
only below a critical rise time), but not the third one, that is,
the alternation of peaks’ orders.

IV. SIMULATIONS AND DISCUSSIONS

In order to gain information about possible physical
mechanisms and/or properties of the system which may be
responsible for the appearance of the alternation of peaks’
order as in Fig. 4, in what follows we develop a more
quantitative analysis exploiting a simple quantum model useful
to describe the system under scrutiny. To do this, we start
considering the Hamiltonian model relative to the potential (1),
rewritten in a more convenient way:

H (t) = − 1

2m

∂2

∂ϕ2
+ m�2 (ϕ − ϕx)2

2
+ m�2β(t) cos(ϕ), (2)

where � = 1/
√

LC, ϕ = �/�B , and ϕx = �x/�B . More-
over, β(t) = −I0[�c(t)] �B

m�2 . The Hamiltonian (2) is well
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suited to describe the time evolution of a particle in
one-dimensional time-dependent potential. In particular,
appropriately choosing the function β(t), it is possible to
vary the potential shape going, in an interval of time t̃ ,
from a single to a double well, thus reproducing the initial
and final conditions of the experiment discussed before. The
problem therefore consists in finding, as a function of both the
unbalancing parameter ϕx as well as of the rise time tR , the
probability P that, at the end of the process, the particle is
found in the right well. Let us observe that knowing the state
of the system |	(t̃ )〉 at the time instant t̃ , this probability can
be simply evaluated as

P =
∫

right well
	∗(t̃ )	(t̃ )dϕ. (3)

Let us indicate by |ψn(t)〉 a set of instantaneous eigenfunctions
of the Hamiltonian (2):

H (t) |ψn(t)〉 = En(t) |ψn(t)〉. (4)

Exploiting these states, we can write

|	(t)〉 =
∞∑

n=0

exp

[
i

∫ t

0
En(τ )dτ

]
sn(t) |ψn(t)〉, (5)

where the function sn(t) is a solution of the following set of
integrodifferential equations:

ṡn(t) = −
∞∑

k=0

Mnk(t) exp

[
i

∫ t

0
[En(τ ) − Ek(τ )]dτ

]
sk(t)

(6)

with Mnk(t) = 〈ψn(t)| ψ̇k(t)〉. Starting from Eqs. (3) and (5),
the probability P can be then written as

P =
∞∑

n=0

|sn(t̃ )|2
∫

right well
ψ∗

n (t̃ )ψn(t̃ )dϕ

≡
∞∑

n=0

|sn(t̃ )|2Ln (7)

with

Ln =
∫

right well
ψ∗

n (t̃ )ψn(t̃ )dϕ. (8)

An exact analytical resolution of the coupled integrodiffer-
ential equations (6) is not easy. Thus, we proceed further by
performing numerical simulations of the dynamical behavior
of the system, carefully taking into account both the nonadi-
abaticity in the system dynamics and the possible emergence
of resonant tunneling processes. As a first step, considering
β(t) as a parameter, we numerically diagonalize the Hamilto-
nian (2) at a generic time instant t , finding its instantaneous
eigenvectors |ψn(t)〉 and the corresponding eigenvalues En(t).

Considering values of tR of interest in the context of this
paper, we have evaluated the quantity Ln, defined in Eq. (8), in
correspondence to different values of n verifying, as expected,
that, at least for not too large n, Ln is almost equal to one or
negligible, witnessing that the first eigenstates are practically
localized for �x 
= 0. In our simulation, however, we use the
numerical value of Ln instead of 0 or 1.

To evaluate the probability P , we thus need to calculate
the populations |sn(t̃ )|2 by numerically solving the system (6)
explicitly giving the way in which the potential shape modifies
itself going from the initial condition to the final one during
the time t̃ . In other words, we now have to choose the function
β(t) appearing in Eq. (2). We wish to underline that this is a
very delicate point. It is undoubted, indeed, that the dynamics
of the system will be deeply affected from the way of varying
the potential shape. Thus, we expect to find different results in
correspondence to a different choice of β(t).

A sigmoidal function allows a simple and reasonable
description, at least from a qualitative point of view because
of experimental uncertainties on the exact β(t) shape as
discussed in Sec. III. Thus, we fix it as β(t) = β(0)[1 − ζ (t)] +
β(t̃)ζ (t) with ζ (t) = Erf [(2t/t̃−1)w−s]−Erf (−w−s)

Erf (w−s)−Erf (−w−s) , Erf (x) =
2√
π

∫ x

0 e−t2
dt , choosing in particular w = 2 and s = 0.3. It

is the case to stress that varying these two parameters implies,
as a consequence, a changing in the rise time tR . In order to
investigate the appearance of peaks in Fig. 4, we have calcu-
lated the probability of finding the particle in the right well
for different values of �x = ϕx�B supposing, as it appears
physically reasonable, that at t = 0 the system is in its ground
state. In particular, we evaluated such a probability considering
a range of �x in correspondence of which peaks appear, as
suggested by the experimental data. Considering values of tR
as in Fig. 4, our simulation does not evidence the existence of
significant peaks. However, taking into account the fact that
the peaks in the probability P arise reducing the rise time and
in view of the experimental uncertainties discussed before, we
have simulated the behavior of the system exploring smaller tR .
The results obtained are reported in Fig. 5 where the probability
P is plotted as function of both �x and tR .

