65 research outputs found

    Cyclobenzaprine raises ROS levels in Leishmania infantum and reduces parasite burden in Infected mice

    Get PDF
    11 p.-5 fig. Ferreira Cunha-Júnior, Edézio et al.Background The leishmanicidal action of tricyclic antidepressants has been studied and evidences have pointed that their action is linked to inhibition of trypanothione reductase, a key enzyme in the redox metabolism of pathogenic trypanosomes. Cyclobenzaprine (CBP) is a tricyclic structurally related to the antidepressant amitriptyline, differing only by the presence of a double bond in the central ring. This paper describes the effect of CBP in experimental visceral leishmaniasis, its inhibitory effect in trypanothione reductase and the potential immunomodulatory activity.Methodology/Principal Findings In vitro antileishmanial activity was determined in promastigotes and in L. infantum-infected macrophages. For in vivo studies, L. infantum-infected BALB/c mice were treated with CBP by oral gavage for five days and the parasite load was estimated. Trypanothione reductase activity was assessed in the soluble fraction of promastigotes of L. infantum. For evaluation of cytokines, L. infantum-infected macrophages were co-cultured with BALB/c splenocytes and treated with CBP for 48 h. The supernatant was analyzed for IL-6, IL-10, MCP-1, IFN-γ and TNF-α. CBP demonstrated an IC50 of 14.5±1.1μM and an IC90 of 74.5±1.2 μM in promastigotes and an IC50 of 12.6±1.05 μM and an IC90 of 28.7±1.3 μM in intracellular amastigotes. CBP also reduced the parasite load in L. infantum-infected mice by 40.4±10.3% and 66.7±10.5% in spleen at 24.64 and 49.28 mg/kg, respectively and by 85.6±5.0 and 89.3±4.8% in liver at 24.64 and 49.28mg/kg, after a short-term treatment. CBP inhibited the trypanothione reductase activity with a Ki of 86 ± 7.7 μM and increased the ROS production in promastigotes. CBP inhibited in 53% the production of IL-6 in infected macrophages coculture.Conclusion/Significance To the best of our knowledge, this study is the first report of the in vivo antileishmanial activity of the FDA-approved drug CBP. Modulation of immune response and induction of oxidative stress in parasite seem to contribute to this efficacy.This work was supported by Programa Estratégico de Apoio à Pesquisa em Saúde,FIOCRUZ/Conselho Nacional de Desenvolvimento Científico e Tecnológico - www.cnpq.br, (PAPES/ CNPq 407680/2012-8 to ECTS and 407590/2012-9 to EEAA), Fundação de Apoio a Pesquisa do Estado do Rio de Janeiro ± www.faperj.br (Fellow and grant E-26/010.001828/2016 to EFCJ), Conselho Nacional de Desenvolvimento CientõÂfico e TecnoloÂgico (CNPq/Universal grant 470627/2013-1 to EEAA), São Paulo Research Foundation - www.fapesp.br (FAPESP 2015/23403-9 to AGT),Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad FEDER - www.idi.mineco.gob.es/ (SAF2015-65740-R) and Subdirección General de Redes y Centros de Investigación Cooperativa-FEDER -www.isciii.es/ (RD12/0018/0007) (to LR).Peer reviewe

    Antitumoral, antileishmanial and antimalarial activity of pentacyclic 1,4-naphthoquinone derivatives

    Full text link
    Pterocarpanquinones 8a-c, previously synthesized in our laboratory, and an homologous series of derivatives, compounds 9a-c prepared in this work, were evaluated on breast cancer cells (MCF-7) and on the parasites Leishmania amazonensis and Plasmodium falciparum, in culture. Compounds 8a-c were more potent than 9a-c on tumor cells and Leishmania amazonensis. On the other hand, 9a-c showed to be more active on Plasmodium falciparum. All the compounds studied were bioselective, presenting negligible cytotoxicity against fresh murine lymphocytes and human lymphocytes activated by the mitogen phytohemaglutinin (PHA)

    Crescimento e metabolismo de mudas de Pityrocarpa moniliformis Benth. sob deficit hídrico

