3,339 research outputs found

    On the Study of Vehicle Density in Intelligent Transportation Systems

    Get PDF
    Vehicular ad hoc networks (VANETs) are wireless communication networks which support cooperative driving among vehicles on the road. The specific characteristics of VANETs favor the development of attractive and challenging services and applications which rely on message exchanging among vehicles. These communication capabilities depend directly on the existence of nearby vehicles able to exchange information. Therefore, higher vehicle densities favor the communication among vehicles. However, vehicular communications are also strongly affected by the topology of the map (i.e., wireless signal could be attenuated due to the distance between the sender and receiver, and obstacles usually block signal transmission). In this paper, we study the influence of the roadmap topology and the number of vehicles when accounting for the vehicular communications capabilities, especially in urban scenarios. Additionally, we consider the use of two parameters: the SJ Ratio (SJR) and the Total Distance (TD), as the topology-related factors that better correlate with communications performance. Finally, we propose the use of a new density metric based on the number of vehicles, the complexity of the roadmap, and its maximum capacity. Hence, researchers will be able to accurately characterize the different urban scenarios and better validate their proposals related to cooperative Intelligent Transportation Systems based on vehicular communications

    Magnetic nanoparticles for magnetically guided therapies against neural diseases

    Get PDF
    Neurological pathologies and nerve damage are two problems of significant medical and economic impact because of the hurdles of losing nerve functionality in addition to significant mortality and morbidity, and demanding rehabilitation. There are currently a number of examples of how nanotechnology can provide new solutions for biomedical problems. Current strategies for nerve repair rely on the use of functionalized scaffolds working as nerve guidance channels to improve axonal regeneration and to direct axonal re-growth across the nerve lesion site. Since low invasiveness and high selectivity of the growth stimulation are usually conflicting requirements, new approaches are being pursued in order to overcome such limitations. Engineered magnetic nanoparticles (MNPs) have emerged from this need for noninvasive therapies for both positioning and guiding neural cells in response to an external magnetic field. Here, we review the current state of the use of MNPs for neuroprotective and magnetically guided therapies. We discuss some conceivable outcomes of current magnetically driven strategies seeking integrated platforms for regenerative action on damaged tissues

    Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization

    Get PDF
    The integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes <d> = 3.9 ± 0.2 nm attached to Fe 3 O 4 nanoparticle cores (<d> = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe 3 O 4 (Au@PEI-Fe 3 O 4 ) nanoparticles are able to retain bulk magnetic moment M S = 82–84 Am 2 /kg Fe3O4 , with the Verwey transition observed at T V = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H 0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 µW/cell for PEI-Fe 3 O 4 and Au@PEI-Fe 3 O 4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization

    Turismo y crisis: el comportamiento del inmobiliario turístico en la montaña española durante la última década. Estudio de casos: la Val d’Aran y Sierra Nevada

    Get PDF
    En esta comunicación se analiza, como respuesta al enunciado del título, la evolución reciente del parque de viviendas que puede estar vinculado a una función turístico-residencial. Se pretende valorar, a partir de los resultados, el papel que desempeña esta función en el proceso de dinamización local y de renovación de la montaña española como escenario turístico y detectar, asimismo, otros posibles fundamentos de dicha renovación. Se analizan específicamente los datos de los censos de vivienda y las estadísticas de viviendas construidas en destinos significativos previamente seleccionados. El estudio se centra en los últimos quince años, y se realiza a escala municipal. La comarca y el municipio constituyen unidades espaciales operativas idóneas a efectos del tratamiento estadístico de la información obtenida

    Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization

    Get PDF
    The integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes = 3.9 ± 0.2 nm attached to Fe 3 O 4 nanoparticle cores ( = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe 3 O 4 (Au@PEI-Fe 3 O 4 ) nanoparticles are able to retain bulk magnetic moment M S = 82–84 Am 2 /kg Fe3O4 , with the Verwey transition observed at T V = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H 0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 μW/cell for PEI-Fe 3 O 4 and Au@PEI-Fe 3 O 4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization.Fil: León Félix, L.. Universidade do Brasília; Brasil. Universidad de Zaragoza; EspañaFil: Sanz, B.. Nb Nanoscale Biomagnetics S.l.; EspañaFil: Sebastián, V.. Universidad de Zaragoza; España. Centro de Investigación en Red en Bioingeniería; EspañaFil: Torres Molina, Teobaldo Enrique. Universidad de Zaragoza; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Sousa, Marcelo Henrique. Universidade do Brasília; BrasilFil: Coaquira, J. A. H.. Universidade do Brasília; BrasilFil: Ibarra, M.R.. Universidad de Zaragoza; EspañaFil: Goya, Gerardo Fabian. Universidad de Zaragoza; Españ

    The knee prosthesis constraint dilemma: Biomechanical comparison between varus-valgus constrained implants and rotating hinge prosthesis. A cadaver study

    Get PDF
    The real degree of constriction of rotating hinge knee (RHK) and condylar constrained prostheses (CCK) is a matter of discussion in revision knee arthroplasty. The objectives of this study are to compare the tibial rotation of both implants and validate the use of inertial sensors with optical tracking system as movement measurement tools. A total of 16 cadaver knees were used. Eight knees were replaced using a RHK (Endomodel LINK), and the remaining eight received a CCK prosthesis (LCCK, Zimmer). Tibial rotation range of motion was measured in full extension and at 30°, 60°, and 90° of flexion, with four continuous waveforms for each measurement. Measurements were made using two inertial sensors with specific software and compared with measurements obtained using the gold standard technique - the motion capture camera. The comparison of the accuracy of both measurement methods showed no statistically significant differences between inertial sensors and motion capture cameras, with p > .1; the mean error for tibial rotation was 0.21°. Tibial rotation in the RHK was significantly greater than in the CCK (5.25° vs. 2.28°, respectively), p < .05. We have shown that RHK permit greater tibial rotation, being closer to physiological values than CCKs. Inertial sensors have been validated as an effective and accurate method of measuring knee movement. The clinical significance: RHK appears to represent a lower constriction degree than CCK systems.This study wassupported by Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III and European Regional Development Fund "Una manera de hacer Europa" (grant number PI18/01625

    Integrated system for traction and battery charging of electric vehicles with universal interface to the power grid

    Get PDF
    This paper proposes an integrated system for traction and battery charging of electric vehicles (EVs) with universal interface to the power grid. In the proposed system, the power electronics converters comprising the traction drive system are also used for the battery charging system, reducing the required hardware, meaning the integrated characteristic of the system. Besides, this interface is universal, since it can be performed with the three main types of power grids, namely: (1) Single-phase AC power grids; (2) Three-phase AC power grids; (3) DC power grids. In these three types of interfaces with the power grid, as well as in the traction drive operation mode, bidirectional operation is possible, framing the integration of this system into an EV in the context of smart grids. Moreover, the proposed system endows an EV with an on-board fast battery charger, whose operation allows either fast or slow battery charging. The main contributes of the proposed system are detailed in the paper, and simulation results are presented in order to attain the feasibility of the proposed system.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT -Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work has been supported by FCT within the Project Scope DAIPESEV - Development of Advanced Integrated Power Electronic Systems for Electric Vehicles: PTDC/EEI-EEE/30382/2017. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283
    corecore