As expected, peaks of resonance appear in correspondence
to different values of �x . However, the position of such
peaks with respect to the rise time tR does not reflect, not
only quantitatively but also qualitatively, the experimental
observations. In other words, even if a dependence of P on
tR is evident, the function P (tR) is very different from the
experimental one. In particular, the probability P obtained by

FIG. 5. (Color online) Probability P to find the system in the
right well against the unbalancing �x and rise time tR , supposing that
at t = 0 it is in its ground state.
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simulation (see Fig. 5) is not characterized by the alternation
of peaks’ order as in Fig. 4. Such a result, moreover, does
not seem to be imputable to the particular choice of the β(t)
we made. We have indeed verified that this is the case by
choosing a linear function and obtaining the same qualitative
behavior of that shown in Fig. 5. If it is true that the manner
in which we modify the potential shape deeply affects the
dynamics of the system and thus the probability P that the
system is found in the right well at the end of the potential
modification, another key ingredient to be considered is surely
the state of the system at t = 0. Taking into account the fact
that the temperature at which the experiment is performed
is ∼30 mK, it is reasonable to suppose that at t = 0 there
is a small, but not zero (of the order of few percent),
probability that the system is in its first excited state. Thus,
it could be reasonable to assume that the preparation step
leaves the system in a mixture ρ = x2 |ψ0(0)〉 〈ψ0(0)| + (1 −
x2) |ψ1(0)〉 〈ψ1(0)| of the ground and the first excited states.
Performing simulation starting from this mixture instead of
the ground state, we have verified that, considering values
of x compatible with T � 30 mK, we do not get significant
differences with respect to the results displayed in Fig. 5.
We have also checked that increasing the relative weight x

of the first excited state in the initial mixture worsens the
accordance between theoretical predictions and experimental
results. The theoretical prediction instead drastically changes
if we suppose that quantum coherences are present in the
initial state of the system. Such an assumption can be justified
by considering the fact that the waiting interval of time tw
was not long enough to allow the complete destruction of the
coherences between the ground and the first excited states
of the double SQUID. If this is the case, it is reasonable to
assume that at t = 0 the system is in a quantum superposition
|	(0)〉 = x |ψ0(0)〉 + eiθ

√
(1 − x2) |ψ1(0)〉 of the first two

low-lying states, instead of a mixture of the two states as
supposed before. Starting from this initial state, the probability
P shows a dependence on both �x and tR as displayed in
Fig. 6 where we have considered a smaller range of tR to
better appreciate the behavior of P . As expected, also in view
of experimental uncertainties on the β(t) function as well as
on the parameters defining the system, Fig. 6 does not exactly
match the experimental results presented before, even if the
qualitative behavior of P seems to be well reproduced. More
in detail, the most important aspect of the results shown in
Fig. 6 consists in the fact that, as experimentally observed,
there is an alternation of the peaks’ order determined by both
the asymmetry in the potential governed by the value of the
unbalancing parameter �x , and on the rise time tR required
to go from a single to a double well. The theoretical analysis
developed in this paper has the merit to disclose the role played
by the persistence of quantum coherences in the initial state of
the double SQUID. We wish to stress indeed that starting from
an initial state as the ground state of the qubit or a mixture of
the same ground state and the first excited one, even if leading
to the appearance of peaks, is completely unable to predict the
alternation of minima and maxima as requested by the experi-
mental results. Thus, our assumption, that is the persistence of
quantum coherences, leads to predictions in good qualitative
agreement with the experimental results. The intriguing

FIG. 6. (Color online) Probability P to find the system in the
right well against the unbalancing �x and rise time tR , supposing
that at t = 0 it is in the linear superposition |	(0)〉 = x |ψ0(0)〉 +
eiθ

√
(1 − x2) |ψ1(0)〉 of its ground and first excited states in corre-

spondence to x = 0.95 and θ = 0.

point is that all the alternative (seemingly more reasonable)
assumptions concerning the initial state of the SQUID predict
a behavior not compatible with some aspect of the observed
one.

Before concluding, we comment about possible decoher-
ence effects in the dynamical behavior of the system. It is
important to underline that, as we have previously discussed,
the temporal interval where the physical mechanisms at the
basis of the observed effects are active is a small fraction (of
the order of 0.1 ns) of the total duration of the experiment
(about 1 ns). As a first approximation, it is thus reasonable
to neglect decoherence effects in the system dynamics, which
present time scales of the order of nanoseconds. Anyway, it is
the case to underline that in this context the source of noise
is the 1

f
noise [33] that generally speaking acts modifying

the effective control parameter as, for example, �x [34–36].
We thus expect that the effects of such a noise on the results
reported in Fig. 6 would consist at most in a broadening of the
observed peaks.

Summarizing, we have experimentally verified that a fast
modification of the potential shape of a double SQUID gives
rise to the activation of quantum resonance phenomena mani-
festing themselves as peaks in the probability of measuring a
right flux state of the SQUID at the end of the nonadiabatic
transition. The theoretical analysis we have performed seems
moreover to lead to the conclusion that the characteristic
behavior of such a probability is also a direct consequence
of the presence of quantum coherences in the initial state of
the system. This fact suggests to perform other experiments
on the system under scrutiny aimed at revealing quantum
interference effects in the behavior of some no-diagonal
physical observables.
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