    Get PDF
    Pityrocarpa moniliformis Benth. has medicinal properties, forage potential, besides showing rusticity and rapid growth, which confer potential to recover degraded areas. In this context, the objective was to evaluate the growth and biochemical components of Pityrocarpa moniliformis seedlings under water deficit conditions. The design used was randomized blocks, with five treatments and four replicates, with the experimental plot consisting of twenty plants. Treatments were characterized by different periods of water deficit (0; 4; 8; 12 and 16 days without irrigation). At 44 days after sowing (DAS), when the seedlings had two pairs of fully formed true leaves, the treatments began to be applied. The development of the seedlings was evaluated until 60 DAS when they were collected for biometric and biochemical analyses. The variables analyzed were shoot height; collar diameter; number of leaves; shoot dry mass; root dry mass; root/shoot ratio; and Dickson’s quality index. Contents of total chlorophyll, chlorophyll a, chlorophyll b, total free amino acids, total soluble sugar, and proline contents in the leaves were also determined. The treatment most affected by the lack of irrigation was 16 days of water deficit, which resulted in the death of 38.8% of the seedlings. This condition caused a decrease in shoot length, reducing it by approximately 29.2% compared to the control treatment. There was also a reduction in the production of new leaves from the eighth day after the differentiation of treatments. Pityrocarpa moniliformis seedlings can develop under the condition of water deficit for up to 8 days, even with chlorophyll degradation due to stress. Pityrocarpa moniliformis maintains its vegetative development by performing osmotic adjustment through the accumulation of biomolecules (sugars, proline, and amino acids).Pityrocarpa moniliformis Benth. possui propriedades medicinais, potencial forrageiro, além de apresentar rusticidade e rápido crescimento, o que lhe confere potencialidade de uso para recuperação de áreas degradadas. Nesse contexto, objetivou-se avaliar o crescimento e os componentes bioquímicos de mudas de Pityrocarpa moniliformis em condições de deficit hídrico. O delineamento foi em blocos casualizados, com cinco tratamentos e quatro repetições, sendo a parcela experimental composta por vinte plantas. Os tratamentos foram caracterizados por diferentes períodos de deficit hídrico (0; 4; 8; 12 e 16 dias sem irrigação). Aos 44 dias após a semeadura (DAS), quando as mudas apresentaram dois pares de folhas verdadeiras totalmente formadas, iniciou-se a aplicação dos tratamentos. O desenvolvimento das mudas foi avaliado até os 60 DAS, período em que ocorreu a coleta destas para as análises biométricas e bioquímicas. As variáveis analisadas foram: altura da parte aérea; diâmetro do colo; número de folhas; massa seca de parte aérea e raiz; relação entre raiz e parte aérea; e índice de qualidade de Dickson. Também foram determinados nas folhas os teores de clorofilas totais, a e b; aminoácidos livres totais; teor de açúcares solúveis totais; e teor de prolina. O tratamento mais afetado pela falta de irrigação foi o de 16 dias, o qual acarretou a morte de 38,8% das mudas. Essa condição ocasionou a diminuição no comprimento da parte aérea das mudas, com redução de aproximadamente 29,2%, quando comparado ao tratamento-controle. Houve também redução da emissão de novas folhas a partir do oitavo dia após a diferenciação dos tratamentos. Mudas de Pityrocarpa moniliformis conseguem se desenvolver em condição de deficit hídrico por até 8 dias, mesmo ocorrendo a degradação de clorofilas devido ao estresse. A manutenção do desenvolvimento vegetativo de Pityrocarpa moniliformis ocorre devido à realização de ajustamento osmótico pelo acúmulo de biomoléculas (açúcares, prolina e aminoácidos)

    Antileishmanial effects of Crotalaria spectabilis Roth aqueous extracts on Leishmania amazonensis

    Get PDF
    Abstract Fifteen polar extracts from leaf, seed, pod, stem, flower and root of Crotalaria spectabilis were prepared using aqueous systems, based on the principles of green chemistry, and showed different protease inhibitor (PI) activities on trypsin, papain, pepsin and the extracellular L. amazonensis serine protease (LSPIII). The most pronounced inhibitory effect on LSPIII was observed in leaf (CS-P), root, stem, flower (CS-FPVPP) and pod (CS-VA) extracts. Crotalaria extracts exhibited low cytotoxicity on macrophages; however, they decreased the viability of L. amazonensis promastigotes and amastigotes, as observed in leaf (CS-AE, CS-P, CS-T and CS-PVPP), seed (CS-ST), flower and root (CS-RA) extracts. CS-P was chosen to study PI and secondary metabolites and a 10-12 kDa protein, analyzed by mass spectrometry, was identified as a serine PI homologous with papaya latex serine PI. Glycosylated flavonoids, such as quercetins, vitexin and tricin were the major secondary metabolites of CS-P. The presence of PIs in C. spectabilis is a new finding, especially in other organs than seeds since PIs have been reported only in seed legumes. Besides, this is the first report of antileishmanial activity of C. spectabilis extracts and the identification of serine polypeptide PI and glycosylated flavonoids from leaf

    Diphyllobothriasis, Brazil

    Get PDF
    Cases of human diphyllobothriasis have been reported worldwide. Only 1 case in Brazil was diagnosed by our institution from January 1998 to December 2003. By comparison, 18 cases were diagnosed from March 2004 to January 2005. All patients who became infected ate raw fish in sushi or sashimi

    Pre-germination treatments with plant growth regulators and bioactivators attenuate salt stress in melon: effects on germination and seedling development

