30,513 research outputs found

    On Chow Stability for algebraic curves

    Full text link
    In the last decades there have been introduced different concepts of stability for projective varieties. In this paper we give a natural and intrinsic criterion of the Chow, and Hilbert, stability for complex irreducible smooth projective curves C⊂PnC\subset \mathbb P ^n. Namely, if the restriction TP∣CnT\mathbb P_{|C} ^n of the tangent bundle of Pn\mathbb P ^n to CC is stable then C⊂PnC\subset \mathbb P ^n is Chow stable, and hence Hilbert stable. We apply this criterion to describe a smooth open set of the irreducible component HilbChP(t),sHilb^{P(t),s}_{{Ch}} of the Hilbert scheme of Pn\mathbb{P} ^n containing the generic smooth Chow-stable curve of genus gg and degree d>g+n−⌊gn+1⌋.d>g+n-\left\lfloor\frac{g}{n+1}\right\rfloor. Moreover, we describe the quotient stack of such curves. Similar results are obtained for the locus of Hilbert stable curves.Comment: Minor corrections and improvements to presentation. We add Theorem 4.

    Antiresonances as precursors of decoherence

    Full text link
    We show that, in presence of a complex spectrum, antiresonances act as a precursor for dephasing enabling the crossover to a fully decoherent transport even within a unitary Hamiltonian description. This general scenario is illustrated here by focusing on a quantum dot coupled to a chaotic cavity containing a finite, but large, number of states using a Hamiltonian formulation. For weak coupling to a chaotic cavity with a sufficiently dense spectrum, the ensuing complex structure of resonances and antiresonances leads to phase randomization under coarse graining in energy. Such phase instabilities and coarse graining are the ingredients for a mechanism producing decoherence and thus irreversibility. For the present simple model one finds a conductance that coincides with the one obtained by adding a ficticious voltage probe within the Landauer-Buettiker picture. This sheds new light on how the microscopic mechanisms that produce phase fluctuations induce decoherence.Comment: 7 pages, 2 figures, to appear in Europhys. Let

    Enhancing single-parameter quantum charge pumping in carbon-based devices

    Full text link
    We present a theoretical study of quantum charge pumping with a single ac gate applied to graphene nanoribbons and carbon nanotubes operating with low resistance contacts. By combining Floquet theory with Green's function formalism, we show that the pumped current can be tuned and enhanced by up to two orders of magnitude by an appropriate choice of device length, gate voltage intensity and driving frequency and amplitude. These results offer a promising alternative for enhancing the pumped currents in these carbon-based devices.Comment: 3.5 pages, 2 figure

    Two Distinct, Geographically Overlapping Lineages of the Corallimorpharian Ricordea Florida (Cnidaria: Hexacorallia: Ricordeidae)

    Get PDF
    We examined the genetic variation of the corallimorpharian Ricordea florida; it is distributed throughout the Caribbean region and is heavily harvested for the marine aquarium trade. Eighty-four distinct individuals of R. florida were sequenced from four geographically distant Caribbean locations (Curaçao, Florida, Guadeloupe, and Puerto Rico). Analysis of the ribosomal nuclear region (ITS1, 5.8S, ITS2) uncovered two geographically partially overlapping genetic lineages in R. florida, probably representing two cryptic species. Lineage 1 was found in Florida and Puerto Rico, and Lineage 2 was found in Florida, Puerto Rico, Guadeloupe, and Curaçao. Because of the multi-allelic nature of the ITS region, four individuals from Lineage 1 and six from Lineage 2 were cloned to evaluate the levels of hidden intra-individual variability. Pairwise genetic comparisons indicated that the levels of intra-individual and intra-lineage variability (\u3c1%) were approximately an order of magnitude lower than the divergence (~9%) observed between the two lineages. The fishery regulations of the aquarium trade regard R. florida as one species. More refined regulations should take into account the presence of two genetic lineages, and they should be managed separately in order to preserve the long-term evolutionary potential of this corallimorpharian. The discovery of two distinct lineages in R. florida illustrates the importance of evaluating genetic variability in harvested species prior to the implementation of management policies

    Two interacting atoms in a cavity: exact solutions, entanglement and decoherence

    Full text link
    We address the problem of two interacting atoms of different species inside a cavity and find the explicit solutions of the corresponding eigenvalues and eigenfunctions using a new invariant. This model encompasses various commonly used models. By way of example we obtain closed expressions for concurrence and purity as a function of time for the case where the cavity is prepared in a number state. We discuss the behaviour of these quantities and and their relative behaviour in the concurrence-purity plane.Comment: 10 pages, 3 figure

    Floquet interface states in illuminated three-dimensional topological insulators

    Get PDF
    Recent experiments showed that the surface of a three dimensional topological insulator develops gaps in the Floquet-Bloch band spectrum when illuminated with a circularly polarized laser. These Floquet-Bloch bands are characterized by non-trivial Chern numbers which only depend on the helicity of the polarization of the radiation field. Here we propose a setup consisting of a pair of counter-rotating lasers, and show that one-dimensional chiral states emerge at the interface between the two lasers. These interface states turn out to be spin-polarized and may trigger interesting applications in the field of optoelectronics and spintronics.Comment: 5 pages with 3 figures + supplemental materia

    Heavy flavor in relativistic heavy-ion collisions

    Full text link
    We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectrum and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into DD mesons through coalescence and/or fragmentation. The hadronized DD mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor RAAR_{AA} and the elliptic flow v2v_2 of D0D^0 mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at sNN\sqrt{s_{NN}} =200 GeV and to the ALICE data for Pb+Pb collisions at sNN\sqrt{s_{NN}} =2.76 TeV. We find that in the PHSD the energy loss of DD mesons at high pTp_T can be dominantly attributed to partonic scattering while the actual shape of RAAR_{AA} versus pTp_T reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the RAAR_{AA} at low pTp_T and enhances the DD-meson elliptic flow v2v_2.Comment: 8 pages, 3 figures, to be published in the Proceedings of the 15th International Conference on Strangeness in Quark Matter (SQM2015), 6-11 July 2015, JINR, Dubna, Russi

    Tuning laser-induced bandgaps in graphene

    Get PDF
    Could a laser field lead to the much sought-after tunable bandgaps in graphene? By using Floquet theory combined with Green's functions techniques, we predict that a laser field in the mid-infrared range can produce observable bandgaps in the electronic structure of graphene. Furthermore, we show how they can be tuned by using the laser polarization. Our results could serve as a guidance to design opto-electronic nano-devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter
    • …
    corecore