1,360 research outputs found

    Gaia 0007-1605: an old triple system with an inner brown dwarf-white dwarf binary and an outer white dwarf companion

    Get PDF
    We identify Gaia 0007–1605 A,C as the first inner brown dwarf–white dwarf binary of a hierarchical triple system in which the outer component is another white dwarf (Gaia 0007–1605 B). From optical/near-infrared spectroscopy obtained at the Very Large Telescope with the X-Shooter instrument and/or from Gaia photometry plus spectral energy distribution fitting, we determine the effective temperatures and masses of the two white dwarfs (12,018 ± 68 K and 0.54 ± 0.01 M¿ for Gaia 0007–1605 A and 4445 ± 116 K and 0.56 ± 0.05 M¿ for Gaia 0007–1605 B) and the effective temperature of the brown dwarf (1850 ± 50 K; corresponding to spectral type L3 ± 1). By analyzing the available TESS light curves of Gaia 0007–1605 A,C we detect a signal at 1.0446 ± 0.0015 days with an amplitude of 6.25 ppt, which we interpret as the orbital period modulated from irradiation effects of the white dwarf on the brown dwarf's surface. This drives us to speculate that the inner binary evolved through a common-envelope phase in the past. Using the outer white dwarf as a cosmochronometer and analyzing the kinematic properties of the system, we conclude that the triple system is about 10 Gyr old.Postprint (published version

    The star formation history of Gaia white dwarf population through its colour-magnitude diagram

    Get PDF
    White dwarfs are the most common stellar remnants. Furthermore, as being old objects, their study could shed new light on different questions related to the history, formation and evolution of the Galaxy. Despite these objects have been broadly studied from a theoretical point of view, the observational data has been limited to a poor statistical sample, due to the intrinsic low luminosity of white dwarfs. However, thanks to the recent Gaia EDR3, for the first time, a significant sample of the White dwarf population of our Galaxy, containing around 13,000 objects up to 100 pc from the Sun, has been obtained. Such data, in particular its color-magnitude diagram, provides the ideal scenario for extracting the maximum information. This communication reports a work-in-progress of a widely applied technique for recovering the star formation history of galaxies through its color-magnitude diagram applied, in this case, for first time to the local White dwarf population.Peer ReviewedPostprint (published version

    The white dwarf luminosity function II. The efect of the measurement errors and other biases

    Get PDF
    The disc white dwarf luminosity function is an important tool for studying the solar neighbourhood, since it allows the determination of several Galactic parameters, the most important one being the age of the Galactic disc. However, only the 1/Vmax method has been employed so far for observationally determining the white dwarf luminosity function, whereas for other kind of luminosity functions several other methods have been frequently used. Moreover, the procedures to determine the white dwarf luminosity function are not free of biases. These biases have two different origins: they can either be of statistical nature or a consequence of the measurement errors. In a previous paper we carried out an in-depth study of the first category of biases for several luminosity function estimators. In this paper we focus on the biases introduced by the measurement errors and on the effects of the degree of contamination of the input sample used to build the disc white dwarf luminosity function by different kinematical populations. To assess the extent of these biases we use a Monte Carlo simulator to generate a controlled synthetic population and analyse the behaviour of the disc white dwarf luminosity function for several assumptions about the magnitude of the measurement errors and for several degrees of contamination, comparing the performances of the most robust luminosity function estimators under such conditions.Peer Reviewe

    The population of single and binary white dwarfs of the Galactic bulge

    Get PDF
    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon–oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon–oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.Peer ReviewedPostprint (published version

    The population of white dwarf-main sequence binaries in the SDSS DR 12

    Get PDF
    We present a Monte Carlo population synthesis study of white dwarf-main sequence (WD+MS) binaries in the Galactic disc aimed at reproducing the ensemble properties of the entire population observed by the Sloan Digital Sky Survey (SDSS) Data Release 12. Our simulations take into account all known observational biases and use the most up-to-date stellar evolutionary models. This allows us to perform a sound comparison between the simulations and the observational data. We find that the properties of the simulated and observed parameter distributions agree best when assuming low values of the common envelope efficiency (0.2-0.3), a result that is in agreement with previous findings obtained by observational and population synthesis studies of close SDSSWD+MS binaries.We also show that all synthetic populations that result from adopting an initial mass ratio distribution with a positive slope are excluded by observations. Finally, we confirm that the properties of the simulated WD+MS binary populations are nearly independent of the age adopted for the thin disc, on the contribution of WD+MS binaries from the thick disc (0-17 per cent of the total population) and on the assumed fraction of the internal energy that is used to eject the envelope during the common envelope phase (0.1-0.5).Peer ReviewedPostprint (published version

    The kinematics of white dwarfs from the SDSS DR12

    Get PDF
    We use the Sloan Digital Sky Survey Data Release 12, which is the largest availablewhite dwarf catalogue to date, to study the evolution of the kinematical properties of the pop-ulation of white dwarfs of the Galactic disk. We derive masses, ages, photometric distances andradial velocities for all white dwarfs with hydrogen-rich atmospheres. For those stars for whichproper motions from the USNO-B1 catalogue are available, the three-dimensional componentsof the velocity are obtained. This subset of the original sample comprises 20,247 stars, makingit the largest sample of white dwarfs with measured three-dimensional velocities. The volumeprobed by our sample is large, allowing us to obtain relevant kinematical information. In partic-ular, our sample extends from a Galactocentric radial distanceRG=7.8 to 9.3 kpc, and verticaldistances from the Galactic plane ranging fromZ=+0.5to–0.5kpc.Peer ReviewedPostprint (published version

    A white dwarf catalogue from Gaia-DR2 and the Virtual Observatory

    Get PDF
    We present a catalogue of 73¿221 white dwarf candidates extracted from the astrometric and photometric data of the recently published Gaia-DR2 catalogue. White dwarfs were selected from the Gaia Hertzsprung–Russell diagram with the aid of the most updated population synthesis simulator. Our analysis shows that Gaia has virtually identified all white dwarfs within 100¿pc from the Sun. Hence, our sub-population of 8555 white dwarfs within this distance limit and the colour range considered, -0.52<(GBP-GRP)<0.80¿, is the largest and most complete volume-limited sample of such objects to date. From this sub-sample, we identified 8343 CO-core and 212 ONe-core white dwarf candidates and derived a white dwarf space density of 4.9±0.4×10-3pc-3¿. A bifurcation in the Hertzsprung–Russell diagram for these sources, which our models do not predict, is clearly visible. We used the Virtual Observatory SED Analyzer tool to derive effective temperatures and luminosities for our sources by fitting their spectral energy distributions, that we built from the ultraviolet to the near-infrared using publicly available photometry through the Virtual Observatory. From these parameters, we derived the white dwarf radii. Interpolating the radii and effective temperatures in hydrogen-rich white dwarf cooling sequences, we derived the surface gravities and masses. The Gaia 100¿pc white dwarf population is clearly dominated by cool (~8000¿K) objects and reveals a significant population of massive (¿M~0.8M¿¿) white dwarfs, of which no more than ~30--40 per cent can be attributed to hydrogen-deficient atmospheres, and whose origin remains uncertain.Peer ReviewedPreprin
    • …
    corecore