    Get PDF
    The scarcity of surface water has led to the use of underground sources as an alternative for crop irrigation by farmers in semi-arid regions. However, these water sources generally have high salinity, which prevents agricultural production. The objective of this study was to determine the effects of pre-germination treatments with plant growth regulators and bioactivators on melon seeds to attenuate salt stress caused by irrigation water during germination and seedling development. Two trials were carried out separately with the hybrids, Goldex and Grand Prix. The design was completely randomized in a 4 × 3 factorial scheme (four seed treatments and three dilutions of irrigation water). Seeds were treated with salicylic acid and gibberellic acid and the insecticide, thiamethoxam, in addition to the control. Local supply water, artesian well groundwater, and dilution of these waters at a 1:1 ratio were employed for irrigation. Fourteen days after sowing, morphological and physiological analyses were performed, and the material was collected for biochemical determination. The use of saline well water affected the initial development of melon seedlings of the Goldex and Grand Prix hybrids. Pre-germination treatment of Goldex hybrid seeds with gibberellic acid was inefficient at mitigating salt stress. However, the effects of irrigation water salinity on Grand Prix melon seeds pretreated with salicylic acid and thiamethoxam were attenuated

    Biological effects of trans, trans-farnesol in Leishmania amazonensis

    Get PDF
    IntroductionFarnesol, derived from farnesyl pyrophosphate in the sterols biosynthetic pathway, is a molecule with three unsaturations and four possible isomers. Candida albicans predominantly secretes the trans, trans-farnesol (t, t-FOH) isomer, known for its role in regulating the virulence of various fungi species and modulating morphological transition processes. Notably, the evolutionary divergence in sterol biosynthesis between fungi, including Candida albicans, and trypanosomatids resulted in the synthesis of sterols with the ergostane skeleton, distinct from cholesterol. This study aims to assess the impact of exogenously added trans, trans-farnesol on the proliferative ability of Leishmania amazonensis and to identify its presence in the lipid secretome of the parasite.MethodsThe study involved the addition of exogenous trans, trans-farnesol to evaluate its interference with the proliferation of L. amazonensis promastigotes. Proliferation, cell cycle, DNA fragmentation, and mitochondrial functionality were assessed as indicators of the effects of trans, trans-farnesol. Additionally, lipid secretome analysis was conducted, focusing on the detection of trans, trans-farnesol and related products derived from the precursor, farnesyl pyrophosphate. In silico analysis was employed to identify the sequence for the farnesene synthase gene responsible for producing these isoprenoids in the Leishmania genome.ResultsExogenously added trans, trans-farnesol was found to interfere with the proliferation of L. amazonensis promastigotes, inhibiting the cell cycle without causing DNA fragmentation or loss of mitochondrial functionality. Despite the absence of trans, trans-farnesol in the culture supernatant, other products derived from farnesyl pyrophosphate, specifically α-farnesene and β-farnesene, were detected starting on the fourth day of culture, continuing to increase until the tenth day. Furthermore, the identification of the farnesene synthase gene in the Leishmania genome through in silico analysis provided insights into the enzymatic basis of isoprenoid production.DiscussionThe findings collectively offer the first insights into the mechanism of action of farnesol on L. amazonensis. While trans, trans-farnesol was not detected in the lipid secretome, the presence of α-farnesene and β-farnesene suggests alternative pathways or modifications in the isoprenoid metabolism of the parasite. The inhibitory effects on proliferation and cell cycle without inducing DNA fragmentation or mitochondrial dysfunction raise questions about the specific targets and pathways affected by exogenous trans, trans-farnesol. The identification of the farnesene synthase gene provides a molecular basis for understanding the synthesis of related isoprenoids in Leishmania. Further exploration of these mechanisms may contribute to the development of novel therapeutic strategies against Leishmania infections

    Conhecendo os impactos pulmonares ocasionados pelo uso de cigarros eletrônicos

    Get PDF
    O presente trabalho tem por objetivo a análise dos impactos pulmonares que são ocasionados pelo uso de cigarros eletrônicos. Este trabalho trata-se de uma revisão integrativa, sendo realizada a partir da busca dos seguintes Descritores em Ciências da Saúde (DeCS) na base de dados PubMed: electronic; cigarette; lung; impacts. Dos artigos encontrados, foram selecionados apenas artigos publicados nos anos de 2021 a 2023 até a data de 25/10/2023, sendo escolhidos 18 artigos, em que 10 foram excluídos após a análise de enquadramento ao tema, sendo apenas 8 analisados para a confecção deste estudo. O uso de E-cigarros está relacionado a diversas alterações pulmonares, sendo que em 2019, nos Estados Unidos, foi responsável pelo surto de doença pulmonar associada a cigarros eletrônicos, além disso é capaz de induzir alterações como síndrome respiratória aguda grave, alterações na função e composição do surfactante alterando a hematose, tosse, falta de ar e dentre outras alterações. Com isto, é essencial que se faça um apanhado das principais evidências científicas acerca deste tema para que todas estas problemáticas sejam evidenciadas.&nbsp
    corecore